

NRTC ENERGIES PRIVATE LIMITED 72 Block, PECO Road, Lahore, Pakistan +92 42 3511 7304 | +92 33 6782 6782 +92 33 NRTC NRTC www.nrtcenergies.com

То

The Registrar National Electric Power Regulatory Authority (NEPRA) NEPRA Tower Attaturk Avenue (East) Sector G-5/1, Islamabad Pakistan.

Subject: APPLICATION FOR GENERATION LICENCE / CONCURRENCE

I, Jawad Anjum, Director NRTC Energies, being the duly authorized representative of NRTC Energies (Private) Limited by virtue of Board Resolution dated 16.12.2024 hereby apply to the National Electric Power Regulatory Authority for the grant of a generation licence / concurrence to NRTC Energies (Private) Limited pursuant to Section 14-B of the Regulation of Generation, Transmission and Distribution of Electric Power Act, 1997.

I hereby certify that the documents-in-support attached with this application are prepared and submitted in conformity with the provisions of the National Electric Power Regulatory Authority Licensing (Application, Modification, Extension and Cancellation) Procedure Regulations, 2021, and undertake to abide by the terms and provisions of the above-said regulations. I further undertake and confirm that the information provided in the attached documents-in-support is true and correct to the best of my knowledge and no material omission has been made.

A Pay Order in the sum of Rupees 549,787 (Rupees Five Hundred and Forty-Nine Thousand, Seven Hundred and Eighty-Seven only), being the non-refundable licence application fee calculated in accordance with Schedule II to the National Electric Power Regulatory Authority Licensing (Application and Modification Procedure) Regulations, 2021, is also attached herewith.

Date: 17/3/2025

Jawad Anjum, Director NRTC Energies (Pvt.) Ltd.

	Information / Documents required under NEPRA	
No.	Licensing (Application, Modification, Extension	Submitted
	and Cancellation) Procedure Regulations, 2021	
1	Application for Generation Licence along with	Annexure- I
	Affidavit, Extract of Minutes Book, Board	
	Resolution & Power of Attorney pursuant to	
	Regulation 3 (1)	
2	Application Fee pursuant to Regulation 3(1)	Annexure- II
3	Certificate of Incorporation pursuant to Regulation	Annexure- III
	3(4)(c)(i) (A)	
4	Memorandum and Articles of Association pursuant to	Annexure- IV
	Regulation $3(4)$ (c)(i) (BJ)	
5	Evidence of cash balance held in Reserves and bank	Annexure- V
	certificates pursuant to Regulation 3(4)(d)(i)	
6.	Latest Audited Financial Statements of the	Annexure- VI
	Application pursuant to Regulation 3(4)(d)(iii)	
7	Annual Reports of the Company pursuant to	Annexure- VII
	Regulation 3(4)(c)(i)(C)	
8	Last filed Annual Return pursuant to Regulation	Annexure- VIII
	3(4)(c)(ii)	
9	The authorized, issued, subscribed and paid-up share	The Authorized capital of the
	capital of the Applicant pursuant to Regulation	company is Rs. 10,000,000 (Ten
	3(4)(c)(ii i)	Million Rupees Only) divided into
		100,000 (One Hundred Thousand)
		Ordinary shares of Rs. 100 (One
		Hundred Only) each.
10	The shareholding pattern of the Applicant including	Annexure- IX
	list of shareholders pursuant to Regulation 3(4)(c)(iv)	
11	Details of charges and encumbrances Attached to	The Applicant Company does not
	Applicant's assets pursuant to Regulation 3(4)(d)(ii)	have any charges or encumbrances
<u> </u>		attached to Applicant's assets.
12	A prospectus pursuant to Regulation 3(4)(b)	Annexure- X
13	Expression of interest to provide credit or financing	Since the Applicant does not intend
	along with sources and details thereof as required	to sell electricity to the grid or seek
	pursuant to Regulation 3(4)(d)(iv)	a tariff from the Regulators it is

		requested that this condition may please be waived.
14	Documents describing net worth and equity and debt ratios of the Applicant pursuant to Regulation 3(4)(d)(y)	
15	Detailed profile and CVs of senior management pursuant to Regulation 3(4)(d)(vi)	
16	Employment records of engineering and technical staff of the Applicant pursuant to Regulation 3(4)(d)(vii)	
17	Profile of Sub-contractors, if any, along with expression of interest of such sub-contractors as required pursuant to Regulation $3(4)(d)(viii)$	Annexure- XII
18	Verifiable references with reference to experience of the Applicant and its sub-contractors as required pursuant to Regulation 3(4)(d)(ix)	Annexure- X & XII
`19	Environmental Impact Assessment Study pursuant to Regulation $3(4)(a)$ Schedule-III clause A(e)(2)	Annexure- XIII
20	Information relating to water source at site for	Unlike conventional thermal power
	maintenance pursuant to Regulation 3(4)(a),	generation plants, solar power plants
	Schedule-Ill Clause A(a) (4.) (iii))	do not require extensive use of water
		since cooling and auxiliary
		consumption is not required. The
		only water requirement would be the
		fortnightly cleaning of panels which
		is done through modern equipment
		that conserves water. For this
		purpose, the normal utility water
		available at the site would be used.
21	Information relating to infrastructure(Roads, rail,	The Ground & rooftop mounted PV
	staff colony, amenities) pursuant to Regulation	facilities will be constructed at MES
	3(4)(a) Schedule-Ill clause A(e)(3)(iv)	sites. No new infrastructural
		development is part of the scope of
		this project.

22	Information relating to Project commencement and	Annexure- XIV	
	completion schedule (with milestones) pursuant to		
	Regulation 3(4)(a), Schedule-Ill Clause A(e)(3.)(v))		
23	Information relating to Safety and Emergency plans	Annexure- XV	
	pursuant to Regulation 3(4)(a) Schedule-III clause		
	A(c)(3)(vii)		
24	Information relating to plant characteristics	Annexure- XVI	<u> </u>
	(generation voltage, frequency etc.) pursuant to		
	Regulation 3(4)(a) clause A(e)(3)(vii)		
25	Feasibility study of the project as required pursuant		
	to Regulation 3(4)f		
26	Affidavit stating whether the Applicant has been	Annexure- XVII	
	granted any other license under the Act pursuant to		
	Regulation 3(4)(g)		
27	A duly authorized statement stating whether the		
	applicant has been refused grant of license under the		
	Act and if so, the particulars of the refused application		
	including date of making the application and the		
	decision on the application Pursuant to Regulation 3		
	(4)(h)		
28	Bank Guarantee Equivalent to Applicable Annual		
	License Fee for two years pursuant to Regulation 3(8)	Bank Guarantee pursuan regulation. However, the	
		has not yet provided an	•
		this guarantee.	
		The Applicant pledges to	•
		Authority with the Bank	
		as soon as a format is p the Regulator.	rovided by
29	Technical and financial proposals in reasonable	0	
	details pursuant to Regulation 3(4)(e)		
30	Information relating to control, metering	Annexure- XVI	
	instrumentation and protections pursuant to		
	Regulation 3(4)(a) Schedule-III clause A(e)(3/(viii)		
31	Information relating to technology size of the plant		
	number of units etc. pursuant to Regulation 3(4)(a)		RGIES (AL
	Schedule-Ill clause A(e)(3)(ii)	/	

32	Interconnection study pursuant to Regulation 3(4)(a) Schedule-III clause A(e)(I).	Annexure- XVIII
33	Information relating to location (location maps, site maps, land etc.) pursuant to Regulation 3(4)(a), Schedule-III clause A(e)(3)(i)	Annexure- XVI
34	Information relating to Degradation Factors. (Regulation 3(4)(a), Schedule-Ill Clause A(e)(3.)(x))	Annexure- XVI
35	Information relating to Estimated Capacity Factor at site. (Regulation $3(4)(a)$, Schedule-III Clause $A(e)(3.)(ix)$)	

į

<u>Annexure-I</u>

Application for Generation Licence / Concurrence along with Affidavit, Extract of Minutes Book, Board Resolution & Power of Attorney

NRTC ENERGIES PRIVATE LIMITED 72 Block, PECO Road, Lahore, Pakistan +92 42 3511 7304 | +92 33 6782 6782 www.nrtcenergies.com

BEFORE THE NATIONAL ELECTRIC POWER REGULATORY AUTHORITY

"Application for seeking Generation License"

ON BEHALF OF

NRTC ENERGIES (PRIVATE) LIMITED

AUTHORIZED STATEMENT

I, Mr. Jawad Anjum, holding CNIC No. (42301-7799857-1), Chief Executive Officer, NRTC Energies (Private) Limited hereby solemnly affirm and declare that the contents of the accompanying Application for Generation License (the "License") is true and correct to the best of my knowledge and belief and nothing material has been concealed there from.

I also affirm that all further documentation and information to be provided by me in connection with the accompanying application for Generation License will also be true to the best of my knowledge and belief.

Date: 20-02-2025

Chief Executive Officer

NRTC Energies (Private) Lin

A Premium Energy Brand

Application for the Grant of Generation License / Concurrence

1. Background

NRTC Energies Private Limited was incorporated on 17.11.2021 under Section- 16 of the Companies Act, 2017 with Corporate Unique Identification No. 0184244. The business office of the company is at 72 Block, PECO Road, Lahore, Pakistan

The Company has completed various Solar projects nationally in a very short span of time. Up till now, the company has over 05 megawatts of solar projects in Pakistan.

NRTC Energies aims to alleviate Pakistan's energy problems by introducing innovative distributed solar and energy management solutions. The Pakistan and the NRTC Energies teams are committed to achieve excellence in every aspect of solar design, construction, and operation & maintenance.

2. Project Rationale

The Military Engineering Services (MES) in Pakistan has a rich history dating back to the British colonial era. After the independence of Pakistan in 1947, the MES was reconstituted to serve the Pakistan Army. The MES is responsible for providing engineering support to the Pakistan Armed Forces, including construction, maintenance, and repair of military infrastructure.

Apart from the strategic importance of activities carried out by MES and their requirement of reliable electric power, MES is committed to play a notable role in reducing carbon footprints of Pakistan. To achieve the endeavor, MES is determined to meet their electric power demand through Solar energy. For aforementioned purpose, MES engaged NRTC Energies and their team conducted surveys to the sites of Military Engineering Services (MES) Pakistan and keeping in view their annual energy consumption, a 3.5 MWp Solar PV Solution at five site in Lahore is proposed. It is anticipated that the project will serve a projected annual production of 5,110,000 kWh/year.

3. Environment Benefits

Almost all conventional methods of energy generation have varying degrees of adverse environmental impact. These methods have far reached detrimental effects on the climate, air, water, land and wildlife of the adjacent vicinities. However, Solar PV energy technology provides significant environmental advantages in comparison to the conventional energy sources while contributing to the sustainable development of human activities. Besides slowing down the depletion of natural resources, the sustainable

environmental advantage is zero air emissions, waste production and eventual reduction in emissions of greenhouse gases (COx, NOx) and toxic gases (SOx).

Solar power plants have zero fuel requirement and hence limit the depletion of natural resources, fossil fuels. Unlike conventional thermal power plants, no water consumption is required for cooling purposes. A very optimized quantity of water is occasionally used for plant maintenance / cleaning.

4. Prayer

NRTC Energies has performed an in-depth technical and financial analysis for proposed 3.5 MWp Solar PV solution at stated five sites of MES. Findings from these analyses suggest that the proposed sites are suitable for installation of Solar PV power plants with substantial benefits for the environment and promotion of distributed grid in Pakistan. Technical details of the sites and system designs (PVSyst simulations) have been attached with this application.

Keeping in view the considerable amount of effort and attention to the minute details put into the Solar PV system designing and diverse experience of solar sector, NRTC Energies is confident that if allowed by the honorable Authority to construct this plant, it will be able to achieve the required results without any problem.

In view of above it is requested that the application of NRTC Energies (Private) Limited may very kindly be processed and placed before the Authority for admission.

NRTC Energies (Private) Limited further requests the honorable Authority to kindly grant the Generation Licence / Concurrence for 3.5 MWp Solar PV plants at sated sites of Military Engineering Services (MES) Pakistan. In case, any further document or information is required then it is requested that same may kindly be communicated.

Sincerely,

Jawad Anjum, Director NRTC Energies (Pvt.) Ltd.

NRTC ENERGIES PRIVATE LIMITED 72 Block, PECO Road, Lahore, Pakistan +92 42 3511 7304 | +92 33 6782 6782 +92 33 NRTC NRTC www.nrtcenergies.com

RESOLUTION BY CIRCULAR

Date: December 16, 2024

RESOLVED that an application for the Generation License ("The GL Application") be filed by and on behalf of NRTC Energies (Pvt.) Ltd., ("The Company") with the National Electric Power Regulatory Authority ("NEPRA"), in connection with the GL Application for the company in respect of the Military Engineering Services ("MES") ("The Company") for 3.5 MVVp Solar Power Project at four zones spanning over different cities of Pakistan. ("The Project").

Further Resolved that Mr. Jawad Anjum, holding CNIC No.42301-7799857-1, Director of the company, be and is hereby authorized to sign the GL Application, and any documentation ancillary thereto, pay all the filing fees, and provide any information required by NEPRA in respect of the project, and do all acts and things necessary for the processing, completion and finalization of the GL application.

CLARIFICATION

CERTIFIED that, the above resolution by circulation was duly passed by the Board of Directors of **NRTC Energies (Pvt.) Ltd on 16th Dec 2024 for** which the quorum of directors was present.

FURTHER CERTIFIED, that the said resolution has not been rescinded and is in operation and that this is the true copy thereof.

Jawad Anjum CEO/Director

Zahid Mehmood Maitla Director

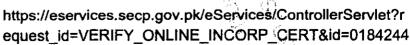
A Premium Energy Brand

SECURITIES AND EXCHANGE COMMISSION OF PAKISTAN

Company Registration Office

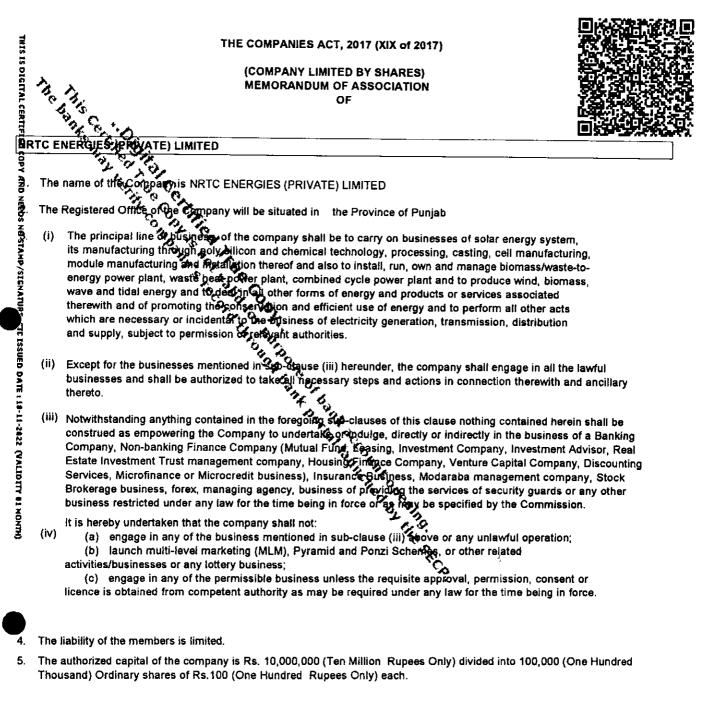
CERTIFICATE OF INCORPORATION

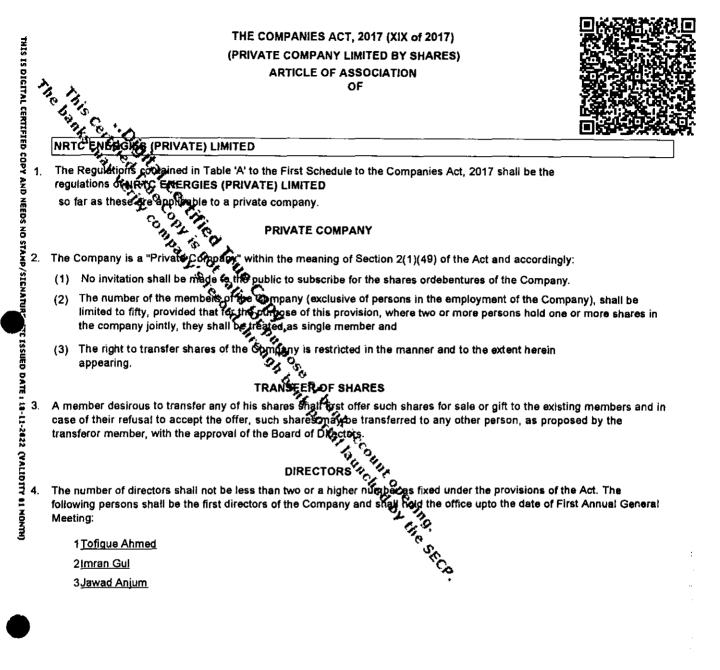
[Under section 16 of the Companies Act, 2017 (XIX of 2017)]


Corporate Unique Identification No. 0184244

I hereby certify that NRTC ENERGIES (PRIVATE) LIMITED is this day incorporated under the Companies Act, 2017 (XIX of 2017) and that the company is limited by shares.

Given at Islamabad this Seventeenth day of September, Two Thousand and Twenty One


Moeen Rajput Deputy Registrar



https://eservices.secp.gov.pk/eServices/XFDLControllerServlet?pid=eug6bWtdgeMSaWnAzp0oiw%3D%3D&formid=jOXMo2H%2FnVzaeELAwcINYV... 1/4

MOA

https://eservices.secp.gov.pk/eServices/XFDLControllerServlet?pid=eug6bWidgeMSaWhAzp0oiw%3D%3D&formid=jOXMo2H%2FnVzaeELAwcINYc... 2/4

We, the several persons whose names and addresses are subscribed below, are desirous of being t into a company, in pursuance of this article of association, and we respectively agree to take the nur shares in the capital of the company as set opposite our respective names:

Name and surnames)	n the capital of NICHo. (In Assort U foreigner) Hansport Ast	Enther	Nationality		Usual residential address in full or the	Number of shares taken by each subscriber (in figures and words)	Signatures
Tofique Ahmed	Action of the second se	Mahaninged Multer LIC ICCOLLING	Pakistan	Director NRTC, Director NRTC itech (Pvt) Ltd	Mohalia Cantt Railway station, Kharian GUJRAT Punjab Pakistan 50070	1	
imran Gul	3420207444589	Muhammad Git	Periatan DI SC OF DI TANI K DA	CEO NRTC Hech (Pvt) Ltd	House No. B-1, Ghaznawi Street, Garrison Adiala Road RAWALPINDI Punjab Potistan 46606	1	
Jawad Anjum	4230177998571	Anjum Parvez	Pakistan	Disector M/s OpSign (PVI) Ltd HII (HII) CII (CII) CII (CII) CII CII (CII) CII (CII) CI	Flat No. 43-G Askari 3, School Road KARACHI SOUTH Sindh Pakistan 75530	1	
The National Radio Felecommunica ion Corporation Pvt) Ltd hrough Imran	3420207444589	Muhammad Gui	Pakistan	CEO NRTC	T ded T Sofiplex, Hitrigur HAHBUR Khybb Pakhturithwa Pakhturithwa Pakistan 22620	74,998	
DinSun (Pvt) Itd through Iawad Anjum	4230177998571	Anjum Parvez	Pakistan	Director Ws OnSun (Pvt) Ltd	Flat No.43-G, Askari 3, School Road KARACHI SOUTH Sindh Pskistan 75530	24,999	
otal number of	shares taken (in	figures and word	 \$ }		1	00,000 (One Hund	red Thousand)
ated: the 15		day of Sep		20 21			

https://eservices.secp.gov.pk/eServices/XFDLControllerServlet?pid=eug6bWtdgeMSaWnAzp0oiw%3D%3D&formid=jOXMo2H%2FnVzaeELAwcINYc... 3/4

ĥ

Address

A·F·FERGUSON&CO.

February 7, 2024 749

The Board of Directors NRTC Energies (Private) Limited (the Company) Lahore

Dear Sirs

FINANCIAL STATEMENTS FOR THE YEAR ENDED JUNE 30, 2023

We enclose three copies of the above referred financial statements with our draft audit report thereon initialed by us for identification purposes. We shall be pleased to sign our report in present or amended form after:

- i) the financial statements have been approved by the Board of Directors (the Board) and signed by the Chief Executive and a director authorized by the Board in this behalf;
- we have seen board's specific approval for items listed in Annexure to this letter, restatement of prior year financial statements as disclosed in note 29 and reclassification of corresponding figures as disclosed in note 30 to the financial statements;
- iii) we have reviewed the Directors report presented to the Board along with the audited financial statements;
- iv) we have reviewed the Company's statement of compliance with the code of public sector entities; and
- v) we have received a representation letter on the lines of the enclosed draft, duly signed by the Chief Executive and the Chief Financial Officer of the Company.

2. Responsibilities of the auditors and the management in relation to the financial statements

The responsibilities of the independent auditors, in a usual examination of financial statements, are explained in the International Standard on Auditing – 200 "Overall Objectives of the Independent Auditor and Conduct of an Audit in Accordance with International Standards on Auditing". While the auditors are responsible for forming and expressing their opinion on the financial statements, the responsibility for preparation of the financial statements is primarily that of the Company's management. The management's responsibilities include the maintenance of adequate accounting records and internal controls, the selection and application of accounting policies, safeguarding the assets of the Company and prevention and detection of frauds and irregularities. The audit of financial statements does not relieve the management of its responsibilities. Accordingly, our examination of the books of accounts and records should not be relied upon to disclose all the errors or irregularities in relation to the financial statements.

A. F. FERGUSON & CO., Chartered Accountants, a member firm of the PwC network 74-East, 2nd Floor, Blue Area, Jinnah Avenue, P.O.Box 3021, Islamabad-44000, Pakistan Tel: +92 (51) 2273457-60/2604934-37; Fax: +92 (51) 2277924, 2206473; < www.pwc.com/pk>

"KARACHI "LAHORE "ISLAMABAD

CamScanner

A.F.FERGUSON&CO.

3. Liabilities and Equity status

We noted that the Company has current liabilities in excess of current assets and also has a negative equity of Rs 17,624,731 as at June 30, 2023. We have been apprised by the management that the entity is in its initial years of operations and foresees a positive outlook in future year. Further the Company has already achieved positive cashflows from operations and the management is confident that the Company will be able to settle its liabilities in normal course of business. We trust that the Board is aware of the aforesaid facts and is in agreement with the management's views in this regard.

4. Public Sector Companies (Corporate Governance) Rules, 2013 (the Code)

The Company is required to report on compliance with requirements of the Code. Whilst the non-compliances are to be reported in the statement of compliance with the Code, yet we feel appropriate in outlining that steps be taken and concerned authorities and officials be pursued for attaining full compliance of the Code. We may caution that besides other penal consequences, same also attract negative implications for group taxation, where opted for, under the requirements of Income Tax Ordinance, 2001 which can have an entity level impact for the Company as well.

5. Records and documents

5.1 We noted certain instances where contracts with customers were not completed within the prescribed timelines. The delay may attract any penalties or damages. We recommend that a dashboard of timelines for customer contracts be maintained and periodically reviewed for deviations and necessary actions are taken to avoid any penalties or damages.

5.2 We noted that purchase requisitions, purchase orders and goods receipt notes are not sequentially numbered. We recommend that the supporting documents are sequentially numbered to ensure completeness and better control over procurement process.

5.3 We noted instances where related supporting documents for vouchers were not attached with the vouchers. Further, in some cases, supporting documents were in the form of pictures captured through a cellular phone and in various instances were not legible as well. Notwithstanding the legible nature of the pictures, we may draw attention to the fact that same does not suffice for the original records as are required to be kept by the Company under the law. We recommend that books of account and underlying records be appropriately maintained and retained per the various statutory requirements attracted towards the Company.

6. Compliance with Human Resource Policy

We noted certain instances where certain documents, such as Human Resource (HR) form, technical interview evaluation form, offer letter, offer acceptance letter, joining letter annual performance review, latest increment letters etc., as required by the HR policy were not available for our review in the personnel files. We recommend that the practices be aligned with the HR policy.

7. Information system

7.1 We observed that the financial management system of the Company is neither computerized / automated nor integrated and the Company is maintaining manual accounting records. Further, the journal entries are posted manually which may pose possibility of revisions.

A·F·FERGUSON&CO.

We recommend that the use of a secure and automated information system be evaluated as to have better control over financial reporting process. Further, access to general ledgers and other records should be restricted to authorized users only.

7.2 We have been apprised that certain steps have been taken by the Company for protection of records, but the Company is yet to formulate a data protection plan and back up policy for protection and back up of data. We recommend that appropriate contingency plan be drawn for safeguarding of data and robust controls and procedures should be placed for retrieval of data in different mode and forms including assessment of the need for any off site backup. Further, steps may also be taken to guard the data, information, and related records from any possible loss.

8. End of service benefits to employees

We noted that the Company does not offer any service terminal benefits to employees. We recommend that the Company may seek guidance from its legal counsel and take steps to ensure any compliance due, with local laws and regulations. Further, adjustments, if required, are incorporated in books of account.

9. Mechanism for calculation of Expected Credit Losses (ECL) on financial assets

IFRS 9 "Financial Instruments" requires that an entity shall assess and recognise a loss allowance for ECL on all financial assets that are carried at amortised cost model. In this respect, we noted that a formal mechanism for calculation of ECL on financial assets was not in place. We recommend that ECL be evaluated on periodic basis for all financial assets and adjustment, if any required, be adequately incorporated in books of account of the Company to remain in compliance with the statutory reporting framework requirements. Further, key inputs of the ECL model are sourced carefully keeping in view suitability, source data limitations, recent economic trends and their long-term impacts on financial assets of the Company.

10. Fixed assets

10.1 IAS 16 Property, Plant and Equipment requires the items of property and equipment be capitalized when it is probable that the future economic benefits associated with the item will flow to the entity and the cost of item can be measured reliably. However, we noted that the Company does not have a written capitalization policy in place for property and equipment. Given the foregoing, we recommend that the related policy be formulated and assessed for appropriateness by the Company.

10.2 We also observed that the fixed assets are neither coded and tagged nor captured per the fixed assets register requirements outline vide TR 6 prescribed by Institute of Chartered Accountants of Pakistan. In addition, the Company does not have any practice of periodic physical verification of fixed assets. We recommend that fixed assets should be physically verified, properly tagged / coded and captured in the fixed assets register for proper control over assets along appropriate record keeping thereof.

11. Cost allocation

We noted that costs pertaining to employees have been allocated by the Company to direct cost based on a predetermined ratio. Further we also noted that time sheets are not prepared by employees of the Foundation as to determine their accurate effort level allocable

- 3 -

A.F.FERGUSON&CO.

for each activity. We recommend that the activity cost drivers are duly identified, and the basis of allocation thereof be periodically evaluated to arrive at precise margins/operational results of each activity.

12. Facility availed without consideration

We noted that the Company is using various resources and facilities of the parent Company. In this respect, we have been confirmed that the related amounts are insignificant for the Company and neither any amount in this respect is charged by the Company nor would be charged to the Parent Company thus no such amount is recognized as expense by the management of the Company.

We recommend that the related matter be appropriately assessed in light of respective requirements including taxation and accounting covenants. Further, terms of business and support by the Company be formally documented and approved by the concerned.

13. **Restatement and reclassification**

We feel appropriate in drawing attention to the contents of note 29 and 30 of the enclosed financial statements which outline certain prior period reclassifications/restatements. In this respect, we have been apprised that certain of the related matters pertain to error in the prior periods and have now been appropriately addressed by the management. We recommend that related matters be internally deliberated, and steps taken for robust responsiveness to avoid reoccurrence of any such error in the future accounting/reporting matters.

Please note that, in due course of time, we shall also issue a management letter which 14. shall be including our observations on certain internal controls and accounting matters which came to our notice during the course of the audit, together with our recommendations, as considered appropriate in these respect. We may however, add that our audit procedures were designed with a view to expressing an opinion on the financial statements taken as a whole and not to provide an independent assurance on the internal control structure which may be the objective of any related focused examination

We wish to place on record our appreciation of the co-operation and courtesy extended 15. to us by the management and staff of the Company during audit.

Yours truly

ergronze encls

A.F.FERGUSON&CO.

Annexure

1

NRTC ENERGIES (PRIVATE) LIMITED FINANCIAL STATEMENTS FOR THE YEAR ENDED JUNE 30, 2023

List of items requiring the Board's specific approval as referred to in our letter 749 dated February 7, 2024:

		Rupees
(i)	Property and equipment Operating assets	
	- Additions at cost during the year	3,416,283
(ii)	Capital work in progress	
	 Additions during the year 	3,235,725
(iii)	Transactions with related parties as disclosed in note 28 to the financial statements.	
(iv)	Remuneration of Chief Executive, Directors and Executives as	

(iv) Remuneration of Chief Executive, Directors and Executives as disclosed in note 26 to the financial statements.

303724.

۰.

INDEPENDENT AUDITOR'S REPORT

To the Members of NRTC Energies (Private) Limited

Report on the Audit of the Financial Statements

Opinion

We have audited the annexed financial statements of NRTC Energies (Private) Limited (the Company), which comprise the statement of financial position as at June 30, 2023, and the statement of profit or loss, the statement of comprehensive income, the statement of changes in equity, the statement of cash flows for the year then ended, and notes to the financial statements, including a summary of significant accounting policies and other explanatory information, and we state that we have obtained all the information and explanations which, to the best of our knowledge and belief, were necessary for the purposes of the audit.

In our opinion and to the best of our information and according to the explanations given to us, the statement of financial position, the statement of profit or loss, the statement of comprehensive income, the statement of changes in equity and the statement of cash flows together with the notes forming part thereof conform with the accounting and reporting standards as applicable in Pakistan and give the information required by the Companies Act, 2017 (XIX of 2017), in the manner so required and respectively give a true and fair view of the state of the Company's affairs as at June 30, 2023 and of the loss and other comprehensive loss, the changes in equity and its cash flows for the year then ended.

Basis for Opinion

We conducted our audit in accordance with International Standards on Auditing (ISAs) as applicable in Pakistan. Our responsibilities under those standards are further described in the Auditor's Responsibilities for the Audit of the Financial Statements section of our report. We are independent of the Company in accordance with the International Ethics Standards Board for Accountants' Code of Ethics for Professional Accountants as adopted by the Institute of Chartered Accountants of Pakistan (the Code) and we have fulfilled our other ethical responsibilities in accordance with the Code. We believe that the audit evidence we have obtained is sufficient and appropriate to provide a basis for our opinion.

Information Other than the Financial Statements and Auditor's Report Thereon

Management is responsible for the other information. The other information comprises the information included in the director's report but does not include the financial statements and our auditor's report thereon.

Our opinion on the financial statements does not cover the other information and we do not express any form of assurance conclusion thereon.

In connection with our audit of the financial statements, our responsibility is to read the other information and, in doing so, consider whether the other information is materially inconsistent with the financial statements or our knowledge obtained in the audit, or otherwise appears to be materially misstated. If, based on the work we have performed, we conclude that there is a material misstatement of this other information, we are required to report that fact. We have nothing to report in this regard.

A. F. FERGUSON & CO., Chartered Accountants, a member firm of the PwC network 74-East, 2nd Floor, Blue Area, Jinnah Avenue, P.O.Box 3021, Islamabad-44000, Pakistan Tel: +92 (51) 2273457-60/2604934-37; Fax: +92 (51) 2277924; <www.pwc.com/pk>

*KARACHI *LAHORE *ISLAMABAD

ù

Responsibilities of Management and Board of Directors for the Financial Statements

Management is responsible for the preparation and fair presentation of the financial statements in accordance with the accounting and reporting standards as applicable in Pakistan and the requirements of Companies Act, 2017(XIX of 2017) and for such internal control as management determines is necessary to enable the preparation of financial statements that are free from material misstatement, whether due to fraud or error.

- 2 -

In preparing the financial statements, management is responsible for assessing the Company's ability to continue as a going concern, disclosing, as applicable, matters related to going concern and using the going concern basis of accounting unless management either intends to liquidate the Company or to cease operations, or has no realistic alternative but to do so.

Board of directors are responsible for overseeing the Company's financial reporting process.

Auditor's Responsibilities for the Audit of the Financial Statements

Our objectives are to obtain reasonable assurance about whether the financial statements as a whole are free from material misstatement, whether due to fraud or error, and to issue an auditor's report that includes our opinion. Reasonable assurance is a high level of assurance, but is not a guarantee that an audit conducted in accordance with ISAs as applicable in Pakistan will always detect a material misstatement when it exists. Misstatements can arise from fraud or error and are considered material if, individually or in the aggregate, they could reasonably be expected to influence the economic decisions of users taken on the basis of these financial statements.

As part of an audit in accordance with ISAs as applicable in Pakistan, we exercise professional judgment and maintain professional skepticism throughout the audit. We also:

- Identify and assess the risks of material misstatement of the financial statements, whether due to fraud or error, design and perform audit procedures responsive to those risks, and obtain audit evidence that is sufficient and appropriate to provide a basis for our opinion. The risk of not detecting a material misstatement resulting from fraud is higher than for one resulting from error, as fraud may involve collusion, forgery, intentional omissions, misrepresentations, or the override of internal control.
- Obtain an understanding of internal control relevant to the audit in order to design audit procedures that are appropriate in the circumstances, but not for the purpose of expressing an opinion on the effectiveness of the Company's internal control.
- Evaluate the appropriateness of accounting policies used and the reasonableness of accounting estimates and related disclosures made by management.
- Conclude on the appropriateness of management's use of the going concern basis of accounting and, based on the audit evidence obtained, whether a material uncertainty exists related to events or conditions that may cast significant doubt on the Company's ability to continue as a going concern. If we conclude that a material uncertainty exists, we are required to draw attention in our auditor's report to the related disclosures in the financial statements or, if such disclosures are inadequate, to modify our opinion. Our conclusions are based on the audit evidence obtained up to the date of our auditor's report. However, future events or conditions may cause the Company to cease to continue as a going concern.

JAXADO

AFFERGUSON& CQ

• Evaluate the overall presentation, structure and content of the financial statements, including the disclosures, and whether the financial statements represent the underlying transactions and events in a manner that achieves fair presentation.

- 3 -

We communicate with the board of directors regarding, among other matters, the planned scope and timing of the audit and significant audit findings, including any significant deficiencies in internal control that we identify during our audit.

Report on Other Legal and Regulatory Reguirements

Based on our audit, we further report that in our opinion:

- a) proper books of account have been kept by the Company as required by the Companies Act, 2017 (XIX of 2017);
- b) the statement of financial position, the statement of profit or loss, the statement of comprehensive income, the statement of changes in equity and the statement of cash flows together with the notes thereon have been drawn up in conformity with the Companies Act, 2017 (XIX of 2017) and are in agreement with the books of account and returns;
- c) investments made, expenditure incurred and guarantees extended during the year were for the purpose of the Company's business; and
- d) no zakat was deductible at source under the Zakat and Ushr Ordinance, 1980 (XVIII of 1980).

Other Matter

The financial statements of the Company for the year ended June 30, 2022 were audited by another auditor who expressed an unmodified opinion on those financial statements on January 17, 2024.

The engagement partner on the audit resulting in this independent auditor's report is JehanZeb Amin.

Hergemal.

Chartered Accountants Islamabad Date: October 9, 2024 UDIN: AR202310083nIP7sz2XI

NRTC ENERGIES (PRIVATE) LIMITED STATEMENT OF FINANCIAL POSITION AS AT JUNE 30, 2023

		2023	2022
	Note	Rupees	Rupees
ASSETS			(Restated)
NON-CURRENT ASSETS	_		
Property and equipment	5	6,652,467	327,175
Long term deposits	1	922,000	215,300
	_	7,574,467	542,475
CURRENT ASSETS			
Stock in trade	7 [80,642,763	201,481
Trade and other receivable	8	40,242,894	11,676,881
Advances	9	2,287,912	8,732,650
Sales tax refundable-net	10	14,366,237	1,952,187
Prepayments	11	400,473	-
Cash and bank balances	12	100,353,093	273,459
	_	238,293,372	22,836,659
TOTAL ASSETS	-	245,867,839	23,379,134
EQUITY & LIABILITIES			
EQUITY AND RESERVES	_		
Share capital	13	10,000,000	10,000,000
Accumulated (losses) / profit		(27,624,731)	662,134
		(17,624,731)	10,662,134
NON-CURRENT LIABILITIES			
Deferred tax liabilities	14	164,842	13,442
CURRENT LIABILITIES			
Loan from Onsun Pvt Ltd - unsecured	15	10,650,654	650,654
Trade and other payables	16	147,414,383	11,671,337
Contract liabilities	17	99,530,132	-
Provision for taxation	18	5,732,559	381,567
		263,327,728	12,703,558
TOTAL EQUITY AND LIABILITIES		245,867,839	23,379,134
CONTINGENCIES AND COMMITMENTS			

The annexed notes 1 to 32 form an integral part of these financial statements.

CHIEF EXECUTIVE OFFICER

Divector

BRECTOR Cheit Grantine officer

,

.....

NRTC ENERGIES (PRIVATE) LIMITED STATEMENT OF PROFIT OR LOSS FOR THE YEAR ENDED JUNE 30, 2023

	Note	2023 Rupees	2022 Rupees
Revenue - net	19	458,670,733	37,335,328
Cost of sales	20	(423,089,685)	(27,336,071)
Gross profit		35,581,048	9,999,257
Selling and distribution expenses	21	(7,748,200)	(1,290,148)
Administrative expenses	22	(50,228,422)	(7,564,608)
Operating (loss) / profit		(22,395,574)	1,144,501
Finance cost	23	(6,508)	(2,233)
(Loss) / Profit before taxation	-	(22,402,082)	1,142,268
Income tax expense	24	(5,884,784)	(480,134)
(Loss) / Profit for the year	-	(28,286,866)	662,134

The annexed notes 1 to 32 form an integral part of these financial statements.

CHIEF EXECUTIVE OFFICER

DIRECTOR

Cheit Frecutive obsider

ş

_]

- 1

-]

1

Director

NRTC ENERGIES (PRIVATE) LIMITED STATEMENT OF COMPREHENSIVE INCOME FOR THE YEAR ENDED JUNE 30, 2023

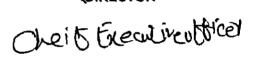
	2023 Rup e es	2022 Rupees
(Loss) / Profit for the year	(28,286,866)	662,134
Other comprehensive (loss) / income for the year - net of tax	-	-
Total comprehensive (loss) / income for the year	(28,286,866)	662,134

The annexed notes 1 to 32 form an integral part of these financial statements. $\Im \mathcal{FIL}$

CHIEF EXECUTIVE OFFICER inector

ł

]


1

1

1

]

DIRECTOR-

NRTC ENERGIES (PRIVATE) LIMITED STATEMENT OF CASH FLOWS FOR THE YEAR ENDED JUNE 30, 2023

Cash flows from operating activities(Loss) / Profit before tax(22,402,082)1,142,268Adjustments for:Depreciation5326,71615,045Operating cash flows before working capital changes7(80,441,282)(201,481)Changes in operating activities7(80,441,282)(201,481)Stock in trade7(80,441,282)(201,481)Trade and other receivable86,444,738(8,732,650)Advances96,444,738(8,732,650)Sales tax refundable-net10(12,414,050)(1,952,187)Prepayments11(400,473)-Long term deposits11(706,700)(215,300)Trade and other payables16135,743,04611,671,337Contract liabilities1799,530,132-Cash generated from operating activities89,614,034(2,449,850)Cash generated / (used) from operating activities89,231,642(2,534,975)Cash flows from investing activities5(6,652,008)(342,220)Net cash used in investing activities5(6,652,008)(342,220)Cash flows from financing activities137,500,000(2,500,000)Loen from Onsun (Private) Limited - unsecured15(10,000,000)(650,654)Net cash used in investing activities137,500,000(2500,000)Cash and cash equivalents at beginning of the year273,459-Cash and cash equivalents at edigon the year273,459- <t< th=""><th></th><th>Note</th><th>2023 Rupees</th><th>2022 Rupees</th></t<>		Note	2023 Rupees	2022 Rupees
Adjustments for:5326,71615,045Depreciation5326,71615,045Operating cash flows before working capital changes5(22,075,366)1,157,313Changes in operating activities8(36,066,013)(4,176,881)Advances96,444,738(8,732,650)Sales tax refundable-net10(12,414,050)(8,732,650)Prepayments11(400,473)-Long term deposits11(400,473)-Contract liabilities16135,743,04611,671,337Contract liabilities16135,743,04611,671,337Cash generated from operating activities111,689,399(3,607,163)Taxes paid(9,530,132)Net cash generated / (used) from operating activities89,211,034(2,449,850)Cash flows from investing activities89,211,642(2,534,975)Cash flows from investing activities5(6,652,008)(342,220)Net cash used in investing activities5(6,652,008)(342,220)Cash flows from financing activities137,500,000(350,654)Net cash generated form financing activities137,50	Cash flows from operating activities			
Depreciation Operating cash flows before working capital changes 5 326,716 15,045 Changes In operating activities (22,075,366) 1,157,313 Changes In operating activities (36,0441,282) (201,481) Trade and other receivable 8 (36,066,013) (4,176,881) Advances 9 6,444,738 (12,414,050) (12,52,187) Prepayments 10 (12,414,050) (215,300) (215,300) Long term deposits (706,700) (215,300) (215,300) Trade and other payables 16 (35,743,046) (3,607,163) Contract liabilities 17 99,530,132 - Cash generated from operating activities 89,614,034 (2,449,850) Taxes paid (382,392) (85,125) Net cash generated / (used) from operating activities 89,231,642 (2,534,975) Cash flows from investing activities 5 (6,652,008) (342,220) Net cash used in investing activities 13 7,500,000 (6,50,654) Net cash used in investing activities 13 7,500,0	(Loss) / Profit before tax		(22,402,082)	1,142,268
Operating cash flows before working capital changes(22,075,366)1,157,313Changes in operating activitiesStock in trade7(80,441,282)(201,481)Trade and other receivable8(36,066,013)(4,176,881)Advances96,444,738(8,732,650)Sales tax refundable-net10(12,414,050)(1,952,187)Prepayments11(400,473)-Long term deposits11(400,473)-Trade and other payables16135,743,04611,671,337Contract liabilities1799,530,132-Cash generated from operating activities111,689,399(3,607,163)Taxes paid(used) from operating activities89,614,034(2,449,850)Taxes paid(used) from operating activities89,231,642(2,534,975)Cash flows from investing activities5(6,652,008)(342,220)Cash flows from financing activities137,500,0002,500,000Cash generated from financing activities137,500,0002,500,000Cash flows from financing activities137,500,0002,500,000Net cash used in investing activities1510,0079,634273,459Net cash generated from financing activities1510,0079,634273,459Net cash generated from financing activities1510,0079,634273,459Net cash generated from financing activities1510,0079,634273,459	Adjustments for:			
Operating cash flows before working capital changes(22,075,366)1.157,313Changes In operating activitiesStock in trade7(80,441,282)(201,481)Trade and other receivable8(36,066,013)(4,176,881)Advances96,444,738(8,732,650)Sales tax refundable-net10(12,414,050)(1,952,187)Prepayments11(400,473)-Long term deposits11(400,473)-Trade and other payables16135,743,04611,671,337Contract liabilities1799,530,132-Cash generated from operating activities111,689,399(3,607,163)Taxes paid(2,449,850)(2,449,850)Net cash generated / (used) from operating activities89,614,034(2,449,850)Cash flows from investing activities89,231,642(2,534,975)Cash flows from financing activities5(6,652,008)(342,220)Net cash used in investing activities137,500,0002,500,000Cash flows from financing activities1510,000,0002,500,000Net cash generated from financing activities152,500,0003,150,654Net cash generated from financing activities1510,0079,634273,459Cash flows from financing activities1510,0079,634273,459Net cash generated from financing activities100,079,634273,459-	Depreciation	5	326,716	15.045
Stock in trade 7 (80,441,282) (201,481) Trade and other receivable 8 (36,066,013) (4,176,881) Advances 9 6,444,738 (12,414,050) (1,952,187) Prepayments 10 (12,414,050) (1,952,187) - Long term deposits 11 (400,473) - (215,300) Trade and other payables 16 135,743,046 11,671,337 - Contract liabilities 17 99,530,132 - - Cash generated from operating activities 89,614,034 (2,449,850) 11,671,337 Taxes paid (382,392) (35,125) - Net cash generated / (used) from operating activities 89,614,034 (2,449,850) Cash flows from investing activities 89,614,034 (2,449,850) Cash flows from investing activities 89,231,642 (2,534,975) Cash flows from financing activities 5 (6,652,008) (342,220) Net cash used in investing activities 15 (10,00,000) (2,500,000) Loan from Onsun (Private) Limited - unsecured 15 (10,000,000) (550,654)	Operating cash flows before working capital changes	-		
Trade and other receivable 8 (36,066,013) (4,176,881) Advances 9 (36,066,013) (4,176,881) Sales tax refundable-net 10 (1,2414,050) (1,952,187) Prepayments 11 (400,473) - Long term deposits 11 (400,473) - Trade and other payables 16 135,743,046 11,671,337 Contract liabilities 17 99,530,132 - Cash generated from operating activities 89,614,034 (2,449,850) Taxes paid (382,392) (85,125) Net cash generated / (used) from operating activities 89,231,642 (2,534,975) Cash flows from investing activities (6,652,008) (342,220) Additions in property and equipment 5 (6,652,008) (342,220) Net cash used in investing activities 13 7,500,000 (35,0654) Loan from Onsun (Private) Limited - unsecured 15 17,500,000 3,150,654 Net increase in cash and cash equivalents 100,079,634 273,459 273,459	Changes in operating activities			
Trade and other receivable 8 (36,066,013) (4,176,881) Advances 9 6,444,738 (8,732,650) Sales tax refundable-net 10 (12,414,050) (1,952,187) Prepayments 11 (400,473) - Long term deposits 11 (400,473) - Trade and other payables 16 135,743,046 11,671,337 Contract liabilities 17 99,530,132 - Cash generated from operating activities 111,689,399 (3,607,163) - Cash generated / (used) from operating activities 89,614,034 (2,449,850) - Net cash generated / (used) from operating activities 89,231,642 (2,534,975) Cash flows from investing activities 6(,652,008) (342,220) Net cash used in investing activities 13 7,500,000 (342,220) Cash flows from financing activities 13 7,500,000 (2,500,000 Loan from Onsun (Private) Limited - unsecured 15 10,000,000 (650,654) Net cash generated from financing activities 17,500,000 3,150,654 Net increase in cash and cash equivalents	Stock in trade	7	(80,441,282)	(201,481)
Sales tax refundable-net10(12,414,050)(1,952,187)Prepayments11(400,473)-Long term deposits11(400,473)-Trade and other payables16135,743,04611,671,337Contract liabilities1799,530,132-Cash generated from operating activities1799,530,132-Taxes paid17(3,607,163)(3,607,163)Net cash generated / (used) from operating activities89,614,034(2,449,850)Cash flows from investing activities(382,392)(85,125)Cash flows from investing activities5(6,652,008)(342,220)Cash flows from financing activities5(6,652,008)(342,220)Cash generated from financing activities137,500,0002,500,000Loan from Onsun (Private) Limited - unsecured1510,007,63427,3,459Net increase in cash and cash equivalents100,079,634273,459-Cash and cash equivalents at beginning of the year273,459	Trade and other receivable			
Prepayments11(400,473)-Long term deposits16(35,743,046)(215,300)Trade and other payables16135,743,04611,671,337Contract liabilities1799,530,132-Cash generated from operating activities1799,530,132-Taxes paid111,689,399(3,607,163)-Net cash generated / (used) from operating activities89,614,034(2,449,850)Cash generated / (used) from operating activities89,231,642(2,534,975)Cash flows from investing activities5(6,652,008)(342,220)Cash flows from financing activities137,500,000(342,220)Cash flows from financing activities137,500,0002,500,000Loan from Onsun (Private) Limited - unsecured1510,000,000650,654Net cash generated from financing activities100,079,634273,459Net increase in cash and cash equivalents100,079,634273,459Cash and cash equivalents at beginning of the year273,459-	Advances	9		•
Long term deposits Trade and other payables Contract liabilities(706,700) 135,743,046 99,530,132(215,300) 11,671,337Cash generated from operating activities Taxes paid Net cash generated / (used) from operating activities16 135,743,046 99,530,13211,671,337 	Sales tax refundable-net	10	(12,414,050)	(1,952,187)
Trade and other payables Contract liabilities16135,743,04611,671,337Cash generated from operating activities1799,530,132-Cash generated from operating activities111,689,399(3,607,163)Taxes paid89,614,034(2,449,850)Net cash generated / (used) from operating activities89,231,642(2,534,975)Cash flows from investing activities89,231,642(2,534,975)Cash flows from investing activities5(6,652,008)(342,220)Net cash used in investing activities5(6,652,008)(342,220)Cash flows from financing activities137,500,000(342,220)Cash flows from financing activities137,500,000(550,654)Net cash generated from financing activities137,500,000(550,654)Net increase in cash and cash equivalents100,079,634273,459273,459Cash and cash equivalents at beginning of the year273,459		11	(400,473)	-
Contract liabilities1799,530,132-Cash generated from operating activities111,689,399(3,607,163)Taxes paid89,614,034(2,449,850)Net cash generated / (used) from operating activities89,231,642(2,534,975)Cash flows from investing activities89,231,642(2,534,975)Cash flows from investing activities5(6,652,008)(342,220)Net cash used in investing activities5(6,652,008)(342,220)Cash flows from financing activities137,500,000(342,220)Cash flows from financing activities137,500,000(342,220)Cash flows from financing activities137,500,000(350,654)Net cash generated from financing activities1510,000,000(550,654)Net increase in cash and cash equivalents100,079,634273,459273,459Cash and cash equivalents at beginning of the year273,459	· · ·		(706,700)	(215,300)
Cash generated from operating activities111,689,399(3,607,163)Taxes paid89,614,034(2,449,850)Net cash generated / (used) from operating activities(382,392)(85,125)Cash flows from investing activities89,231,642(2,534,975)Cash flows from investing activities5(6,652,008)(342,220)Net cash used in investing activities(6,652,008)(342,220)Cash flows from financing activities137,500,0002,500,000Cash flows from financing activities137,500,0002,500,000Loan from Onsun (Private) Limited - unsecured1510,000,000650,654Net cash generated from financing activities100,079,634273,459273,459Cash and cash equivalents at beginning of the year273,459		16	135,743,046	11,671,337
Cash generated from operating activities89,614,034(2,449,850)Taxes paid(382,392)(85,125)Net cash generated / (used) from operating activities89,231,642(2,534,975)Cash flows from investing activities5(6,652,008)(342,220)Net cash used in investing activities5(6,652,008)(342,220)Net cash used in investing activities137,500,000(342,220)Cash flows from financing activities137,500,000(350,654)Net cash generated from financing activities137,500,000(350,654)Net cash generated from financing activities137,500,000(3,150,654)Net increase in cash and cash equivalents100,079,634273,459273,459Cash and cash equivalents at beginning of the year273,459-	Contract liabilities	17	99,530,132	-
Cash generated from operating activities89,614,034(2,449,850)Taxes paid(382,392)(85,125)Net cash generated / (used) from operating activities89,231,642(2,534,975)Cash flows from investing activities5(6,652,008)(342,220)Net cash used in investing activities5(6,652,008)(342,220)Net cash used in investing activities137,500,000(342,220)Cash flows from financing activities137,500,000(350,654)Net cash generated from financing activities137,500,000(350,654)Net cash generated from financing activities137,500,000(3,150,654)Net increase in cash and cash equivalents100,079,634273,459273,459Cash and cash equivalents at beginning of the year273,459-				(2.607.462)
Taxes paid(382,392)(85,125)Net cash generated / (used) from operating activities89,231,642(2,534,975)Cash flows from investing activities5(6,652,008)(342,220)Net cash used in investing activities5(6,652,008)(342,220)Cash flows from financing activities137,500,000(342,220)Cash flows from financing activities137,500,0002,500,000Loan from Onsun (Private) Limited - unsecured1510,000,000650,654Net cash generated from financing activities17,500,0003,150,654Net increase in cash and cash equivalents100,079,634273,459Cash and cash equivalents at beginning of the year273,459-	Cash generated from operating activities			
Net cash generated / (used) from operating activities89,231,642(2,534,975)Cash flows from investing activities5(6,652,008)(342,220)Net cash used in investing activities5(6,652,008)(342,220)Cash flows from financing activities6(6,652,008)(342,220)Cash flows from financing activities137,500,0002,500,000Loan from Onsun (Private) Limited - unsecured1510,000,000650,654Net cash generated from financing activities17,500,0003,150,654Net increase in cash and cash equivalents100,079,634273,459Cash and cash equivalents at beginning of the year273,459-				• • •
Cash flows from investing activities5(6,652,008)(342,220)Net cash used in investing activities5(6,652,008)(342,220)Cash flows from financing activities6,652,008)(342,220)Cash flows from financing activities137,500,0002,500,000Loan from Onsun (Private) Limited - unsecured1510,000,000650,654Net cash generated from financing activities17,500,0003,150,654Net increase in cash and cash equivalents100,079,634273,459Cash and cash equivalents at beginning of the year273,459-	•			
Net cash used in investing activities(6,652,008)(342,220)Cash flows from financing activities137,500,0002,500,000Proceeds from issue of share137,500,0002,500,000Loan from Onsun (Private) Limited - unsecured1510,000,000650,654Net cash generated from financing activities17,500,0003,150,654Net increase in cash and cash equivalents100,079,634273,459Cash and cash equivalents at beginning of the year273,459-	-			(
Cash flows from financing activitiesProceeds from issue of share137,500,0002,500,000Loan from Onsun (Private) Limited - unsecured1510,000,000650,654Net cash generated from financing activities17,500,0003,150,654Net increase in cash and cash equivalents100,079,634273,459Cash and cash equivalents at beginning of the year273,459-	Additions in property and equipment	5	(6,652,008)	(342,220)
Proceeds from issue of share137,500,0002,500,000Loan from Onsun (Private) Limited - unsecured1510,000,000650,654Net cash generated from financing activities17,500,0003,150,654Net increase in cash and cash equivalents100,079,634273,459Cash and cash equivalents at beginning of the year273,459-	Net cash used in investing activities		(6,652,008)	(342,220)
Loan from Onsun (Private) Limited - unsecured1510,000,000650,654Net cash generated from financing activities17,500,0003,150,654Net increase in cash and cash equivalents100,079,634273,459Cash and cash equivalents at beginning of the year273,459-	Cash flows from financing activities			
Net cash generated from financing activities17,500,0003,150,654Net increase in cash and cash equivalents100,079,634273,459Cash and cash equivalents at beginning of the year273,459-	Proceeds from issue of share	13	7,500,000	2,500,000
Net increase in cash and cash equivalents100,079,634273,459Cash and cash equivalents at beginning of the year273,459-	• ·	15	10,000,000	650,654
Cash and cash equivalents at beginning of the year 273,459	Net cash generated from financing activities		17,500,000	3,150,654
			100,079,634	273,459
Cash and cash equivalents at end of the year <u>100,353,093</u> <u>273,459</u>				<u> </u>
	Cash and cash equivalents at end of the year		100,353,093	273,459

The annexed notes 1 to 32 form an integral part of these financial statements.

CHIEF EXECUTIVE OFFICER Vector

NRTC ENERGIES (PRIVATE) LIMITED STATEMENT OF CHANGES IN EQUITY FOR THE YEAR ENDED JUNE 30, 2023

	Share <u>capital</u> Ordinary shares	Accumulated (losses) / profit	Total
		Rupees	
Balance at September 17, 2021	-	-	-
Total comprehensive income for the period			
Profit for the period	- 1	662,134	662,134
Other comprehensive income for the period			•
Total comprehensive income for the period		662,134	662,134
Transactions with owners			
Issue of share	10,000,000	-	10,000,000
Balance at June 30, 2022	10,000,000	662,134	10,662,134
Balance at July 1, 2022	10,000,000	662,134	10,662,134
Total comprehensive income for the year			
Loss for the year		(28,286,866)	(28,286,866)
Other comprehensive income for the year		-	-
Total comprehensive income for the year		(28,286,866)	(28,286,866)
Balance at June 30, 2023	10,000,000	(27,624,731)	(17,624,731)

The annexed notes 1 to 32 form an integral part of these financial statements.

CHIEF EXECUTIVE OFFICER inectiv

DIRECTOR

Cheit Elecative officer

NRTC ENERGIES (PRIVATE) LIMITED NOTES TO THE FINANCIAL STATEMENTS FOR THE YEAR ENDED JUNE 30, 2023

1. LEGAL STATUS AND OPERATIONS

NRTC Energies (Private) Limited is a Company registered under the Companies Act, 2017. The Company was incorporated in Pakistan on September 17, 2021 under the Companies Ordinance, 1984 (repealed by the Companies Act, 2017). The Company's registered office is located at Nasralla Link Road, Mumtaz City, Islamabad, Pakistan. The principal activity of the Company is to carry on business of import and trading of solar energy system and promotion of green energy. The Company is the subsidiary of National Radio Telecommunication Corporation (Private) Limited (NRTC).

The prior period financial statements cover the period from September 17, 2021 to June 30, 2022 for comparative information and therefore, are not entirely comparable in respect of statement of profit or loss, statement of comprehensive income, statement of cashflow, statement of changes in equity, and notes to and forming part of the financial statements.

BASIS OF PREPARATION

Statement of compliance

These financial statements have been prepared in accordance with the accounting and reporting standards as applicable in Pakistan. The accounting and reporting standards applicable in Pakistan comprise of:

- International Financial Reporting Standards (IFRS Standards) issued by the International Accounting Standards Board (IASB) as notified under the Companies Act, 2017; and
- Provisions of and directives issued under the Companies Act, 2017.

Where provisions of and directives issued under the Companies Act, 2017 differ from the IFRS Standards, the provisions of and directives issued under the Companies Act, 2017 have been followed.

2.2 Accounting Convention

These financial statements have been prepared on the basis of 'historical cost convention' using accrual basis of accounting except as otherwise stated in the respective accounting policies notes.

2.3 Critical accounting estimates and judgements

The preparation of financial statements in conformity with approved accounting standards requires the use of certain critical accounting estimates. It also requires management to exercise its judgment in the process of applying the Company's accounting policies. Estimates and judgments are continually evaluated and are based on historic experience, including expectations of future events that are believed to be reasonable under the circumstances. The areas involving a higher degree of judgment or complexity, or areas where assumptions and estimates are significant to the financial statements, are as follows:

- i) Estimated useful life of property and equipment (note 4.5)
- ii) Impariment of non financial assets (note 4.6)

- iii) Provision for stock in trade (note 4.7)
- iv) Expected credit losses (note 28)
- v) Provision for current and deferred tax (note 4.1)
- vi) Contingencies (note 4.4)

3 Adoption of new and amended standards and interpretations

3.1 Standards, interpretations and amendments to published approved accounting standards that are effective but not relevant

Standards, amendments and interpretations to existing standards that are not yet effective and have not been adopted early by the Company.

		Effective date (annual periods beginning on or after)
IAS 1	Presentation of financial statements (Amendments)	January 1, 2023
		& January 1, 2024
IAS 7	Statement of Cash Flows (Amendments)	January 1, 2024
IAS 8	Accounting policies, changes in accounting estimates	·
	and errors (Amendments)	January 1, 2023
IAS 12	Income Taxes (Amendments)	January 1, 2023
IFRS 4	Insurance contracts (Amendments)	January 1, 2023
IFRS 7	Financial Instrument Disclosures (Amendments)	January 1, 2024
IFRS 16	Leases (Amendments)	January 1, 2024

The management anticipates that the adoption of the above standards, amendments and interpretations in future periods, will have no material impact on the financial statements other than in presentation / disclosures.

Further, the following new standards and interpretations have been issued by the International Accounting Standards Board (IASB), which are yet to be notified by the Securities and Exchange Commission of Pakistan, for the purpose of their applicability in Pakistan:

IFRS 1	First-time Adoption of International Financial Reporting Standards
IFRS 17	Insurance Contracts
IFRIC 12	Service concession arrangements

4 SUMMARY OF SIGNIFICANT ACCOUNTING POLICIES

4.1 Income tax

The tax expense for the year comprises current and deferred income tax, and is recognized in the statement of profit or loss, except to the extent that it relates to items recognized in other comprehensive income or directly in the equity. In this case, the tax is also recognized in other comprehensive income or directly in equity, respectively.

30371*0.*

Current

The current income tax charge is calculated on the basis of the tax laws enacted or substantively enacted at the statement of financial position date. Management periodically evaluates positions taken in tax returns with respect to situations in which applicable tax regulation is subject to interpretation and establishes provisions where appropriate on the basis of amounts expected to be paid to the tax authorities.

Deferred

Deferred income tax is recognized, using the balance sheet liability method, on temporary differences arising between the tax bases of assets and liabilities and their carrying amounts in the financial statements.

Deferred income tax liabilities are recognized for all taxable temporary differences and deferred tax assets are recognized to the extent that it is probable that taxable profits will be available against which the deductible temporary differences, unused tax losses and tax credits can be utilized.

Deferred income tax is calculated at the rates that are expected to apply to the period when the differences reverse, based on tax rates that have been enacted or substantively enacted by the statement of financial position date.

Deferred income tax assets and liabilities are offset when there is a legally enforceable right to offset current income tax assets against current tax liabilities and when the deferred income tax assets and liabilities relate to income tax levied by the same taxation authority on either the same taxable entity or different taxable entities where there is an intention to settle the balance on a net basis.

4.2 Trade and other payables

Liabilities for trade and other amounts payable are carried at cost, which is the fair value of the consideration to be paid in future for goods and services received, whether or not billed to the Company.

4.3 Provisions

A provision is recognized in the financial statements when the Company has a legal or constructive obligation as a result of past events and it is probable that an outflow of resources embodying economic benefits will be required to settle the obligation and a reliable estimate can be made of the amount of obligation.

4.4 Contingent liabilities

A contingent liability is disclosed when the Company has a possible obligation as a result of past events, the existence of which will be confirmed only by the occurrence or non-occurrence, of one or more uncertain future events, not wholly within the control of the Company; or when the Company has a present legal or constructive obligation, that arises from past events, but it is not probable that an outflow of resources embodying economic benefits will be required to settle the obligation, or the amount of the obligation cannot be measured with sufficient reliability.

4.5 Property and equipment

All operating fixed assets are stated at cost less accumulated depreciation and impairment loss, if any except for capital work in progress which is stated at cost less impairment loss, if any. The cost of operating fixed assets includes its purchase price and non-refundable purchase taxes and any directly attributable costs of bringing the asset to its working condition and location for its intended use.

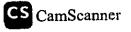
Depreciation on additions to property and equipment is charged, using reducing balance method, on pro rata basis from the month in which the relevant asset is acquired or capitalized, upto the month in which the asset is disposed off. Impairment loss, if any, or its reversal, is also charged to income for the year. Where an impairment loss is recognized, the depreciation charge is adjusted in future periods to allocate the asset's revised carrying amount, less its residual value, over its estimated useful life.

Maintenance and normal repair costs are expensed out as and when incurred. Major renewals and improvements are capitalized and assets so replaced, if any are retired.

Gains and losses on disposal of fixed assets, if any, are recognized in statement of profit or loss.

4.6 Impairment of non-financial assets

Assets that are subject to depreciation are reviewed for impairment on the date of the statement of financial position, or whenever events or changes in circumstances indicate that the carrying amount may not be recoverable. An impairment loss is recognized, equal to the amount by which the asset's carrying amount exceeds its recoverable amount. An asset's recoverable amount is the higher of its fair value less costs to sell and value in use. For the purposes of assessing impairment, assets are grouped at the lowest levels for which there are separately identifiable cash flows. Non financial assets that suffered an impairment, are reviewed for possible reversal of the impairment at each statement of financial position date. Reversals of the impairment loss are restricted to the extent that asset's carrying amount does not exceed the carrying amount that would have been determined, net of depreciation, if no impairment loss has been recognized. An impairment loss, or the reversal of an impairment loss, are both recognized in the statement of profit or loss.


4.7 Stock-in-trade

Inventories are stated at the lower of cost and net realizable value. Cost is calculated using the weighted average method. Cost comprises invoice value and other cost incurred for bringing the stock at their present location and condition for intended use. Net realizable value is the estimated selling price in the ordinary course of business, less cost of completion and costs necessary to be incurred to make the sale.

4.8 Trade debts and other receivables

Trade debts and other receivables are recognised initially at the amount of consideration that is unconditional, unless they contain significant financing component in which case such are recognised at fair value. The Company holds the trade debts with the objective of collecting the contractual cash flows and therefore measures the trade debts subsequently at amortised cost using the effective interest method.

SA7781.

4.9 Cash and cash equivalents

Cash and cash equivalents include cash in hand and cash at banks. For the purpose of the statement of cash flows, cash and cash equivalents are bank balances and cash in hand.

4.10 Revenue from contracts with customers

The Company measures progress of satisfaction of performance obligation for its revenue from Contracts with customers under IFRS 15 'Revenue from Contracts with Customers'. The Company measures its revenue by determining stage of completion when the customer obtains control over the relevant products or services. Costs incurred are recognised as cost of sales in the statement of profit or loss when the related revenue is recognised in the statement of profit or loss.

Variations in contract work, claims/damages and incentive payments are included to the extent that they have been agreed with the customer. When it is probable that total contract costs will exceed total contract revenue, the expected loss is recognized as an expense immediately.

Revenue from sale of goods is recognized on transfer of goods to customers. Revenue from maintainance services and other contracts is recognized when services are rendered to the

No element of financing is deemed present as the sales are made with a credit term of up to 120 days, which is consistent with the market practice.

4.11 Contract liabilities

Contract liability relates to amounts that are paid by or due to customers for which performance obligations are unsatisfied or partially satisfied.

4.12 Functional and presentation currency

Items included in the financial statements are measured using the currency of the primary economic environment in which the Company operates. The financial statements are presented in Pakistan (Rupees) which is the Company's functional and presentation currency. All financial information presented in Pakistan Rupees has been rounded to the nearest rupee unless otherwise stated.

4.13 Foreign currency transactions

Foreign currency transactions are translated into the functional currency using the exchange rate prevailing on the date of the transaction. Monetary assets and liabilities denominated in foreign currencies are translated into functional currency using the exchange rate prevailing at the statement of financial position date. Foreign exchange gains and losses resulting from the settlement of such transactions and from the translation at year-end exchange rates are recognised in the statement of profit or loss.

4.14 Financial instruments

Initial recognition

All financial assets and liabilities are initially measured at cost which is the fair value of the consideration given or received. These are subsequently measured at fair value, amortised cost or cost as the case may be.

Classification of financial assets

The Company classifies its financial assets in the following categories:

- at fair value through profit or loss ("FVTPL"),
- at fair value through other comprehensive income ("FVTOCI"), or
- at amortised cost.

The Company determines the classification of financial assets at initial recognition. The classification of instruments (other than equity instruments) is driven by the Company's business model for managing the financial assets and their contractual cash flow characteristics.

Financial assets that meet the following conditions are subsequently measured at amortised cost:

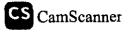
- the financial asset is held within a business model whose objective is to hold financial assets in order to collect contractual cash flows; and
- the contractual terms of the financial asset give rise on specified dates to cash flows that are solely payments of principal and interest on the principal amount outstanding.

Financial assets that meet the following conditions are subsequently measured at FVTOCI:

- the financial asset is held within a business model whose objective is achieved by both collecting contractual cash flows and selling the financial assets; and
- the contractual terms of the financial asset give rise on specified dates to cash flows that are solely payments of principal and interest on the principal amount outstanding.

By default, all other financial assets are subsequently measured at FVTPL.

Classification of financial liabilities


The Company classifies its financial liabilities in the following categories:

- at fair value through profit or loss ("FVTPL"), or
- at amortised cost.

Financial liabilities are measured at amortised cost, unless they are required to be measured at FVTPL (such as instruments held for trading or derivatives) or the Company has opted to measure them at FVTPL.

AR700

Subsequent measurement

i) Financial assets at FVTOCI

Investments elected to be as equity instruments at FVTOCI are initially recognised at fair value plus transaction costs. Subsequently, they are measured at fair value, with gains or losses arising from changes in fair value recognised in other comprehensive income / (loss).

II) Financial assets and liabilities at amortised cost

Financial assets and liabilities at amortised cost are initially recognised at fair value, and subsequently carried at amortised cost, and in the case of financial assets, less any impairment.

iii) Financial assets and liabilities at FVTPL

Financial assets and liabilities carried at FVTPL are initially recorded at fair value and transaction costs are expensed in the statement of profit or loss. Realised and unrealised gains and losses arising from changes in the fair value of the financial assets and liabilities held at FVTPL are included in the statement of profit or loss in the period in which they arise.

Impairment of financial assets

The Company recognises loss allowance for Expected Credit Loss (ECL) on financial assets measured at amortised cost, at an amount equal to life time ECLs except for the following, which are measured at 12 months ECLs:

- Cash and bank balances for whom credit risk (the risk of default occurring over the expected life of the financial instrument) has not increased since the inception
- Other receivables that have not demonstrated any increase in credit risk since inception

Life time ECLs are the ECLs that results from all possible default events over the expected life of a financial instrument. 12 months' ECL are portion of ECL that result from default events that are possible within 12 months after the reporting date.

ECLs are a probability weighted estimate of credit losses. Credit losses are measured as the present value of all cash shortfalls (i.e. the difference between cash flows due to the entity in accordance with the contract and cash flows that the Company expects to receive).

The gross carrying amount of a financial asset is written off when the Company has no reasonable expectation of recovering a financial asset in its entirety or a portion thereof.

Derecognition

The Company derecognises financial liabilities when, and only when, the Company's obligations are discharged, cancelled or they expire.

i) Financial assets

The Company derecognises financial assets only when the contractual rights to cash flows from the financial assets expire or when it transfers the financial assets and substantially all the associated risks and rewards of ownership to another entity. On derecognition of a financial asset measured at amortised cost, the difference between the asset's carrying value and the sum of the consideration received and receivable is recognised in profit or loss. In addition, on derecognition of an investment in a debt instrument classified as FVTOCI, the cumulative gain or loss previously accumulated in the investments revaluation reserve is reclassified to profit or loss. In contrast, on derecognition of an investment in equity instrument which the Company has elected on initial recognition to measure at FVTOCI, the cumulative gain or loss previously accumulated in the investments revaluation reserve is not reclassified to profit or loss, but is transferred to statement of changes in equity.

ii) Financial liabilities

The Company derecognises financial liabilities only when its obligations under the financial liabilities are discharged, cancelled or expired. The difference between the carrying amount of the financial liability derecognised and the consideration paid and payable, including any non-cash assets transferred or liabilities assumed, is recognised in the statement of profit or loss.

Offsetting of financial assets and financial liabilities

Financial assets and liabilities are offset and the net amount is reported in the statement of financial position if the Company has legally enforceable right to set-off the recognised amounts and the Company intends to settle on a net basis or realise the asset and settle the liability simultaneously.

Write-off

The gross carrying amount of a financial asset is written off when the Company has no reasonable expectations of recovering a financial asset in its entirety or a portion thereof. The Company individually makes an assessment with respect to the timing and amount of write-off based on whether there is a reasonable expectation of recovery. The Company expects no significant recovery from the amount written off. However, financial assets that are written off could still be subject to enforcement activities in order to comply with the Company's procedures for recovery of amounts due.

4.15 Fair value measurement

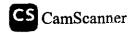
Fair value is the price that would be received to sell an asset or paid to transfer a liability in an orderly transaction between market participants at the measurement date. The fair value measurement is based on the presumption that the transaction to sell the asset or transfer the liability takes place either:

- In the principal market for the asset or liability; or
- In the absence of a principal market, in the most advantageous market for the asset or liability

The principal or the most advantageous market is accessible by the Company. The fair value of an asset or a liability is measured using the assumptions that market participants would use when pricing the asset or liability, assuming that market participants act in their economic best interest.

A fair value measurement of a non-financial asset takes into account a market participant's ability to generate economic benefits by using the asset in its highest and best use or by selling it to another market participant that would use the asset in its highest and best use.

The Company uses valuation techniques that are appropriate in the circumstances and for which sufficient data are available to measure fair value, maximizing the use of relevant observable inputs and minimizing the use of unobservable inputs.


All assets and liabilities for which fair value is measured or disclosed in the financial statements are categorized within the fair value hierarchy, described as follows, based on the lowest level input that is significant to the fair value measurement as a whole:

- Level 1 Quoted (unadjusted) market prices in active markets for identical assets or liabilities;
- Level 2 Valuation techniques for which the lowest level input that is significant to the fair value measurement is directly or indirectly observable; and
- Level 3 Valuation techniques for which the lowest level input that is significant to the fair value measurement is unobservable

For assets and liabilities that are recognized in the financial statements at fair value on a recurring basis, the Company determines whether transfers have occurred between levels in the hierarchy by re-assessing categorization (based on the lowest level input that is significant to the fair value measurement as a whole) at the end of each reporting period.

The Company determines the policies and procedures for both recurring fair value measurement and for non-recurring measurement. For the purpose of fair value disclosures, the Company determines classes of assets and liabilities on the basis of the nature, characteristics and risks of the asset or liability and the level of the fair value hierarchy, as explained above.

5		Note	2023 Rupe e s	2022 Rupees
	Operating fixed assets	5.1	3,416,742	327,175
	Capital work in progress	5.2	3,235,725	
÷			6,652,467	327,175

-10-

5.1 Operating fixed assets

Operating fixed assets	Furniture and fixture	Computer equipment	Electrical equipment	Motor vehicles	General equipment	Total
An 14 Parts - 47 1994			Rupees			
As at September 17, 2021 Cost		-		-	-	-
Accumulated depreciation	-	• –	-	•	-	-
let book value			······			•
'ear ended June 30, 2022						
pening net book value	•	•	-	-	-	-
dditions	48,500	136,120	38,700	108,900	10,000	342,220
lisposals					······································	·······
Cost Accumulated depreciation		- ((- []	- [[• [[-
Accumulated depreciation		l	l	الــــــــــــــــــــــــــــــــــــ	<u>-</u> L	
isposals						
Cost		· · · ·	• }	-		
Accumulated depreciation		l	i			<u> </u>
otraciation about	-	-	-	•	•	-
epreciation charge	(1,213)	(9,459)	(1,401)	(2,723)	(250)	(15,045)
et book value	47,288	126,661	37,299	106,178	9,750	327,175
s at July 1, 2022						
Cost	48,500	136,120	38,700	108,900	10,000	342,220
ocumulated depreciation	(1,213)	(9,459)	(1,401)	(2,723)	(250)	(15,045)
let book value	47,288	126,661	37,299	106,178	9,750	327,175
ear ended June 30, 2023						
pening net book value	47,288	126,661	37,299	106,178	9,750	327,175
dditions isposals	816,013	1,766,100	-	**	834,170	3,416,283
Cost	[r			
Accumulated depreciation		-	-			-
Net book value	······································					•
epreciation charge	(21,506)	(241,744)	(11,290)	(16,127)	(36,049)	(326,716)
et book value	841,795	1,651,017	26,009	90,051	807.871	3,416,742
ost	864,513					3,758,503
counulated depreciation	(22,7 <u>19)</u>	1,902,220	38,700	108,900	844,170	(341.761)
losing net book amount	<u> </u>	<u>(251,203)</u> 1,651,017	(12,691) 26,009	(<u>18,850)</u> _ 90,051	(36,299)	3,416,742
Innual rate of depreciation %	15%	30%	30%	15%	30%	

CS CamScanner

			2023 Rupees	2022 Rupees
5	.2	CAPITAL WORK-IN-PROGRESS		(Restated)
		Balance at beginning of the year Additions during the year	3,235,725 3,235,725	-
6	;	Long term deposits		
		This represent security deposit paid to vendor in respect of fuel purchases.		
_	_		2023 Rupees	2022 Rupees
	7	STOCK IN TRADE		
-		Solar panel Inverter Wire	42,217,630 31,439,322 <u>6,985,811</u>	201,481
			80,642,763	201,481
	8	TRADE AND OTHER RECEIVABLE		
		Trade receivable - unsecured Retention money - unsecured Capital subscribed by the National Radio Telecommunication	26,737,021 13,505,874	4,176,881 -
		Corporation Less: Impairment loss on trade debts	-	7,500,000
			40,242,894	11,676,881
	9	ADVANCES		
-		Advances - considered good		
		- against business expenses	569,474	71,912
_		- to suppliers - to employees - secured	190,000 1,120,139	8,602,738 58,000
1		Others	408,299	
-			2,287,912	8,732,650
P) 10	SALES TAX REFUNDABLE-NET This mainly includes the sales tax paid for the purchase of batteries and	invotor ota	
_		This many mondees the sales tax paid for the parenase of ballenes and	inventer etc.	
	11	PREPAYMENTS	2023 Rupees	2022 Rupees
		Insurance premium	400,473	-
1		50,772L		
]			AGIES (AL	8

]

]

11	PREPAYMENTS	2023 Rupees	2022 Rupees
	Insurance premium	400,473	-

				2023 Rupees	2022 Rupees
12	CASH AND BAN		B	·	
	With Bank Current account	- local currer	псу	100,136,060	1,006
	Cash in hand			217,033 100,353,093	272,453 273,459
13	SHARE CAPITAL				
13.1	Authorized share	e capital			
	100,000 (2022: 1) each	00,000) ordin	ary shares of Rs. 100	<u> 10,000,000 </u>	10,000,000
13.2	Issued and subs	cribed capit	al		
	2023	2022		2023	(Restated) 2022
	Number	Number	Ordinary shares	Rupees	Rupees
	100,000	100,000	Ordinary shares of Rs. 100 each paid / payable in cash	10,000,000	10,000,000
	100,000	100,000	-	10,000,000	10,000,000
13.3	Paid up capital				
	100,000 (2022: 2	5,000) ordina	ary shares of Rs. 100	10,000,000	2,500,000

- each paid in cash
- 13.3.1 National RadioTelecommunication Corporation (NRTC), holds 75,000 (2022: 75,000) and Onsun (Private) Limited, holds 25,000 (2022: 25,000) ordinary shares of the Company at the year end.
- 13.3.2 All ordinary shares rank equally with regard to the Company's residual assets. Holders of these shares are entitled to dividends as declared from time to time and are entitled to one vote per share at general meetings of the Company.
 SUFFL

			2023 Rupees	2022 Rupees
14	DEFERRED TAX LIABILITIES		<u> </u>	13,442
14.1	The movement in deferred tax is as follows:			
	2023	Opening Balance as on July 1	Recognized in profit or loss	Closing balance as on June 30
	Taxable temporary difference		Rupees	
	Property and equipment	<u> </u>	151,400 151,400	<u> </u>
	2022			
	Taxable temporary difference			
	Property and equipment	-	13,442	13,442
			13,442	13,442

14.2 Deffered tax assest, the potential tax benefit of which amounts Rs 12,376,266 has not been recognized on balance representing tax credits as at June 30, 2023 as utilization of these tax credit is not certain. The tax losses and tax credits expire on follows:

	Tax year	Amount
Tax credit related to minimum tax	2026	5,733,384
Business losses	2028	6,491,482
		12,224,866

15 LOAN FROM ONSUN PVT LTD - UNSECURED

This represents the amount received from Onsun (Pvt) Ltd, the associate, in order to meet the working capital requirements of the Company. The loan is unsecured, interest free and payable on demand.

16	TRADE AND OTHER PAYABLES	2023 Rupees	2022 Rupees (Restated)
	Creditors	142,293,827	11,084,445
	Salaries and wages payable	166,000	•
	Withholding tax payable	4,017,945	189,412
	Other liabilities	936,611	397,480
		147,414,383	11,671,337

17 CONTRACT LIABILITIES

This represents advances received from customers in the ordinary course of business.

18	PROVISION FOR TAXATION		2023 Rupees	2022 Rupees
	Opening balance Provision for taxation Tax deducted at source	ACTC ENER DIT ACTC ENER DIT ACTC ENER DIT ACTC	381,567 5,733,384 (382,392) 5,732,559	466,692 (85,125) 381,567

19	REVENUE - NET	Note	2023 Rupees	2022 Rupees
	Revenue from contract with customers Less: Sales tax		460,736,789 (2,066,056)	37,335,328 -
			458,670,733	37,335,328

19.1 As at June 30, 2022, no contract liabilities were carried, ,no revenue has been recognised during the year which would have been carried from amongst the contract liabilities at the beginning of the year.

				2023	2022
				Rupees	Rupees
20	COST OF SALES				
	Cost of goods sold		20.1	403,667,830	24,611,505
	Civil work and other related a	expenses	20.1	13,844,255	1,844,611
	Salaries, wages and other be			5,577,600	879,955
				423,089,685	27,336,071
20.1	Cost of goods sold				
	Add: Opening stock in t	rade		201,481	-
	Purchased			484,109,112	24, 8 12,986
	Less: Closing stock in tra	ade	7	(80,642,763)	(201,481)
	Cost of goods sold		·	403,667,830	24,611,505
21	SELLING AND DISTRIBUT	ION EXPENSES			
	Salaries, wages and other b	enefits		7,168,600	1,130,961
	Advertisement and promotio			579,600	159,187
				7,748,200	1,290,148
22	ADMINISTRATIVE EXPENS	SES			
	Salaries, wages and other b	enefits		18,427,502	2,907,232
	Utilities			56,872	29,153
	Consultancy fee			1,355,825	600,000
	Rent, rate and taxes			802,553	-
	Printing, postage and station	nery		541,351	105,239
	Travelling and Conveyance			5,456,589	947,412
	Legal and professional fees			42,140	-
	Health Insurance fee			110,457	-
	Entertainment expenses			2,927,598	251,350
	Commissions and fees			113,174	1,300,000
	Repair and maintenance ch	arges		12,192,703	288,702
	Auditor's remuneration		22.1	700,000	225,000
	Freight charges			2,288,560	14,320
	IT Expenses			656,313	57,631
	Insurance expenses			170,979	-
	Depreciation expense			326,716	15,045
	Miscelleneous expenses			4,059,090	823,524
	SA7760			50,228,422	7,564,608
	Miscelleneous expenses			4,059,090	82

CS CamScanner

-14-

ł

		Note	2023 Rup ees	2022 Rupees
22.1	Auditor's remuneration			
	Annual audit of standalone financial statements		550,000	225,000
	Reporting on compliance of Public Sector Companies (Corporate Governance Rules), 2013		100,000	-
	Out of pocket expenses		50,000	-
			700,000	225,000
23	FINANCE COST			
	Bank charges		6,508	2,233
24	INCOME TAX EXPENSE			
	Current			
	For the year		5,733,384	466,692
	Prior year		· · ·	
			5,733,384	466.692
	Deferred tax expense	14.1	151,400	13.442
			5,884,784	480,134
	Accounting (loss) / profit for the year		(22,402,082)	1.142.268
	Applicable tax rate for companies (%)		29%	2155
	Income tax at applicable rate		(5,496,604)	239,876
	Income taxed at lower rate		5,733,384	240.258
	Deferred tax not recognized		6,642,882	-
	Change of rate of tax		5,121	

25 CASH AND CASH EQUIVALENTS

Cash, cash equivalents (used for cash management purposes) include the following for the purposes of statement of cash flows.

	Note	2023	2022
		Rupees	Rupees
Cash and bank balances	12 '	100,353,093	2.305,633

5,884,784

480,134

đ,

26 REMUNERATION OF CHIEF EXECUTIVE, DIRECTORS AND EXECUTIVES

The aggregate amounts recognized during the year on account of remuneration, including benefits and perquisites, are as follows:

	Chief Ex	ecutive	Executi	ve
	2023	2022	2023	2022
		Rup	ee s	
Managerial remuneration	5,302,964	-	5,846,734	-
Bonus	949,908	-	888,595	-
	6,252,872		6,735,329	-
Number of persons	1	-	1	-

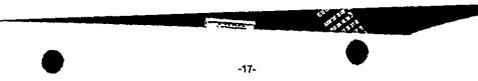
26.1 Chief Executive and Executive are provided with Company rented cars.

26.2

6.2 No remuneration were paid to Chief Executive and directors in previous period.

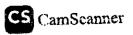
27 FINANCIAL INSTRUMENTS - FAIR VALUES AND RISK MANAGEMENT

Fair value is the amount that would be received on sale of an asset or paid on transfer of a liability in an orderly transaction between market participants at the measurement date. Consequently, differences can arise between carrying values and fair value estimates. Underlying the definition of fair value is the presumption that the Company is a going concern without any intention or requirement to curtail materially the scale of its operations or to undertake a transaction on adverse terms.


The fair value of financial assets and liabilities traded in active markets i.e. listed equity shares are based on the quoted market prices at the close of trading on the period end date. The quoted market prices used for financial assets held by the Company is current bid price. A financial instrument is regarded as quoted in an active market if quoted prices are readily and regularly available from an exchange, dealer, broker, industry group, pricing service or regulatory agency, and those prices represent actual and regularly occurring market transactions on an arm's length basis.

IFRS 13 'Fair Value Measurements' requires the Company to classify fair value measurements using a fair value hierarchy that reflects the significance of the inputs used in making the measurements. The fair value hierarchy has the following levels:

- Quoted prices (unadjusted) in active markets for identical assets or liabilities (level 1).
- Inputs other than quoted prices included within level 1 that are observable for the asset or liability, either directly (that is, as prices) or indirectly (that is, derived from prices) (level 2).
- Inputs for the asset or liability that are not based on observable market data (that is, unobservable inputs) (level 3).


The following table shows the carrying amounts and On-balance sheet financial instruments	Note		rying amount			Fair value	Level 3	Total
As at June 30, 2023	-	Amortized Cost	FVTPL	Total	Level 1	Level 2		
Financial assets not measured at fair value	-				Rupees			
					_		922,000	922,000
Long term deposits		_	922,000			•	922,000	40,242,894
Trade and other receivable	8	40,242,894	322,000	922,000	•	40,242,894	-	100,353,09
Cash and bank balances	12	100,353,093	-	40,242,894	•	100.353,093		141,517,98
		140,595,987	922.000	100,353,093		140,595,987	922,000	
				141,317,307				
Financial liabilities not measured at fair value								
Loan from Onsun Pvt Ltd - unsecured	15	10,650,654		10,650,654		10,650,654	-	10,650,65
Trade and other payables	16	147,414,383	-	147,414,383	-	147.414.383	-	147,414,38
Provision for taxation	18	5,732,559	•	5,732,559	-	5,732,559	-	5,732,55
		163,797,596		163,797,596		163,797,596		163,797,5
As at June 30, 2022								
Financial assets not measured at fair value								
Long term deposits		-	215,300	215,300	-	-	215,300	215,30
Trade and other receivable	8	11,676,881	-	11,676,881	-	11,676,881	•	11,676,88
Cash and bank balances	12	273,459		273,459	<u>`</u>	273,459	-	273,45
		11,950,340	215,300	12,165,640		11,950,340	215,300	12,165,6
Financial liabilities not measured at fair value								
Loan from Onsun Pvt Ltd - unsecured	15	650,654	-	650,654	•	650,654	-	850 6
Trade and other payables	16	11,671,337	-	11,671,337	-	11,671,337	-	650,6
Provision for taxation	18	381,567			<u>-</u>	381,567	-	11,671,3
	-	12,703,558	· · · · · · · · · · · · · · · · · · ·	12,703,558		12,703,558		381,50

SAFFL

ſ

- 27.2 The Company has not disclosed the fair value for these financial assets and financial liabilities, as these are either short term in nature or repriced periodically. Therefore, their carrying amounts are a reasonable approximation of their fair values.
- 27.3 The Company has exposure to the credit risk, market risk and liquidity risk from its use of financial

The Board of Directors has overall responsibility for the establishment and oversight of the Company's risk management framework. The Board is also responsible for developing and monitoring the Company's risk management policies.

27.4 Credit risk

Credit risk is the risk of financial loss to the Company if a customer or counterparty to a financial instrument fails to meet its contractual obligations, and arises principally from trade debts, advances, deposits, other receivables, margin on letter of guarantee, short tern investments and bank balances. The carrying amount of financial assets represents the maximum credit exposure.

The Company's credit risk exposure is categorized under the following headings:

Trade debts and other receivables

The Company's exposure to credit risk is influenced mainly by the individual characteristics of each customers. The Company has established a credit policy under which each new customer is analyzed individually for creditworthiness before the Company's standard payment terms and conditions are offered. Credit limits are established for each customer, which are regularly reviewed and approved by the management. Customers that fail to meet the Company's benchmark creditworthiness may transact with the Company only on a prepayment basis.

Concentration of credit risk

Geographically there is no concentration of credit risk. The maximum exposure to credit risk for financial assets at the reporting date by type of counter party is as follows:

	2023	2022
	Rupees	Rupees
Banks and financial institutions	100,136,060	1,006
Others	217,033	272,453
	100,353,093	273,459

Credit quality of financial assets

The credit quality of the Company's financial assets have been assessed below by reference to external credit rating of counterparties determined by the VIS Credit Rating Company Limited (formerly JCR - VIS Credit Rating Company Limited). The counterparties for which external credit ratings were not available have been assessed by reference to internal credit ratings determined based on their historical information for any default in meeting their obligations.

Trade receivables	2023 Rupees	2022 Rupees
Counterparties without external credit ratings with no default in the past		11,676,881

Impairment loss

The aging of trade debts at the reporting date was:

	2023		20	22
	Gross	Impairment	Gross	Impairment
	Ruj	Dees	Rup	ees
Past due 1-30 days	8,011,000		1,726,881	
Past due 31-60 days	•	-	900,000	•
Past due 61-90 days	15,712,821	-	1,550,000	•
Past due 91-120 days	•	-	•	-
Over 120 days	3,013,200	-	•	-
	26,737,021	-	4,176,881	

Based on past experience, the management believes that no impairment allowance is necessary in respect of carrying amount of trade debts. The Company expects no material expected credit loss under IFRS 9 'Financial Instruments' on trade debts at the year end.

The allowance account in respect of trade debts is used to record impairment losses unless the Company is satisfied that no recovery of the amount owing is possible at which point the amount considered irrecoverable is written off against the financial asset directly.

Exposure to credit risk

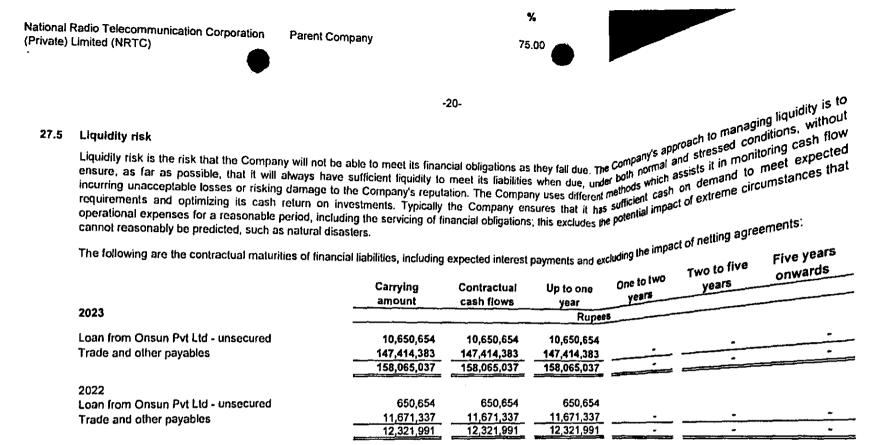
The carrying amount of financial assets represents the maximum credit exposure. The maximum exposure to credit risk at the reporting date was:

	Note	2023 Rupees	2022 Rupees
Long term deposits		922,000	215,300
Trade and other receivable	8	40,242,894	11,676,881
Bank balances	12	100,136,060	1,006
		141,300,954	11,893,187

Geographically there is no concentration of credit risk.

The maximum exposure to credit risk for trade debts at the reporting date is with end - user customers and represents debtors within the country.

The Company's most significant customer is an end user from whom Rs. 11,943,440 (2022: Rs. 1,400,000) was outstanding and which is included in total carrying amount of trade debtors as at June 30, 2023.


The Company limits its exposure to credit risk by placing funds with banks that have high credit rating. Management actively monitors credit ratings and given that the Company only has placed funds in the banks and financial institutions with high credit ratings, management does not expect any counter party to fail to meet its obligations.

Long torm deposite				2023 Rupees	2022 Rupees
Long term deposits Counterparties without externa	al credit ratings			922,000	215,300
Trade and other receivables Counterparties without externa				40,242,894	11,676,881
Bank balances	Credit rating agency	Long term rating	Short term rating		
Meezan Bank Limited	VIS	AAA	A-1+	100,136,060	1,006

S CamScanner

It is not expected that the cash flows included in the maturity analysis could occur significantly earlier or at significantly different amounts.

27.6 Markot risk

Markot risk Market risk is the risk that the value of the financial instrument may fluctuate as a result of changes in market interest rates or the market price due to change in credit rating of the issuer or the instruments' supply and demand of securities and liquidity in the market. The Company is not exposed to any market risk.

28 RELATED PARTY TRANSACTIONS AND BALANCES

Related parties comprise of directors, entities over which the directors are able to exercise significant influence, entities with common directors, major shareholders and key management personnel which include Chief Executive Officer (CEO), Chief Operating officer (COO) and Chief Financial Officer (CFO).

Related party	Basis of relationship	Percentage of shareholding %
National Radio Telecommunication Corporation (Private) Limited (NRTC)	Parent Company	75.00
Onsun (Private) Limited	Associated Company	25.00

Balances and transactions with related parties are disclosed in notes to the financial statements. Transactions and balances with related parties other than those disclosed elsewhere in these financial statements are as follows:

Transactions and balances with related parties	2023 Rupees	2022 Rupees
National Radio Telecommunication Corporation (Private) Limited (NRTC)		
- Investment - Sale	7,500,000 89,295,960	-
Onsun (Private) Limited		
 Loan received Loan repayment 	10,530,000 530,000	2,435,654 1,785,000
Others		

- Remuneration to key management personnel (other than Chief Executive) 6,735,329

RESTATEMENT OF PRIOR YEAR FINANCIAL STATEMENTS

In accordance with the requirements of IFRS 9 "Financial Instruments" "advances" and "Trade and other payables" were understated by Rs 8,602,738 respectively. These have been adjusted retrospectively and prior period financial have been restated. The effects of the restatement are summarized below:

Statement of financial position	2022 Rupees
Assets and liabilities Increase / (decrease) in:	
Advances Trade and other payables	8,602,738 (8,602,738)
SARTHE.	SES (PL)

₹4

30 CORRESPONDING FIGURES

ا ع**اد**

Corresponding figures have been reclassified as per the details given below to reflect more appropriate presentation of the related transactions in the financial statements. These reclassifications have no effect on previously reported net income or shareholders' equity.

From	То	Rupees
Administrative expenses	Selling and distribution expenses	1,290,148
Administrative expenses	Cost of sales	879,955
Advances, deposits and prepayments - Securities - Current assets	Long term deposit - Non-Current assets	215,300
Advances, deposits and prepayments - Sales tax refundable	Sale tax refundable	1,952,187
Accrued and other liabilities	Trade and other payable	811,892
	2023 Numbers	2022 Numbers

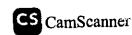
31 Number of persons employed

Total employees of the Company at year end	31	23
Average employees of the Company during the year	25	15

32 DATE OF AUTHORISATION OF FINANCIAL STATEMENTS

These financial statements were authorized for issue by the Board of Directors of the Company in their meeting held on ______

302721.


م بر ۱

CHIEF EXECUTIVE OFFICER

ivector

Cheit Etecutie attices

311

A Premium Energy Brand

Company Profile

National Radio and Telecom Corporation (NRTC)

►NRTC is a Federal Govt entity of Ministry of Defence Production (MoDP)

- Established in 1965
- Local Offices: Haripur, Isb, Rwp, Lhr, Pswr, Qta, Khi, Multan, Turbat
- Intl Offices: UAE and KSA
- Radar, Communication Equipment, Jammer, EW, IT Eqpt, NW Eqpt, Renewable Energy, Security & Surveillance/ Safe Cities

NRTC ENERGIES

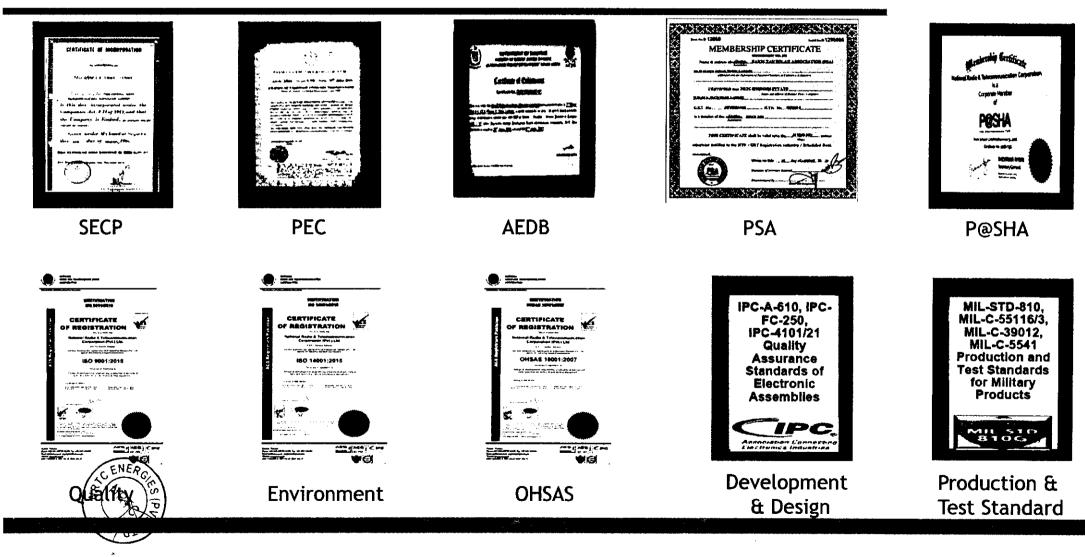
Established as a dedicated division to deal in energy and power projects

□ Subsidiary of NRTC

Services

- Utility Scale Solar System
- Commercial and Industrial Scales
- Residential Solar System
- Solar Water Pump
- > Car Parking Solar sheds
- Solar Street Lights
- Solar Parks
- Building Electrifications

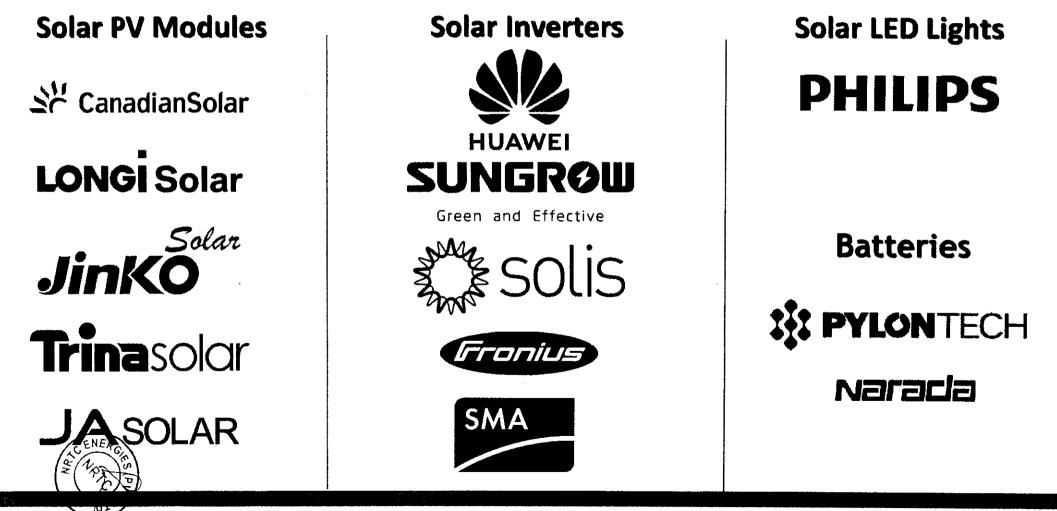
- Mini Grid Stations
- Supply and Installation of Generations & Transformers
- Energy Audis
- Power Purchase Agreements
- Energy Selling Model
- Leasing/Financing Support
- Designing and Consultancy Services



REGISTRATIONS / CERTIFICATIONS -

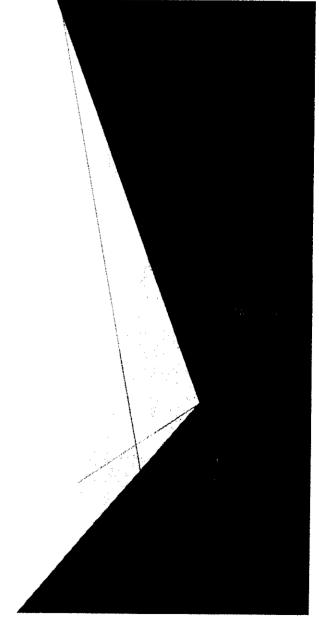
CECD			
SECP			
Security Exchange Commission of Pakistan			
PEC	C-A	No Limit	
(Pakistan Engineering Council)	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		
AEDB C-1		Upto 1 MW Net-Metering	
· · · · · · · · · · · · · · · · · · ·		······································	
Quality Assurance	ISO 9001-2015		
Environmental Assurance	ISO 14001-2015		
OHSAS	OHSAS 18001-2007		
Development & Design	IPC-A-610, IPC-FC-250, IPC-4101/21		
Production & Test Standard	MIL-STD-810, MIL-C-55116/3, MIL-C-39012, MIL-C-5541		
	PEC (Pakistan Engineering Council) AEDB (Alternate Energy Development Board) PSA Pakistan Solar Association P@SHA Pakistan Software House Association Quality Assurance Environmental Assurance OHSAS Development & Design	PEC (Pakistan Engineering Council) C-A AEDB (Alternate Energy Development Board) C-1 PSA Pakistan Solar Association PSA Pakistan Solar Association P@SHA Quality Assurance ISO 9001-2015 Environmental Assurance ISO 14001-2015 OHSAS OHSAS 18001-2007 Development & Design IPC-A-610, IPC-FC-250, IPC-A-610	

REGISTRATION & CERTIFICATIONS

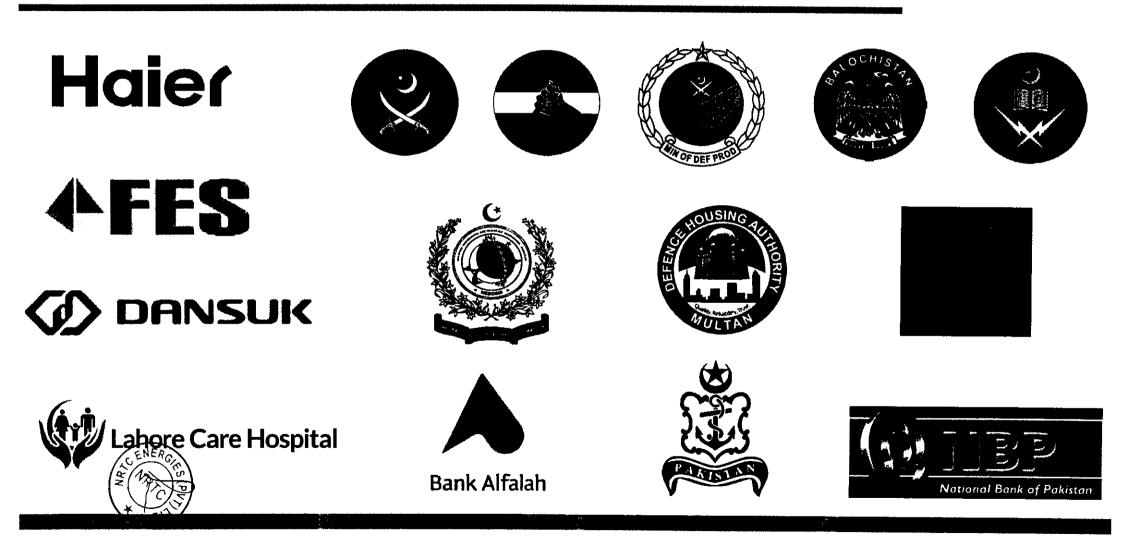


BUSINESS PARTNERS

BUSINESS PARTNERS



CLIENTS & PROJECTS



9

Clients

WHY NRTC ENERGIES

WHY NRTC ENERGIES

- Highly trained Engineers / Professional Staff
- Regional Offices
- Strategic relationship with all major OEMs/ brands
- Premium Quality Equipment
- > Wears both hats govt and corporate
- Speedy installation and net-metering services

NRTC ENERGIES BENEFITS

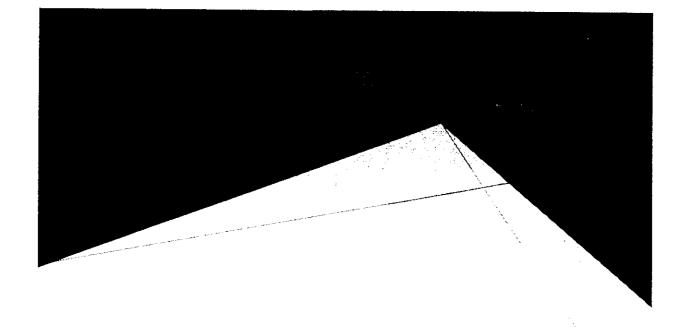
➢ 0&M

 \geq

- FOC for 2 Yrs. (Extendable up to entire project life)
- Direct OEM (Extended Warranties)
- Performance Warranties Undertakings supported by simulations & software reports
- Documentary proof/ evidence furnishing authenticity & genuineness of eqpt / products
- On-site spares
- In-situ technical teams

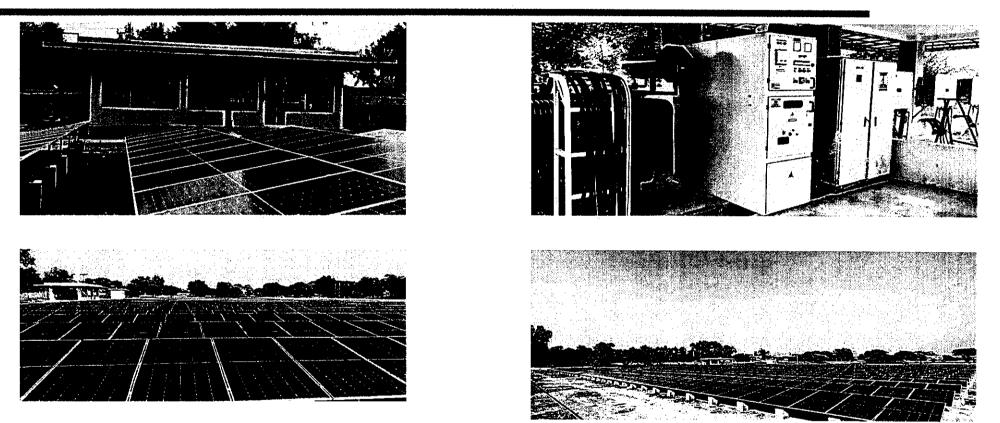
Product Warranties

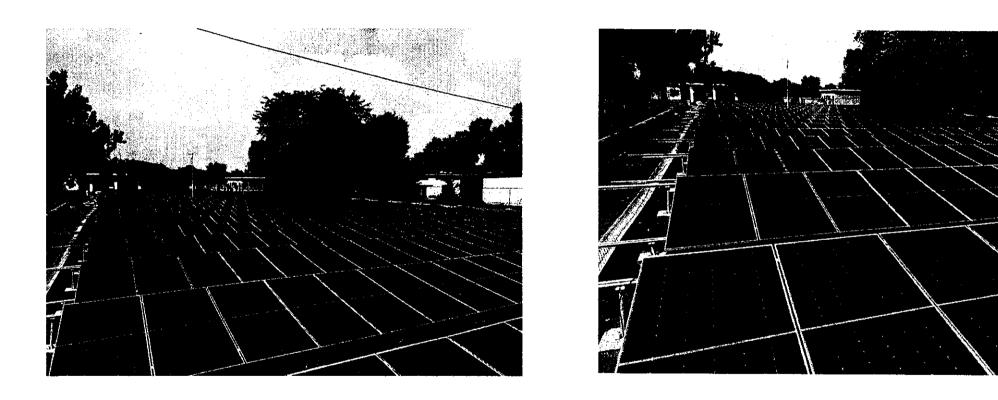
- NOC
- SLA / FOC Training

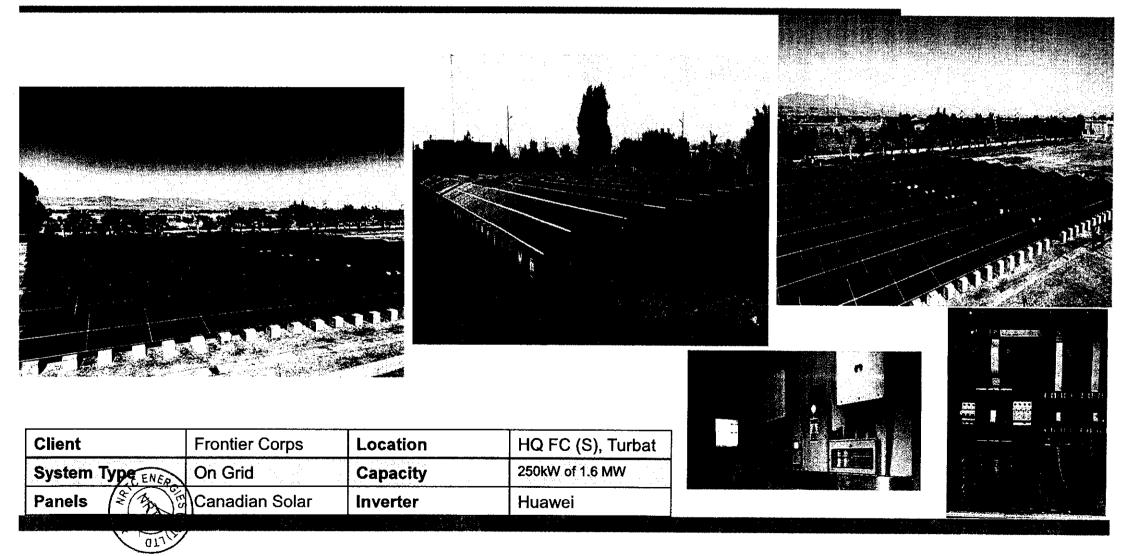


NRTC Energies

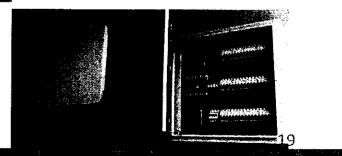
NRTC ENERGIES


- Utility / Commercial / Industrial Scales
- Power Purchase Agreements
- Residential / Offices/ Mosques Solar System / DHA Housing Schemes / Villas
- Car Parking Solar Sheds
- Solar Parks
- Solar Water Pump
- Solar Street Lights
- Building Electrifications
- Mini Grid Stations Supply and Installation of Generations & Transformers
- Energy Audits / Designing / Consultancy Services



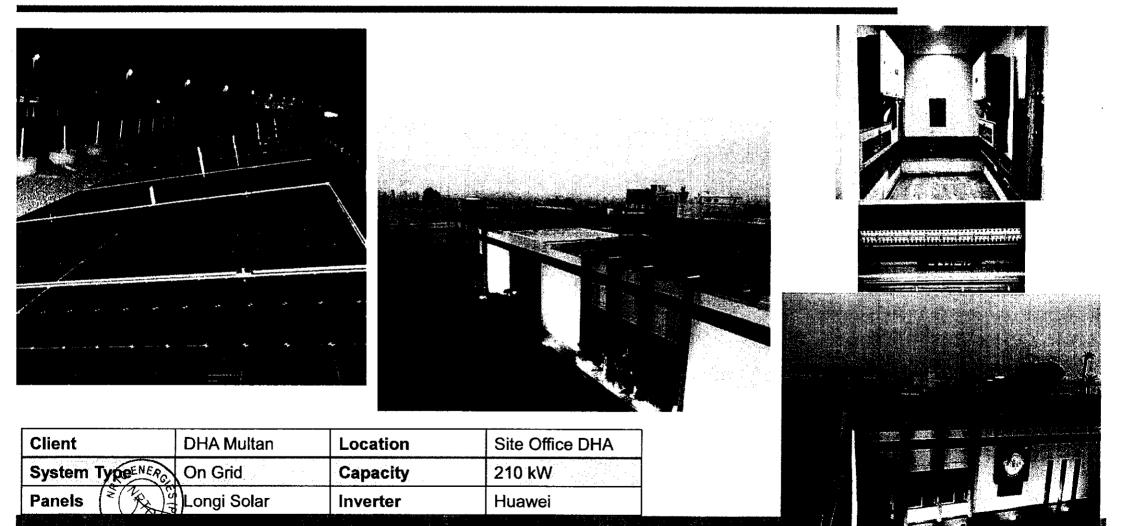

Client	4 Corps	Location	New Mazhar Line, Cantt, Lahore
System Type	On Grid	Capacity	1.0 MW
Panels C ENERG	Canadian Solar	Inverter	Huawei

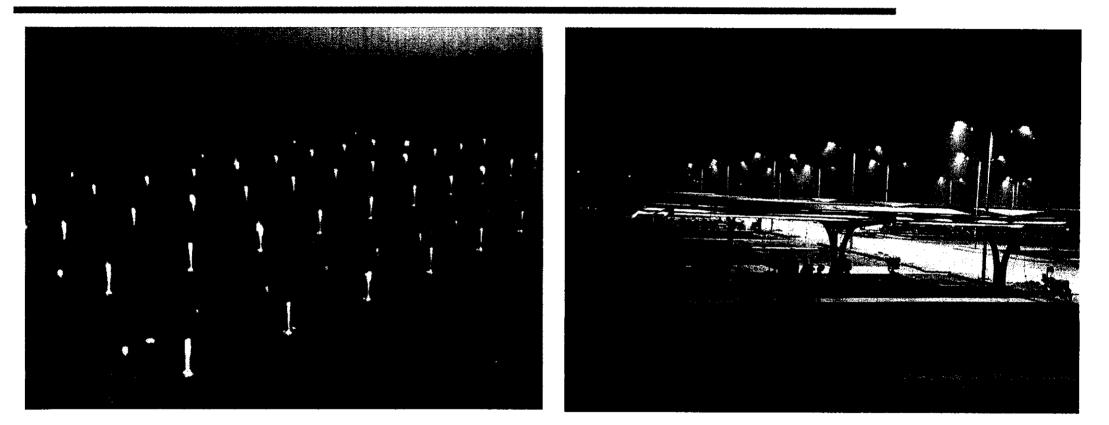
Client	4 Corps	Location	Chitral Lines, Cantt, Lahore	
System Type, ENERC	On Grid	Capacity	0.5 MW	
Panels (*	Canadian Bifacial	Inverter	Huawei	



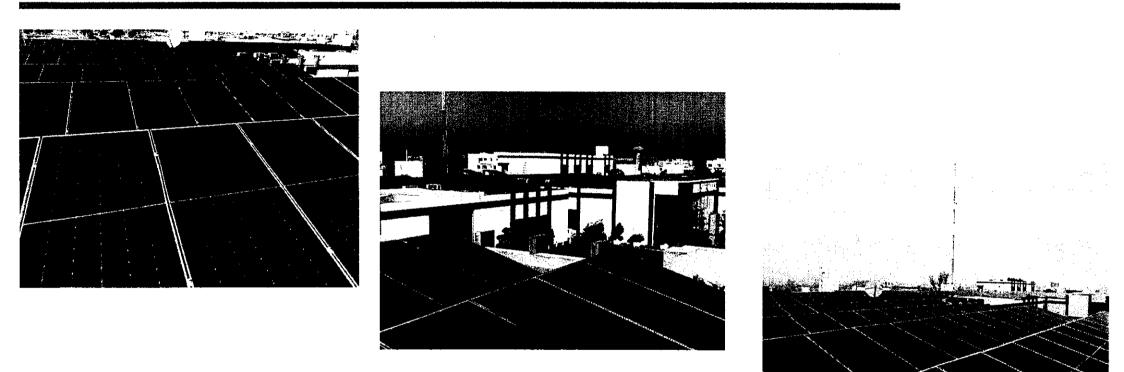


Client	Haier Pakistan	Location	Zalmi House, Raiwind
System Type ENER	On Grid	Capacity	320 kW
Panels (*()*	∯¢anadian Solar	Inverter	Huawei
			tradition of the second s



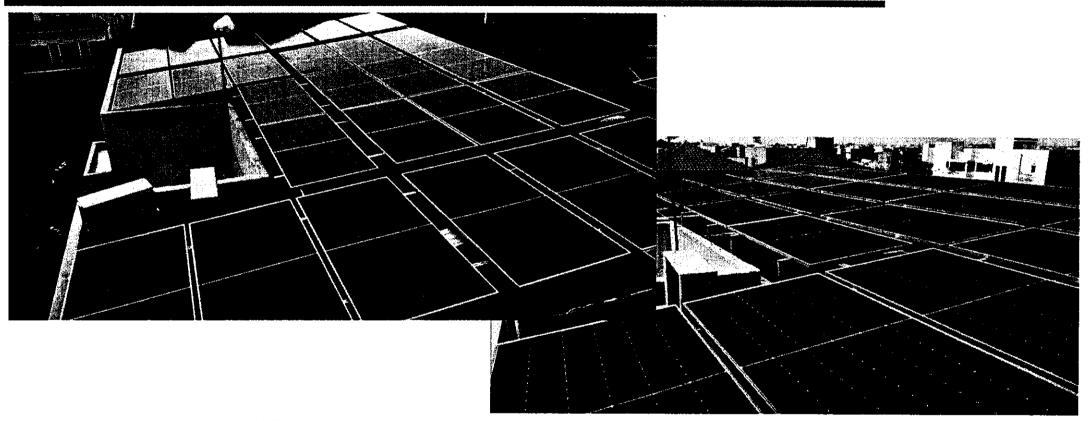


Client	DHA Multan	Location	Romanza Golf Club	
System Type	On Grid	Capacity	430 kW of 1.2 MW	
Panels	Canadian Solar	Inverter	Huawei	
* 01712				



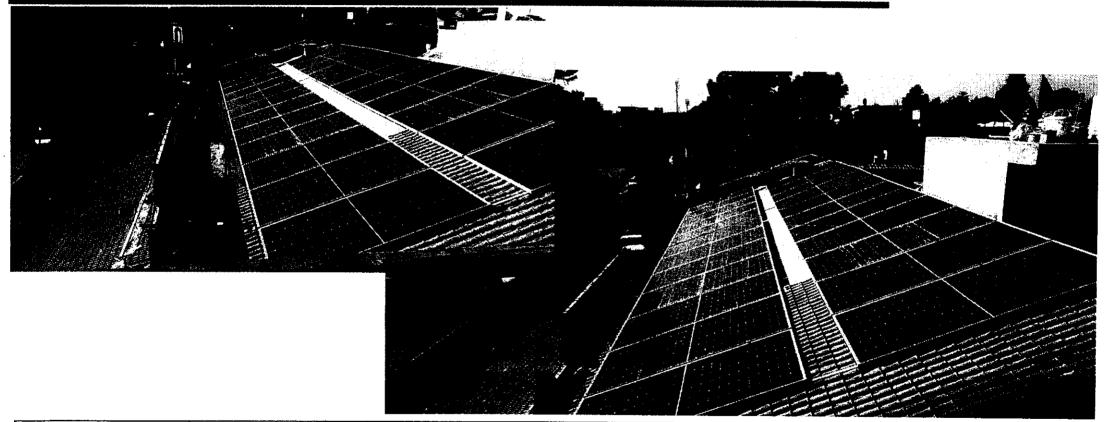
23

Client	DHA Multan	Location	Romanza Golf Club
System Type	On Grid	Capacity	430 kW of 1.2 MW
Panels	Canadian Solar	Inverter	Huawei
C Tory			



Client	DHA Multan	Location	Site Office DHA	
System Type	On Grid	Capacity	465	
Panels	Canadian Solar	Inverter	Huawei	24
01711				

UN



25

Client	DHA Lahore	Location	Phase 8	
System Type	On Grid	Capacity		
Panels	Canadian Solar	Inverter	Huawei	
	and the second secon			

Capacity		
Inverter	Huawei	
	Inverter	

Solar Office: 72 Block, Maulana Shaukat Ali Rd, Quaid e Azam Industrial Estate, Lahore - Pakistan

> Head Office: NRTC, Haripur - Pakistan

PTCL : 042-5117304 Info@nrtcenergies.com.pk www.nrtcenergies.com.pk

PAGE1

THE COMPANIES ACT, 2017 THE COMPANIES (GENERAL PROVISIONS AND FORMS) REGULATIONS, 2018 [Section 197 and Regulations 4 and 20] PARTICULARS OF DIRECTORS AND OFFICERS, INCLUDING THE CHIEF EXECUTIVE, SECRETARY, CHIEF FINANCIAL OFFICER, AUDITORS AND LEGAL ADVISER OR OF

PART-

PART-I

ा हा के अने २०१४ विद्युप्तिने ता राज्ये अभवते हो। देवे १४	出一些 \$P\$ \$P\$ \$P\$ \$P\$ \$P\$ \$P\$ \$P\$ \$P\$ \$P\$ \$P		
1.1 CUIN (Incorporation Number)	0184244		
1.2 Name of Company	NRTC ENERGIES (PRIVATE) LIMITED		
1.3 Fee Payment Details			
1.3.1 Challan Number	E-2022-1319269	1.3.2 Amount	4000.0

2. Particulars*:

2.1. New Appointment/Election

Nature of NIC No. or Date of Mode of Business Usual Residential directorship Father / Passport No. in Present Appointement / Present Name in Full Occupation¹ Designation Nationality case of Foreign sband Name Address ominee/indep Appointment change / any (a) (e) * (if any) (1) (c) (d) ident/additional/ National or Change other remarks (g) other) (b) (h) (i) (i) 28/10/2022 Muhammad Gul House No. B-1, Pakistan Imran Gul 3420207444585 Chief Re Ghaznawi Street, Appointment / Executive Garrison Adiata Road RAWALPIND Punjab Pakistan 28/10/2022 H.No 284, Street No. 14 Township Chaudhary Director Pakistan Director Appointed / Nominee luhammad Asim 3520270242921 NRTC Muhammad haque Ishaque Sector A1, Lahore 4230177998571 Anjum Parvez 28/10/2022 Fiat No. 43-G, Director Pakistan Chief Elected / Nominee Jawad Anjum Askari 3, School Executive Officer Road, Karachi South 3420207444585 Muhammad Gul House No. B-1, Pakistan Director 28/10/2022 Elected / Nominee Directo: Imran Gul NRTC Ghaznawi Street, Garrison Adiala Road, Rawatpindi 28/10/2022 Auditor Appointed / 74-East , 2nd Floor, Pakistan A.F.Ferguson and Co. Auditor Blue Area, P.O Box Chartered Accountants 3021, Islamabad-44000, Pakistan

2.2. Ceasing of Officer/Retirement/Resignation

Present Name in Ful (a)	NIC No. or Passport No. in case of Foreign National (b)	Father / Husband Name (0)	Usual Residential Address (d)	Designation (e)	Nationality** (1)	Business Occupation** * (if any) (g)	Date of Present Appointment or Change (h)	Mode of Appointement / change / any other remarks (i)	Nature of directorship (nominee/indepe ndent/additional/ other) (j)
Jawad Anjum	4230177998571	Anjum Parvez	Flat No.43-G, Askari 3, School Road KARACHI SOUTH Sindh Pakistan 75530	Director	Pakistan	Chief Executive Officer	28/10/2022	Retired /	
Imran Gul	3420207444589	Muhammad Gul	House No. B-1, Ghaznawi Streel, Garrison Adiala Road RAWALPINDI Punjab Pakistan	Director	Pakistan	Director NRTC	28/10/2022	Retired /	
Tofique Ahmed	3420238740021	Mubammad	Mohalia Cantt	Director	Pakistan	Director	28/10/2022	Resigned /	<u> </u>

FORM 29

10/23/23, 12:58 PM

·····				IAUL				
Tofique Ahmed 13420238740021	Muhammad Munir	Mohalia Cantt Railway station, Kharian GUJRAT Punjab Pakistan 50070	Director	Pakistan	Director NRTC, Director NRTC (tech (Pvt) Ltd	28/10/2022	Resigned /	

PACE1

2.3. Any other change in particulars relating to columns (a) to (g) above

	NIC No. or Passport No. in case of Foreign National (b)	Father / Husband Name (C)	Usual Residential Address (d)	Designation (e)	Nationality** (f)	Business Occupation* ** (if any) (g)	Appointment	Nature of directorship (nominee/indepen dent/additional/oth er)

* In the case of a firm, the full name, address and above mentioned particulars of each partner, and the date on which each became a partner.

** In case the nationality is not the nationality of origin, provide the nationality of origin as well.

*** Also provide particulars of other directorships or offices held, if any.".

***** In case of resignation of a director, the resignation letter and in case of removal of a director, member's resolution be attached

***** In case of a director nominated by a member or creditor the name of such nominating or appointing body shall also be mentioned in column (i), and a copy of resolution from the nominating or appointing body be attached.

3.1 Declaration:

3 Signature

PART-III

I do hereby solemnly, and sincerety declare that the information provided in the form is:
(i) true and correct to the best of my knowledge, in consonance with the record as maintained by the Company and nothing has been concealed and
(ii) hereby reported after complying with and fulfilling all requirements under the relevant provisions of law, rules, regulations, directives, circulars and notifications whichever is applicable.

2 Name of Authorized Officer with designation/ Authorized Intermediary

imran Gul	Chief Executive
Electronically signed by Imran Gul	
21/10/2023]

3.4 Date (DD/MM/YYYY)

3.5 Registration No of Authorized Intermediary, if applicable

PAGE1

Form A THE COMPANIES ACT, 2017 THE COMPANIES (GENERAL PROVISIONS AND FORMS) REGULATIONS, 2018 [Soction 130(1) and Regulation 4] ANNUAL RETURN OF COMPANY HAVING SHARE CAPITAL

PART	4

(Please complete in typescript or in bold block capitals)

1.1 CUIN (Registration Number)	0184244			
1.2 Name of the Company	NRTC ENERGIES (PRIVATE) LI	MITED		
1.3 Fas payment details	1.3.1 Challen No E-2022-13	19269 1.3.2. Amount	4000.0	
1.4 Form A made upto	dd mm уууу 28/10/2022			
1.5 Date of AGM	28/10/2022			
Section A	PART - H			
2.1 Registered Office Address	, Nasralle, Unk Roed Mumtaz C Ravalpindi, Punjeb	ity, Near leiemabad internation	hal Airport,	
2.2 Email Address	imran.gui@nrtc.com.pk			
2.3 Office Tel. No.	518431995			
2.4 Office Fax No.				
2.5 Principle line of business	-ALTERNATE ENERGY			
2.6 Mobile No. of Authorized officer (Chief Executive/Director/ Company Secretary/ Chief Finencial Officer)	03145064833			
2.7 Authorized Share Capital				
Classes and kinds of Shares	No. of Shares	Amount	Face Value	
Ordinary Shares		10,000,000.00		
2.8 Paid up Share Capital				
Classes and kinds of Shares	No. of Shares	Amount	Face Value	
Ordinary Shares		10.000,000.00		
2.9 Particulars of the holding /subsidiary company, if any				
Name of Company		Holding/Subsidiary	% Shares Held	
The National Radio Telecommunication (Corporation (Pvt) Ltd.		75	
2.10 Chief Executive				
Name	imren Gul			
Address				
runa opa	House No. B-1, Ghaznawi Stree	t, Garrison Adiala Road RAWA	LPINDI Punjab Pakisten 46606	
	House No. B-1, Gheznawi Stree 3420207444589	t, Garrison Adials Road RAWA	LPINDI Punjab Pakisten 46606	

2.11 Chief Financial Officer	
Name	
Address	
NIC No	
2.12 Secretary	·
Name	
Address	
NIC No	
2.13 Legal Advisor	(<u> </u>
Name	
Address	
NIC No	
2.14 Particulars of Auditors	
Name	A.F.Ferguson and Co. Chartered Accountanti
Address	74-East , 2nd Floor, Blue Area, P.O Box 3021, Islamabad-44000, Pakistan

2.16 Particulars of Shares Registrar (if applicable)

Name	
Address	
Email	

Section-B

2.16 List of Directors on the date Annual return is made

S#	Name of Director	Realdential Address	Nationality	NIC (Pasaport No. if foreigner)	Date of appointment /election	Name of Member/Creditors nominating/appointing
1	Muhammad Asim Ishaque	H.No 284, Street No. 14, Township Sector A1, Lahore	Pakistan	3520270242921	28/10/2022	The National Radio Telecomm
2	Jawad Anjum	Flat No. 43-G, Askari 3, School Road, Karachi South	Pakistan	4230177998571	28/10/2022	Onsun (Pvt) Ltd.
3		House No. B-1, Ghaznawi Street, Garrison Adiala Road, Rawalpindi	Pakistan	3420207444589	28/10/2022	The National Radio Telecomm

.MAJOR (R) ENGR. JAWAD ANJUM, psc, CMILT(UK)

+92-333-4677-166

jawadanjum1@gmail.com

362-F. Askari-10, Airport Road, Lahore Cantt

- PROFILE A multi-skilled professional with a proven history of managing complex functional assignments in constrained environments for 18 years in Army as a result-oriented project manager, effective administrator and a seasoned HR manager. I am a self-driven individual who enjoys dynamic and diverse roles in multi-functional settings. Leveraging my sharp learning potential and adaptability, I can thrive working with experts from any industry. A natural leader and team player who generates excellent spirit and inspires people around him being a gifted speaker with an analytical mind set. I am always willing to go an extra mile looking for innovative solutions to achieve remarkable results. Seeking a challenging role in Rohde & Schwarz Pakistan, where I can grow professionally & personally and demonstrate my skills whilst benefiting the organization.
- SKILL SETS Leadership/ Team Building Operations Continuity

• ICT

Service Delivery

- Project Management
- Telecommunication

- Strategy & Planning
- Analytical Thinking
- Stakeholder Management

- Organisation
- Persuasion & Negotiation
 HRM
- PROFESSIONAL EXPERIENCE HIGHLIGHTS

PROJECT MANAGEMENT

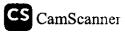
Planned, directed and co-ordinated activities of following organisational projects in areas of IT, Telecom, Software Development and Systems Integration. Allocated technical and human resources, resolved issues while managing clients/ end-users and vendors.

Shifting of Army School of Technician from Barian to Kohat 2020

- Developed feasibility and implementation plan with a cost effect of PKR 290 Mn .
- Achieving consensus by all major stake holders

Corps of Signals Training 1

- Developed concept paper to restructure Corps of Signals Trades in line with the latest and futuristic induction plan of technical equipment.
- Planned and directed expansion of STC to achieve 25% capacity enhancement to train 3000 new and experienced soldiers attending various technical courses every year.
- Established technical labs (OFC, microwave, radio, computer, networking & driving simulator)
- HR development of functional staff (training, operations, management and administration).


Renovation of GHQ Army Museum

- As a special project, renovated GHQ Army Museum Signals Gallery. Incorporated latest visual & interactive technologies like hyper-vision, holograms and interactive displays. •

✓

- Enhanced coverage of Suno FM Radio Network to outreach remote areas of Baluchistan, FATA & Kashmir region by establishing 85 self-sustained (500 – 2500 Watts) new stations. As controlling body for Suno FM network, handled regulatory affairs, rendered guidelines for
- content development and devised strategy to increase listenership.

2019 - 20

2019 - 20

2016

CamScanner

Deta Visualisation and Analytics

Concerved, developed and implemented customised data visualisation and analytics software to share actionable data for informed decision making by stakeholders across Pakistan.

Cloud-based Smart Verification System

implemented a pilot project "Smart Verification and Alert System" to automate and speed-up screening process of returning TDPs/ individuals at key entry points in South Waziristan. System significantly reduced waiting time by 50 %. Project received appreciation at the inchest level and was extended to all military garrisons

Solarization of Highly Remote Communication Hubs

Coordinated and supervised installation of solar systems at 27 remotely located communication nodes in difficult terrain of Washristan.

Central Monitorine System

Established a joint monitoring & control centre for civil administration, police and army to monitor security situation of DI Khan, Tank, Lakki Marwat and Bannu. System encompassed comprehensive monitoring, self-healing automation, policy-based configuration management, detailed reporting, integrated AV, patch, backups and remote control.

Pakistan Army Office Automation System (OAS)

- Supervised installation and configuration of Karachi Data Centre server rooms.
- Directed deployment of fibre optic and wi-max networks in Karachi and Malir, to extend OAS to over 120 establishments in a record time of 8 months. Subsequently worked as project in charge for OEM of OFAN & wi-max siles.
- Developed programs to support organisation's transition to new system.
- Worked as a local point for customers and vendors management.
- Remained part of development teams of various enterprise applications and software.

Pakistan Army Telepresence System (PATS)

Implemented state of the art telegresence systems at Karachi (2011) and Kohat (2020)

CHIEF COMMUNICATION OFFICER

During my illustrious career in Pakistan Army I have managed large scale telecom systems.

- Planned, deployed and maintained communication and data services for a large number of civilian, army and FC subscribers, by integrating PTCL and own MW & OFC systems in Waziristan.
- Deployed and maintained PBX Systems MD-110 Ericsson in Labore, Murree, SWA and Kohat.
- Due Kashmir Earthquake 2005, complete communication infrastructure got destroyed, Restored communication network of over 70 sites spread in complete Kashmir Region.
- Established new OFC network, deployed DAMA/ VSat systems (Hughes/Polar Sat/Paksat1-R) and NERA Microwave systems in hostile terrains.

Radio Communications

- AF Planning and optimization to effectively manage HF, VHF and UHF radio networks (Harris, Aselsan, Ericsson, Motorola, R&S) for large size forces.
- Liaison with Frequency Allocation Board and Pakistan Telecommunication Authority.
- Cross-Border communication planning/ coordination with NATO/ ISAF.
- Effectively managed the information Operations Campaign in conflict zone and countered hostile radio networks both cis-frontier and trans-frontier. Judiciously employed 18 electronic warfare detachments comprising PR - 100 terminals, suppression transmitters and FM transmitters.

JOINT INFORMATION OPERATIONS COMMITTEE (JIOC)

HOC is joint forum for tri-services, ISI & SPD for technical projects.

2016

2014.15

2014

2013

2010 - 11

2011/20

2018-20

2011.12

2002 - 20

- Member of core team designing new training regime for junior leaders of Army.
- Army, PAF, Police, Rangers and FC. 2016 - 18
- Psychological and Motivational Training (PMT)
 - Organised PMT for Army/ FC employees going to, deployed in & coming from high threat zones. Also conducted PMT for PAF, Police and Rangers employees in various cities
- Junior Leaders Academy (JLA), Shinklari
 - Lanka) at HA. My squads got 1st position out of 40 squads in two consecutive courses.
 - delegates.

SECURITY AND SAFETY

- Remained part of security management teams, providing security for top-level dignitaries like President, Prime Minister and COAS,
- Carried out threat, risk and vulnerability assessment of sites, programs and projects. Devised and issued response strategies accordingly.

DISASTER MANAGEMENT

- **Electoral Process**
 - Supervision of General Elections 2018 in the most befitting manner in Kohat District.
 - Maintained close liaison with chill administration and facilitated during the entire process
 - Managing the security of over 17 polling stations.
- Tent Village for TDPs in Bannu
 - Assisted in establishing tent willage to accommodate 20,000 temporarily displaced people.
 - Carried out registration & profiling ensuing camp security while giving due consideration to local culture and traditions.

1 **Flood Relief Operations**

- Establishment of flood relief camps in remote areas of Sindh catering over 30,000 personal
- Personally supervising the smooth functioning and establishment of medical camps on more than 22 sites within a short span of 3 days.
- Voluntary gathering of funds and judicious distribution in close hanon with Red Cross representatives.

Earth Quake Relief Operations

- Voluntarily initiated relief and rescue effort in my area of responsibility
- Utdising limited available resources established refiel camp to sustant 5000 people
- Later on acted as lead facilitator for teams employed in Kashmir.

Advisor to top management of Army on technical matters of JRAC. Handled projects like COP for tri-services. OFC laying along west bank, tri-services mobile phone network, industrial & Jechnical evaluation of advanced communication systems and secure systems 1082 - 20

HUMAN RESOURCE MANAGEMENT

18 years of progressive experience in Human Resource Management. Remained responsible for

- Supplies of rations, clothing & ammunition and maintenance of weapons, vehicles & technical equipment to ensure smooth operations of the organisation
- Training & evaluations; career planning & promotions, discipline, and leave of employees.
- Affairs related to pay & benefits; accommodation; bealth & safety, medical; and welfare
- Providing consultation to superior management on related issues of organization

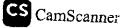
COACHING AND MENTORING

- Signal Training Centre, Kohat

 - Training need analysis to design training programs of telecommunication cadres of troops of

Coached and groomed soldiers of Pakistan and foreign armies (KSA, Bahrain, UAE and Srr

- Prepared and organised demonstrations of training activities for top management and foreign


2018

2014

2010

2005

 Ensured security management and humanitarian field skills training programs by maintaining close liaison with UNHCR teams operating in the area.

	MSc (Art and Science of Warfare), National Defence University, Islamabad	2014 - 16
	BE (Computer Software Engineering), NUST, Islamabad	20 06 10
	PGD (Wire Communication Engineering), PLAUST, Nanjing, China	2012 - 13
	EMBA (Candidate), LUMS, Lahore	2021 - 23

COURSES AND Command and Staff Course, Command and Staff College, Quetta CERTIFICATIONS Mid-Career Signals Course, Military College of Signals, Rawalpindi Junior Staff Course (Signals), Military College of Signals, Rawalpindi Electronic Warfare Course, Military College of Signals, Rawalpindi Young Officers Telecommunication Course, Military College of Signals, Rawalpindi Project Management Course, OSP International LLC Certification in Cabling Engineering, Nanjing College of Information Technology, China Olploma in Cisco based Network Training, Harris Corporation Certification in DSSS Telemetry and Auto Tracking System, COMTEC, Wah Army Master Trainer in Information Assurance, Military College of Signals, Rawalpindi Certified Secure Computer User, EC-Council UN Military Observers Course, Centre for International Peace and Stability, Islamabad

PROFESSIONAL Pakistan Engineering Council, Pakistan MEMBERSHIPS The Institute of Engineers, Pakistan Charted Institute of Logistics and Transport, UK Project Management Institute, USA AXELOS, UK

INETERESTS Reading, Travelling, Bridge, Hunting

REFERENCES Available on request

HOD (Accounts & Finance)& Member ICMAP (SAP B1, QUICK BOOKS, ERP)

An Experienced Accounts and Finance person with a demonstrated history of working experience of 10 years in the Manufacturing and Trading industry. Skilled in Financial Management, FP&A, Budgeting, Cost Controls, Accounting Cycle, Taxation Laws, and Decision Making.

SHOAIB BUTT

Contact

Phone: +92 322 4332430

E-Mail: buttacma@yahoo.com

Skype ID: shoaib.butt32

Address: House no 5, street no.4, Boston Colony, Qainchi Stop Ferozepur Road Lahore Cantt. Pakistan.

Personal Info

DOB: 10th August 1987 teligion: Islam Marital Status: Married Membership / Reg. No.: A-6243 Father Name: Waheed Azam Butt

Skill Highlights

- Microsoft Office (Word, Excel, PowerPoint)
- Peachtree Accounting
- Typing Speed 40 wpm
- SAP B1, QUICK BOOKS, ERP

Experience

03/2022 to Present

HOD (Accounts & Finance) - The Punjab Club Lahore, Pakistan. The Punjab Club was established in 1884 and was exclusively used by British and Europeans. The club was transferred to Pakistan in 1962. It is private social club that has elected members consisting of high ranking civil, leading industrialists, entrepreneurs and executives.

- Responsible for overall accounts, finance and taxation matters.
- Annual Budget, costing, insurance, Provident Fund management.
- Managing Investment Portfolio with Banks.

04/2020 to 02/2022

Group CFO:

- 1- Siraj Din Energy (Pvt.) Ltd. (FMCG), Lahore, Pakistan
- 2- Solargy (Pvt.) Ltd.
- 3- Qazafi Batterier

Siraj Din Energy (Pvt.) Ltd & Solargy (Pvt.) Ltd. deal in retail and wholesale of commercial batteries (i.e., AGS, OSAKA, EXIDE, PHOENIX, TREET, BRIDGE POWER, MILLAT) for UPS, Autos and Solar Panels System. It has distribution network all over Pakistan.

- Lam responsible for all financial planning, financial analysis, drafting financial Strategy, Cash Flow tracking & Taxation.
- Finalization of Annual/Periodic Financial Statements and Audited accounts from external auditors.
- Ensuring proper accounting practices, book keeping, Internal audit, claim audit, financial audit, and other MIS reports.
- Comparative statements analysis and presenting reports to CEO.
- Preparing financial budgets, financial models for decision making.
- Compliance of business processes and finding ways of Improvements.
- Supervision of All Taxation maters with coordination of consultant.
- Supervision of All SECP, PRA & FBR filing.

12/2014 to 03/2020

Manager Accounts - Element (Pvt.) Ltd., Lahore, Pakistan Elmetec (Electrical & Mechanical Technologies) Pvt. Ltd., manufactures

11 KV Distribution Transformers from 10 KVA to 640 KVK as per WAPDA specifications and all other capacities up to 5000 KVA. In addition to that, it also manufactures medium and low voltage switchgear incorporating Vacuum Circuit Breakers, Oil Circuit Breakers and Load Break Switches, Low & Medium Voltage Instrument Transformers. It has annual turnover Rs. 02 billion.

- Preparation of Financial Statements (Monthly, Quarterly, & Annual)
- Fixed Assets Management (Recording, Revaluation and Disposal of Assets). Liaison with External Auditor for annual audit of financials.
- Bank & GL Reconciliation Statements, AP, AR, Sales and Purchase Invoices, Internal Management Reporting.
- Compliance with FBR Notices (Rule 44(4)/161(1A) Monitoring)
- Notice u/s 161, Notice u/s 122 (Assessment), Notice u/s 177 Audit (Information and Evidence with supporting documents)
- Compliance with Sales Tax Audit. Supervision of Leasing of Assets.
- Costing Imported Materials.
- Bill Discounting and other Supervision of financing activities with banks

02/2012 to 11/2014

Account Officer - Rupall Group, Lahore, Pakistan

- Preparation of all kind of vouchers, GRN, costing of Imported Materials.
- Audit of Stores and Spares.
- Conducting Monthly Stock taking.
- Compilations of General Entries to accounts.

Education

	2012
CMA (Cost & Management Accountant)	
ICMAP – Institute of Cost & Management Accountants o	f Pakistan
Financial & Managerial, Accounting, Auditing, Companies Law	
Reporting	
	2007
B. Com (IT) (Bachelor of Commerce)	2007
University of the Punjab, Lahore, Pakistan	
Financial Accounting, Cost Accounting and Taxation	2005
	2005
I.Com (Commerce)	
BISE, Lahore, Pakistan	
Accounting, B. Math and Commerce.	
	2003
Matric (Science)	
BISE, Lahore, Pakistan	
Math, Physics, Bio, and Chemistry	NES (PL)
Certifications	AGIES (ALM
MS Office Diploma (6month) NAVTIC program	2007
Typing Certificate	2007

1

eron analise in hearing and the second second and the second second second Called The Work of the Work Section Proside and the first state of the former 1. 1. 1. 1. and in the 21.53

TTHE -

1999 B # 59 8 8 8 8

And Andrewson a

1. 19 19

S + 2

ALC: IOS

antionantegrating

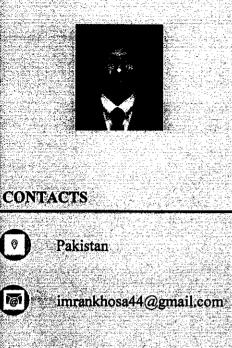
nameunal readiness

A State of the second second second

Sec. Sec.

States ka Ali seleka katalogi yang Ponta pontasi dala Man EX IS

1. 34


Company Co S. A. C. Sala i chan i a and a second A second A second s

an ann anna ann an Aire d An Aire ann an Aire an A A. F. Wards

an an an ann a' ann a' stàirtean an Aonaichtean ann an Aonaichtean ann an Aonaichtean ann an Aonaichtean an Aon An an Aonaichtean ann an Aonaichtean an Aonaichtean an Aonaichtean an Aonaichtean an Aonaichtean an Aonaichtean - HO ST elevisite in all the second hadina kanada en parte an a

ः स्टब्स्यन Paratra Sec. . مرتبط مانتان در باز این از تاریخ از این از تاریخ See groups to be

Street Street B Standar str sty or 1912 Satures

PAK: +923332876332

+923332876332

CAREER OBJECTIVE

Looking for an opportunity in the field of Power Plant Operation & Maintenance, Testing & Commissioning and Renewable (Solar) Project Executions in a romable organization.

https://www.linkedin.com/in/engr-imran-khosa-12b63a189/

SOFT SKILLS

	1 (A. 11)			eg roong 🗗
Minros	oft Projec	1 S		6
an nai na	airt ialar	(1. ³⁴		and the second
	장소가 아이는 것	n film an strawer.	めいためたた	다 같다. 전 영상
12.	in statute sector and	ar e des test.		and the second states of the states of the second s
			an Altais	
The second	ANIA	2.4 C		and the second
EIVHCFUS	oft Word	841 	,	in starte st
		WC 135 NRS	i ke databah Polen	
	a standard and		the second pro-	لى ودائمة المتنا
Sh/inens	oft Excel	11.5	1999 - P. 201 - 199 - 19	
TATIATOS	ATT TWART	la a grand a grand a grada. A companya a grada a gr	ا بیون کر اور ایر ایران کرد. مرکز ایران در میتر مرکز کرد	1.
		de a fritikaj e		
Heliosc	one			
Alex of the second second		a second a second	1	
	بر المحمد و المحرة المراجع المراجع . محمد المحمد المحمد المحمد المراجع .		5	
A	A TS	i i de la companya de	· · · · · · · · · · · · · · · · · · ·	
AutoC	NU ZU	a da seren esta esta esta esta esta esta esta esta		••••••••••••••••••••••••••••••••••••••
Strate Land	1993년 1997년 1997년 1997년 - 1997년 19 1997년 1997년 199			
4.000	1.89 X 1.69 S		a di bata dest	
Sketch		1.1		ا الإسلامية (المحمد عليه الما الم الم
EQACIVIII	+P			
	an a			
	「そうてい」「日本のなってい」」。 「「あたない」を「「いない」」、「いってい」			
PVsyst		E _ 1		n suuri nän tuures". Ula
			100	9.997 L.C.C.M
Service Service	Same Charles			S. Carlo Vara
2				
	the state of the second	an an an an an an Anna Anna Anna An an Anna Anna	and a straight and and a straight a	
		د منافقه با مراجع بازم مراجع المراجع المراجع المراجع	A second second provide the second	an an an ann an ann an an an an an an an
290 (*****)				

Engr. Imran Khan Electrical Engineer

PROFESSIONAL BACKGROUND

Foundation Solar Engery Private Limited.

Projects Manager since 15th March 2022.

Sky Electric Private Limited

Project Engineer 1st august 2018 till 13th march 2022.

KEY EXPERTISE

Project Management

- Execution of Megawatt Level Renewable energy projects.
- Microsoft project
- Ability of Team Management, Implementation, Project Planning, Project Pricing, Time Management, Problem Solving, Negotiation Skills, Managing Vendors, Defining Project RFP's, Conducting Technical Surveys and Dealing with Clients. **Testing and inspection**
- Done SAT and FAT's for MV panels (short circuit test, high voltage test, earth fault test) and transformers (turn ratio test, insulation resistance test, no load losses and full load losses tests).
- Cables and conductor's tests (high pot, megger & continuity test).
- Reviewing the engineering design changes and resolving quality related problems associated with the design.
- Reviewing manufacture drawings.

Maintenance and trouble shooting

- Planning and effective preventive maintenance schedules of various machineries and instruments to increase machine up time and equipment reliability.
- Troubleshooting of the fault using engineering logic and testing.
- Routine inspections and monitoring of working equipment's.
- Preparing R&D based data to check the performance of motors, generators and transformers.
- Overhead and underground cable laying.

WORK EXPERIENCE

Projects Manager (Permanent/Fulltime)

EPC renewable energy (solar) projects upto 45 (precution and commissioning from initial surveys to the vendor menaging and technical evaluations.

CERTIFICATES & APPRECIATIONS

- 1. Fusion Solar Service Certificate
- 2. Installation and Manufacturing of PV module

MANAGERIAL SKILLS

- a. Project Scheduling
- b. Planning of material resources
- c. Managing vendors
- d. Management Reporting
- e. Dealing with the client
- f. Managing timeline
- g. Controlling project pricing

GUAGES

- English
- Good
- Urdu

Excellent

Punjabi

Hindi

Good

Excellent

Core responsibilities: Leading overall execution activities of the project.

- 1. Making RFQ's for the Project and Leading site surveys along with sub-contractors.
- 2. Prepare cost estimations for the different scopes of the project.
- 3. Prepared project implementation plans, helping draft man in design documents.
- 4. Managing vendors and ensuring of onsite implementation as per design.
- 5. Leading technical meetings and taking approval of design from client.
- 6. Reporting to the higher management regarding daily progress.
- 7. Assisting HOD in technical evaluations of the subcontractor's and costing negotiations.
- 8. Keeping record of line item and required ones.
- Lead installation and testing of 3100KVA Transformers, Central Inverter installation, hot and cold commissioning, DC terminations and MV cable laying, MV terminations 6.3KV at ABB/Schneider MV Switch Gears.

On-going Projects:

7.5 MW: Fauji Cement Company Pvt ltd DG Khan.

5.5 MW: Beacon implex Faisalabad.

1MW: Fauji Akber Portia Marine Port Qasim Karachi.

Projects

6 MW: Rafhan Maize Product co. Mehran Plant Kotri.

11.25 MW: (Fauji Cement Company Limited Nizampur)

surveyed, designed, prepared project implementation plan and system layout, lead execution activities including mechanical, civil and electrical, carried outtesting and commissioning of the site

8.8 MW: Solar Plant at Askari Cement Company Limited.

1MW: Solar Power Plant at Ashraf sugar Mill Bahawalpur, designed and executed

500KW or below: Solar Power Plant in south Punjab flour mills and cotton industries, designed and executed.

PERSONAL PROFILE DOB: 01/03/1995 Nationality: Pakistan Marital Status: married Passport Number: QY4141651 **.** 1.1.1.

Project Engineer (Permanent/Full time)

Sky electric Pvt Limited

(56 months) 1st august 2018 to 14th march 2022

Operation and maintenance of residential system in South Punjab and based at Multan office. Leading the project execution team and complete the targets within the stipulated time frame.

Core Responsibilities:

- 1. Meeting client before work execution & formulation of SOW document.
- 2. Inspect residential/industrial facilities and analyze electrical data
- 3. BOQ verification, Procurement and Team Administration for residential/SME sites
- 4. Compile estimates for technical and material requirements for project development
- 5. Suggest process and technical design changes to improve performance and efficiency.
- 6. Monitor project progress, compliance with design specifications and safety standards.
- 7. Create work schedules and adjust as needed to meet project deadlines.
- 8. System Commissioning and handovering the project to client.

EDUCATION

Sr.No	Name of Course	Institute Name	Completion date
	Bachelors of Science in Electrical Engineering	Islamia University of Bahawalpur	20142018
2	Higher Secondary School Certificate (FSc.Pre-Engineering)	Muslim College science and technology, Multan	20122014
3	Secondary School Certificate (Matriculation)	Shaheen Froce Public School Muzaffargarh.	2010 2012
		•	

 \mathbf{X}

Lt Col (Retd) Sibtain Naseer

Siddiqui, PMP®, P.E, MIE(Pak)

Program Manager, Civil Engineer

♥ House No 107, Street No 7, Safari Valley Usman D Block Phase 8 Bahria Town Rawalpindi, Pakistan

+923365369331

Email: sibtain.naseer1@gmail.com

Linkedin: www.linkedin.com/in/sibtain-naseer-siddiqui-62625515b Sex: Male | Date of birth 21/12/1983 | Nationality Pakistani

With 17+ years of experience as a General Manager/ Program/ Project/ Construction Manager and Civil Engineer, I possess the expertise and skills necessary to lead effectively. I am dedicated to optimizing operations, minimizing costs, and drivingorganizational efficiency, reflecting my commitment in achieving success. Safety is of paramount importance to me, and I maintain an unwavering focus on ensuring the well-being of all personnel involved in construction activities. Throughout my career, I have built a solid reputation for making independent decisions and exercising sound judgment, resulting in positive contributions to company performance. By consistently applying my problem-solving abilities and leadership acumen, I have been able to drive the overall success of the organizations I have worked with.

Work History

10-2024- Current	Frontier Works Organization, Rawalpindi
	Program Manager Operations
	Frontier Works Organization is today's most versatile and vibrant construction firm of Pakistan, was established on 31 October 1966. I was employed as Program Manager to oversee different projects executed by FWO.
	Responsibilities and Achievements:
	Managed operations of Headquarters Frontier Works Organization
	Oversaw construction and maintenance of Motorways by concerned Project Managers as per scope, schedule and cost.
	Coordinated with all project managers for timely completion of projects.
	 Collaborated with contractors, suppliers, and other stakeholders to meet project requirements and specifications
	Conducted rates verification and analysis of contracts, ensuring compliance with local market standards.
	 Conducted constructability analysis of contracts, identifying discrepancies and providing actionable recommendations for successful project execution in coordination with project managers.
	• Collaborated with on-site teams to assess and improve designs based on site-specific conditions, optimizing project outcomes.

	 Facilitated effective communication with local vendors, contractors, and material suppliers to ensure timely project execution and delivery. Conducted comprehensive rick assessments for projects and implemented/ actions.
	 Conducted comprehensive risk assessments for projects and implemented/ enforced safety procedures to minimize risks and ensure a safe working environment.
06-2020-	Ministry Of Defence Kohat & FATA
09-2024	Program/ General Manager
	Responsibilities and Achievements:
	 Oversaw the construction of 2 x schools with a capacity to accommodate 500 students along with associated facilities, ensuring a conducive learning environment.
	 Managed construction of a multi-sports complex, providing state-of-the-art facilities for various sports.
	Oversaw construction of Rehabilitation Projects (including WASH activities) for erstwhile FATA worth over Rs 6 Billion.
	 Managed construction of more than 50 RCC bunkers/ structures.
	 Successfully completed construction of ammunition dumps/ depots, military equipment storage sheds and multi-storey accommodation.
	 Oversaw the fencing of 230 km perimeter to secure Pak-Afghan Border, enhancing safety and security measures.
	• Oversaw all phases of construction, ensuring adherence to safety protocols, quality standards, and project specifications.
	• Implemented strategies for efficient workflow, productivity, and fostering a positive work environment.
	 Currently supervising a team of 300 individuals, managing their day-to-day activities, performance, and ensuring effective teamwork.
10 – 2017	Military Engineering Services, Rawalpindi and Islamabad
06 – 2020	Project Manager
	Military Engineering Services are providing construction services to Pakistan Army, Air force and Navy, dealing public funds of approximately 350 million dollars annually. I have managed two Military Garrisons being Project Manager.
	Responsibilities and Achievements:
	• Successfully completed projects worth over Rs 7 Billion, delivering quality outcomes within specified budgets and timelines.
	 Supervised the construction of over 150 km of flexible pavement and 15 km of rigid pavement, ensuring adherence to quality standards.
	 Construction and installation of sewerage disposal system for the residents.
	Planning, awarding and execution of more than 500 contracts and ensuring
	 engineering standards and practices to be followed at all stages. Actively involved in design / contracting phase to mitigate the design and contract issues thus evaluate any financial effects and lititation.
	 issues thus avoiding any financial effects and litigation. Utilized multi-tasking skills to optimize project completion time and increase efficiency.
	 Defining different Standard Operation Procedures for optimum utilization of resources, mitigating risk and ensuring safety procedures at all levels.
	<u>Construction of different colonies (complete community development) with</u>
	SNES (PL)

	 more than 72 x Basement + Ground + 9 Floors accommodation flats, more than 60 x Ground + 3 Floors accommodation flats, 8 x bungalows, and maintenance of accommodation facilities. Managed construction of more than 80 multi-storey buildings, ammunition depots, military equipment storage sheds and underground RCC structures. Supervised construction of pre-fabricated steel structures, including warehouses, storage sheds, and industrial buildings. Construction of New Artillery Mess Rawalpindi Cantonment with cost of over \$12 Million and construction of 30 x VIP Guest Rooms/ Hotels (Multi Storey Buildings) and allied facilities. Oversaw construction of simulator buildings for Air Defense Systems. Successfully executed water supply schemes and sewerage infrastructure for different colonies/ projects. Oversaw all phases of construction, ensuring adherence to safety protocols, quality standards, and project specifications. Implemented strategies for efficient workflow, productivity, and fostering a positive work environment. Successful completion of projects overseeing all aspects from excavation to final finishes. Organized and led a staff of 700 employees, managing their day-to-day activities, performance, and ensuring effective teamwork.
10 - 2015	Frontier Works Organization, Panjgur, Nag & Gidder
10 – 2017	Project Manager
	i Tojoot managor
	Frontier Works Organization is today's most versatile and vibrant construction firm of Pakistan, was established on 31 October 1966. I was employed as Project Manager on different projects executed by FWO.
	Responsibilities and Achievements:
	 Managed construction and maintenance of 154 km stretch of CPEC National highway N-85 (Panjgur-Nag -Pishuk) overseeing a budgetof Rs 1.5 Billion.
	 Construction/ maintenance of 102 x Concrete Culverts and 3 x Concrete Bridges along the route (Panjgur-Nag-Pishuk), conducting inspections, repairs, and preventive maintenance to ensure their structural integrity and safety.
	 Managed construction and maintenance of 78 km stretch of CPEC National highway N- 85 (Surab-Gidar-Kalgali), overseeing a budgetof Rs 1 Billion.
	 Construction/ maintenance of 55 x Concrete Culverts and 1 x Concrete Bridge along the route (Surab-Gidar-Kalgali), conducting inspections, repairs, and preventive maintenance to ensure their structural integrity and safety.
	• Construction of camps/ infrastructure at Nag, Gidar and Surab ensuring efficient and timely completion of the project.
	 Oversaw the fencing of 3 km perimeter to secure different camps, enhancing safety and security measures. Installation/ Construction, operation and maintenance of 3 x Crush Plants and 2 x
	Asphalt Plants.
	 Collaborated with a team of engineers and technicians to address any related issues effectively and ensured adherence to quality standards and timelines, coordinating with construction teams and suppliers.
	 Collaborated with contractors, suppliers, and other stakeholders to meet project


requirements and specifications.
 Managed the projects from planning to execution, coordinating with users,
contractors, suppliers, and local authorities.
 Conducted rates verification and analysis of contracts, ensuring compliance with local
market standards.
 Conducted constructability analysis of contracts, identifying discrepancies and providing
actionable recommendations for successful project execution.
 Reviewed designs, bill of quantities, and rate analysis provided by consultants, ensuring
accuracy and adherence to project requirements.
 Collaborated with on-site teams to assess and improve designs based on site-specific
conditions, optimizing project outcomes.
· Facilitated effective communication with local vendors, contractors, and material
suppliers to ensure timely project execution and delivery.
 Prepared weekly, monthly, and quarterly reports and returns, providing accurate
updates on project progress and key performance indicators. Presented findings and
project updates to higher Headquarters.
 Conducted comprehensive risk assessments for projects and implemented/ enforced
safety procedures to minimize risks and ensure a safe working environment.
 Collaborated with local authorities and community leaders to address the social impact
of projects, considering the needs and concerns of the local population.
 Maintained approximately 200 km tracks, ensuring smooth operations and safety for
transportation purposes.
 Actively involved in WASH activities for the camps and developed a sewerage disposal
scheme for 1800 troops at Nag, Gidar and Surab, promoting proper waste management
and sanitation practices.
 Constructed two helipads for emergency evacuations, ensuring safe and efficient
landing and takeoff for helicopter operations.
 Organized and led a staff of approx. 900 employees, ensuring efficient workflow,
productivity and effective project execution.
 Implemented regular inspections and scheduled maintenance activities to address
any issues promptly.
of the projects, considering the needs and concerns of the local population.
 Implemented initiatives to promote community involvement and foster positive relationships between the granulation and the community
 relationships between the organization and the community.

11 - 2013 10 - 2015	National Logistics Cell, Pearl NLC Qatar		
	Project Manager		
	I have served in the Middle East/ Gulf with Qatar Branch of National Logistics Cell (Pearl NLC). The main role for my employment was infrastructure development and maintenance.		
	 Responsibilities and Achievements: Construction of Pearl NLC Staff and labor camp/ infrastructure at Ash-Shahaniyah, ensuring efficient and timely completion of the project. Oversaw the erection of prefabricated accommodations, providing comfortable and functional living spaces for personnel. Collaborated with contractors, suppliers, and other stakeholders to meet project requirements and specifications. Successfully completed earthworks and miscellaneous infrastructure of Ras Laffan Hospital. Successfully completed earthworks/ infrastructure development for Al-Matar Metro Station. Successfully completed earthworks/ miscellaneous works of NOH (Orbital Highway) including dumping management and reuse of excavated material economizing cut and fill. Implemented regular inspections and scheduled maintenance activities to address any issues promptly. Collaborated with a team of engineers and technicians to address any related issues effectively. Managed the project from planning to execution, coordinating with users, contractors, suppliers, and local authorities. 		
	construction teams and suppliers.		

06 - 2009 10 - 2013	Ministry Of Defence, Sialkot, FATA / NMD, Shinkiari		
	Site Engineer		
	 Site Engineer Responsibilities and Achievements: Led the construction of Shopping Complex ex 15 Division, 15 x Posts and Upgradation/ rehabilitation of Army Public School valued at Rs 300 Million. Managed construction of Perimeter Wall and fencing of Sialkot Cantonment to secure the garrison enhancing safety and security measures. Construction of 17 x Watch Towers/ Posts along perimeter of Sialkot Garrison Construction / Maintenance of 10 Km of track ensuring smooth operations and safety for security, maintenance and transportation purposes along perimeter of Sialkot Garrison. Constructed two helipads ensuring safe and efficient landing and takeoff for helicopter operations. Rehabilitation/ upgradation of 70 x soldiers houses in Sialkot Garrison Planning and preparation of Demolition of 3 x Bridges around Sialkot area Organized and led a staff of 350 individuals Managed local contractors and served as the site engineer for the construction of the college, ensuring adherence to project specifications and timelines. Identified and mitigated risk and safety issues at the construction site, implementing measures to ensure the well-being of workers and project success. Construction of Improvised Pedestrian Bridge at Jandola to facilitate the locals in their movement across the river Launching/ construction and maintenance of Compact 200 Bridge to open the traffic for locals in Sararogha, South Waziristan Construction/ maintenance of 950 Lightening Conductors for Camps/ Posts in South Waziristan Led emergency response efforts for flood in South Waziristan, utilizing boats and OBMs to rescue affected individuals. Construction of Basketball Court and Uplift/ Re-Construction of Main Entrance Gate in Junior Leadership Academy, Shinkiari. 		
04 - 2007 06 - 2009	Frontier Works Organization, Jhal Magsi, Karachi and Coastal Highway		
	Site Engineer		
	Frontier Works Organization is today's most versatile and vibrant construction firm of Pakistan, was established on 31 October 1966. I was employed as site manager on different projects executed by FWO.		
- - -	 Responsibilities and Achievements: Managed construction and maintenance of a 64 km stretch of Motorway M-8 (Shahdadkot-Qubo Saeed Khan-Kachi Pull- Barija), overseeing a budget of Rs 900 Million. 		
	 Construction/ maintenance of 74 x Concrete Culverts and 1 x Bridge along the route, conducting inspections, repairs, and preventive maintenance to ensure their structural integrity and safety. 		
	 Managed the project from planning to execution, coordinating with users, contractors, suppliers, and local authorities. 		
	Conducted rates verification and analysis of contracts, ensuring compliance with local		

	market standards.
•	Conducted constructability analysis of contracts, identifying discrepancies and providing
	actionable recommendations for successful project execution.
•	Reviewed designs, bill of quantities, and rate analysis provided by consultants, ensuring
	accuracy and adherence to project requirements.
•	Collaborated with on-site teams to assess and improve designs based on site-specific
	conditions, optimizing project outcomes.
•	Facilitated effective communication with local vendors, contractors, and material suppliers to ensure timely project execution and delivery.
•	Prepared weekly, monthly, and quarterly reports and returns, providing accurate updates on project progress and key performance indicators. Presented findings and project updates to higher Headquarters.
•	Conducted comprehensive risk assessments for projects and implemented/ enforced safety procedures to minimize risks and ensure a safe working environment.
•	Maintained 21 km tracks, ensuring smooth operations and safety for transportation purposes.
•	Oversaw the fencing of 18 km perimeter to secure different camps, enhancing safety and security measures.
•	Organized the emergency evacuation of flood victims from Jhal Magsi, ensuring their safety and well-being.
•	Actively involved in WASH activities by managing construction and provision of 12 x water filtration plants, construction and installation of sewerage disposal plant for the local communities.
•	Established camps for 8000 flood victims, providing basic necessities and support in challenging circumstances.
•	Constructed three helipads for emergency evacuations, ensuring safe and efficient landing and takeoff for helicopter operations.
•	Managed maintenance of a 230 km stretch of Makran Coastal Highway N-10 (Liari- Buzzi Top-Ormara) damaged during floods.
•	Managed demolition of Shershah Bridge Karachi in record 1 Week in coordination with technical teams opening the route for local populace
•	Supervision and management of camp/ offices temporarily established for Shershah
	Bridge Demolition
•	Developed a sewerage disposal scheme for 1800 troops, promoting proper waste management and sanitation practices.
•	Organized and led a staff of 350 employees, ensuring efficient workflow, productivity, and effective project execution.

Education

12 - 2002**Bachelor of Science: Civil Engineering** 06 - 2006National University of Science and Technology -Islamabad

Skills

· Constructability analysis

Sustainable construction

Strategic planning and

Multinational and Gulf

execution

Experience

- · Cost estimation
- · Quality control and assurance
- Team leader
- Process improvements
- Financial Management

- Preparation of Bill of Quantities
- · Contract and tender documents · Risk Management
 - Communication with different tiers
 - **Project/** Construction management
 - Negotiation

Software

Primavera P6, JIRA, ETABS, SAFE, Revit. Microsoft Office

Certifications & Licences

- WES (World Education Services) Verified Civil Engineer
- PMP®, Certified Project Management Professional
- Professional Engineer (P.E)/ Member Pakistan Engineering Council
- Member PMI
- MIE(Pak)
- ISO 45001: Occupational Health & Safety management system (Udemy)
- ISO 31000: Risk Manager Training (Udemy)
- Operational Risk Management Professional Masterclass (Udemy)
- IOSH Managing Safely
- OSHA 30 Hours
- · HABC Fire Safety At Work
- HABC Risk Assessment
- HABC First Aid At Work

Languages •

- English (Fluent)
 French (Niveau-B1)
 Urdu (Fluent)

19 N-

Syed Waqar Ali

+923024168716 | waqaraliee@gmail.com

SUMMARY

An Electrical Engineer with almost 8 years of experience in the field of Renewable Energy (Solar PV). Proven success in the aspects of the project performance; including management of the contracts, costing and interfaces with project stakeholders, as well as safety of personnel and equipment. Seeking an opportunity to lead and manage a team of engineers to design and build renewable energy systems that make a positive impact on the environment.

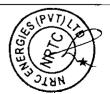
Specialties: Utility Projects Construction, Project origination, Project initiation, Project planning, Project execution and control, Construction management, Solar Asset Management, High Voltage, good understanding of Utility interfaces.

ACADEMIC CREDENTIALS

BSc Electrical Engineering | University of Engineering & Technology, Lahore (UET Lahore) | 2012 - 2016 | CGPA 3.206/4.00

Major Courses: Power System Analysis, High Voltage, Power System Protections, Renewable Energy, Power electronics.

WORK LXPERIENCE


Ministry of Defense Production (NRTC Energies (Pvt.) Ltd) | (May-2023 - Present) | Head of Department (Design)

Job Summary

Responsible for leading the solar design team & Planning, overseeing the design and engineering of solar energy systems, and ensuring the successful execution of solar projects. This role involves strategic planning, technical expertise, project management, and team leadership.

Key Performance Areas

- Lead, mentor, and manage a team of solar design engineers.
- Provide technical guidance and support to team members.
- Manage the solar design department's project portfolio.
- Collaborate with project managers to ensure seamless project execution.
- Monitor project timelines, budgets, and quality standards.
- Identify and mitigate design-related risks.
- Oversee the design and engineering of solar PV systems, including rooftop and ground-mounted installations.
- Ensure that designs meet client requirements, industry standards, and regulatory compliance.
- Optimize solar panel layouts for maximum energy generation and efficiency.
- Review and approve design drawings, calculations, and specifications.
- Interface with clients to understand project requirements and expectations.
- Address client inquiries and concerns regarding the design phase.
- Ensure all designs adhere to local, state, and national regulations and building codes.
- Obtain necessary permits and approvals for solar projects.

Prism Energy (InfraCo Asia - Singapore, PIDG, IAD) | (July-2021 ~ Present) | Manager Projects

Job Summary

Responsible for overseeing and managing all aspects of solar energy projects from conception to completion. This role involves project planning, execution, team leadership, client interaction, and ensuring projects are delivered on time, within budget, and to the highest quality standards.

Key Performance Areas

- i. Project Origination
 - Development of Project Proposals
 - Evaluation of Project Proposals
- ii. Project Initiation and Planning
 - Technical Due Diligence
 - IEE/EIA Assessment
 - Risk Assessment


iii. Project Construction and Control

- Establishment of the project team
- Coordination and management of project team
- Efficient management of resources ensuring deliverables are achieved on time.
- Support negotiations with Suppliers and Contractors
- Ensure successful completion of the execution phase, and delivery to the Operation & Maintenance division.
- Ensure accurate and continuous reporting of project progress to top management, key stakeholders and the SPV.
- Ensure effective contracts management of suppliers and service providers during execution.
- Identify contract breaches and manage project risks.
- iv. Project Closeout
 - Manage administration and close out of contracts.
 - Ensure the Sub-EPC adherence to project processes and procedures.
 - Prepare contract change notices, monitor contract performance, including the reporting and status of the Project.

Prism Energy (InfraCo Asia – Singapore, PiDG, IAD) | (July-2020 – June 2021) | Senior Design Engineer

Key Performance Areas

- Feasibility studies of projects under development.
- Energy Production Assessment (EPA) of pre-construction projects.
- Solar technology review and assessment of site suitability of solar plant equipment.
- Assessment of Balance of Plant (civil and electrical infrastructure).
- Assessment grid connection and Power Purchase Agreements (PPA).
- Due diligence activity includes data analysis, documentation review and risk analysis.
- Technical analysis of construction and operation contracts.
- Develop proposals for work, including budgets, appropriate contractual terms, and undertaking negotiations on scope and price with customers.
- Construction monitoring to assess construction progress and control the quality of the work.
- Construction contracts, project quality plans.
- Work on multiple projects, managing own time to meet deadlines.

Four Brothers Energy | (Nov-2019 – July 2021) | Senior Design Engineer

Key Performance Areas

- Experience of Large-scale systems and plant designs (up to 50 MW) on the basis of Solar PPA, Lease and EPC model.
- Conceptualization of the design and necessary engineering calculations and simulations using computer software i.e., PVsyst.
- Performing site visits and measuring sites with proper layout drawings.
- Provide accurate design, generation, and production of PV projects designs for electrical engineering aspects needed for the project.
- Perform detailed energy production modeling calculations.
- Generation of preliminary layouts on Helioscope, sketch up, Auto Cad.
- Maintain design requirements, knowledge of codes and standards, design procedures, methods, and process, improve the efficiency of project development and project selection process.
- Generation of Project Bill of Quantity for electrical, mechanical, and civil scope of works.
- Prepares product reports by collecting, analyzing, and summarizing information and trends.
- Following up with Utilities formalities and applications required for the project development.
- Tender's documentation preparations and attending meetings with project teams and follow up.

Guangdong Dynavolt Renewable Technology | (Nov-2018 - Nov 2019) | Project Engineer

Guangdong Dynavolt Renewable Technology | (Nov-2016 – Nov-2018) | Design Engineer

MAJOR PROJECTS UNDERTAKEN

A. UTILITY PROJECTS:

- 1. 168 MW Solar Power Project | July 2020 November 2020 | Vietnam.
- 2. 50 MW Solar Power Project | July 2022 March 2023 | Pakistan.
- 3. DABS 20MW On Grid Solar Solution | Dec 2018 Jan 2019 | Afghanistan
- 4. MAHAN 20MW On Grid Solar Solution | June 2015 Sep 2016 | Iran
- B. C & I PROJECTS (Power Purchase Agreements):
 - 5. 1500 kW Solar Power Project | Power Purchase Agreement (PPA) | May 2023 Present | Pakistan
 - 6. 926 kW Solar Power Project | Power Purchase Agreement (PPA) | August 2023 Present | Pakistan
 - 7. 1200 kW Solar Power Project | Power Purchase Agreement (PPA) | May 2022 September 2022 | Pakistan
 - 8. 1850 kW Solar Power Project | Power Purchase Agreement (PPA) | Nov 2021 April 2022 | Pakistan
 - 9. 2000 kW Solar Power Project | Power Purchase Agreement (PPA) | Nov 2021 April 2022 | Pakistan
 - 10. 942 kW Solar Power Project | Power Purchase Agreement (PPA) | Nov 2020 April 2021 | Pakistan
 - 11. UET 1 MW Solar Power Project | Power Purchase Agreement (PPA) | Nov 2020 April 2021 | Pakistan

C. C& I PROJECTS (EPC):

- 12. 1.5 MW Solar Power Project | EPC | May 2023 September 2023 | Pakistan.
- 13. 1 MW Solar Power Project | EPC | March 2018 September 2018 | Pakistan.
- 14. ADB PMIC Pre-Qualification Document for Solar Home Solutions | May 2019 July 2019 | Pakistan.

PROFESSIONAL & ACADEMIC ACHIEVEMENTS

- Got achievement award on management of project construction of more than 10 MW Solar projects during March 2021 April 2022.
- 3rd position in Final year project- "Remote Monitoring of Distribution Transformer with Remote Access".
- Got Merit Scholarships at University and Intermediate levels.

TECHNICAL SKILLS

ftware (Simulation/Layout/Generation Studies)

Auto-Cad

PV-syst, SAM (NREL), Helioscope, Sketchup, K2 Base, PVCad

MATLAB, Power World Simulation

Report writing Office | Microsoft word, Latex

Trainings & Courses

Courses | PMP | In Progress

Courses | project Management and Quality Control by IAD Singapore.

Training | HSES - InfraCo Asia Singapore Quality Management Certification

Training | Pakistan Solar Quality Passport – Total Energies

Courses | Online Training Webinars by PV magazine and NABCEP.

PERSONAL INFORMATION

P-Founder and Vice President of Project "SMILE"

education Ambassador at "The Citizen Foundation"

Book reading on History, PV magazine, Technology advancements globally.

REFERENCES

To be provided on demand

Sr. No.	Employee ID	Employee Name	Designation	Educational Qualification
1	100001	Jawad Anjum	CEO	MBA/ BE(CS Engineer)
2	100016	Zain ul abideen	Project Engineer	BS Electrical Engineering
3	100018	Ahmed Mujeeb	A.M Sales	BSC(Electrical)
4	100028	Adnan Raza	Technician	B.A and Electronic Diploma
5	100031	Syed Waqar Ali	Senior Manager Design	B.Sc Electrical Engineering
6	100059	Musa Ali	Site Engineer	BSC (ELECTRICAL)
7	100061	Fatima Syeda	Asst. Sales Manager	BSc(electrical)
8	100067	Israr Ahmad	Technician	dae- civil
9	100081	M. Nasir	Technician(resi)	DAE-electrical
10	100091	Farhan Ahmad	AM - Ops	BS Electrical Technology
11	100094	Jibrail Khalid	Senior Sales Manager	BSC(Electrical)
12	100099	lmran Khosa	Manager Operations-C&I	BSE-EE
13	100106	Tanzeel Ur Rehman	Site Engineer	BSC (ELECTRICAL)
14	100108	Hassan Bhatti	Business Development Off	BSC(Electrical)
15	100112	Asmar Iftikhar	Solution& Proposal Design	BSC. ENGINEER
16	100117	Rehan Mahmood Alvi	General Manager	PGD(LSCM)
17	100097	Maryam Tariq	Project Coordinator	MS Environmental Engineer
18	100121	Muhammad Iqbal	Civil Supervisor	DAE
19	100122	Muhammad Shakir	Project Engineer	BSC Electrical
20	100123	Ali Rahman	Site Engineer	DAE CIVIL
21	100124	Sibtain Naseer	Senior Manager - Projects	BE Civil Engineer
22	100126	Daniyal Khalid	Assistant Sales Manager	BS Electrical Engineering
23	100127	Muhammad Ansar	Business Development Off	PHD (Energy)
24	100128	Muhammad Umar Ro	Mnager Design	MSc (Renewable)

Introduction:

Extensive fossil fuel consumption in almost all human activities has led to some undesirable phenomena such as atmospheric and environmental pollution, which have not been experienced before in known human history. Consequently, global warming, greenhouse effect, climate change, ozone layer depletion, and acid rain terminologies started to appear in the literature frequently. Since 1970, it has been understood scientifically by experiments and researches that these phenomena are closely related to fossil fuel use because they emit greenhouse gases such as carbon dioxide (CO2) and methane (CH4), which hinder the tongwave terrestrial radiation escape into space, and, consequently, the earth troposphere becomes warmer. In order to avoid further impacts of these phenomena, the two concentrative alternatives are either to improve the fossil fuel quality with reductions in their harmful emissions into the atmosphere or, more significantly, to replace fossil fuel usage as much as possible with environmentally friendly, clean, and renewable energy sources. Among these sources, solar energy comes at the top of the list due to its abundance and more even distribution in nature than any other renewable energy type, such as wind, geothermal, hydro, wave, and tidal energies. Solar energy technologies are essential components of a sustainable energy future. Energy from fossil fuels may be inexpensive and assurances may have been given of the plentiful supplies of petroleum and other fossil fuels, but these fuels are finite in nature and a major source of greenhouse gas emissions.

Objective:

Pakistan is located in the Sunny Belt and can take advantage of its ideal situation for utilization of solar energy. The country's potential for solar generation is beyond doubt as it has high solar irradiation and enough space for installation of generation system those are ideal for PV and other solar energy applications. Villages and other areas which are away from grid or distribution system of utilities can also benefit from solar power generation which will also save the extra cost of laying the system and the losses. Every day, for example, the country receives an average of about 19 Mega Joules per square meter of solar energy Pakistan being in the Sun Belt is ideally located to take advantage of solarenergy technologies. This energy source is widely distributed and abundantly available in the country. The mean global irradiation falling on horizontal surface is about 200-250 watt per sq.m in a day, This amounts to about 2500- 3000 sun shine hours and 1.9-2.3 MWh per sq. meter in a year. It has an average daily global isolation of 19 to 20 Mi/sq. meter per day with annual mean sunshine durations 8 to 8.5 hours (6-7hrs in cold and 10-12 hrs. in hot season) and these values are among the highest in the world.

For daily global radiation up to 23MJ/m2, 24(80%) consecutive days are available in this area for solar energy. Such conditions are ideal for solar thermal applications. Pakistan receives about 15.5x1014 kwh of solar irradiance each year with most regions receiving approximately 8 to 10 sunlight hours per day. The installed capacity of solar photovoltaic power is estimated to be 1600 GW per year, providing approximately 3.5 PWh of electricity (a figure approximately 41 times that of current power generation in the country). To summarize, the sun shines for 250-300 days per years in Pakistan with average sunshine hours of 8- 10 per day. This gives huge amount of energy to be used for electricity generation by solar photovoltaic and solar thermal power plants.

Environment Assessment:

The Lahore and Okara project will be executed on within the premises of Purchaser, and the Applicant has carried out a detailed environment assessment of the site in preparation of the Solar PV Plant. The assessment of the Project has been considered for both positive and negative effects. The proposed photovoltaic Power Project has been located as per international guidelines. Adoption of green power generation with no emission and effluent discharge with have least impact on the ambient environment and on the host community.

The importance of the sustainable development concept has increased in the whole world. As a result, some new regulations enforce that all development projects should be compatible with the environmental criterions. An environmental impact assessment should be carried out to make sure that projects are compatible with the environmental criterions. Environmental Impact Assessment (EIA) can be defined as a process of environmental management, planning, and decision-making with a purpose of keeping and improving the quality of the environment. The main goal is to develop environmentally friendly industrialization. With this kind of environmentally friendly industrialization, "sustainable development" can be a possibility in the future by keeping the usage/protection balance between economic development and the environmental protection.

Every energy generation and transmission method affect the environment. Conventional signature generating options can damage air, climate, water, land & wildlife, landscape as well as raiser to be the levels of harmful radiation. PV technology is substantially safer offering a solution to heavy

environmental and social problems associated with fossil and nuclear fuels. Solar PV energy technology provides obvious environmental advantages in comparison to the conventional energy sources thus contributing to the sustainable development of human activities. Not counting the depletion of the exhausted natural resources, their main advantage is related to the reduced CO2 emissions and normally absence of any air emissions or waste products during their operations.

The use of solar power has additional positive implications such as:

- Reduction of the emissions of the greenhouse gases (mainly CO2, NOx) and prevention of toxic gas emissions (502, particulates)
- Reduction of the required transmission lines of the electricity grids.

Project Environmental Impacts & Mitigation Measure:

This Section discusses the potential environmental impacts, assesses the significance, recommends mitigation measure to minimize the adverse effect and identifies the residual impacts associated with the proposed activities of the project during the construction and operation phase of the proposed project at the proposed site and of secondary actions like potable, raw water and waste water lines. Solar energy is a lot cleaner when compared with conventional energy sources. Solar energy systems have many significant advantages, like being cheaper and not producing any pollutants during operation, and being almost an infinite energy source when compared with fossil fuels. Nevertheless, solar energy systems have some certain negative impacts on the environment just like any other energy system. Some of these impacts will be summarized in this section.

Identification of Potential Impacts:

- a) Discharge of Pollutants
- b) Visual Impacts
- c) Impact on Natural Resources
- d) Air Pollution
- e) Noise Intrusion
- f) Impact on Air
- g) Impact on Ground Water! Surface Water
- h) Impact on Solid Waste

i) Impact on Soil

j) Impact on Natural Resources

Discharge of Pollutants:

Solar cells do not emit any pollutants during their operations. But solar cell modules contain some toxic substances, and there is a potential risk of releasing these chemicals to the environment during a fire. Necessary precautions will be taken for emergency situations like fire.

Visual Impacts:

There will be some visual impacts depending on the type of the scheme and the surroundings of the solar cells. Especially for applications on the buildings, solar cells can be used as a cladding material that could be integrated into the building during the construction phase. Solar cell applications after the construction phase of the buildings might cause negative visual impacts. However, through proper planning the Applicant will minimize this impact.

Impacts on Natural Resources:

Despite being a benign energy system during operation, solar cells have some negative impacts on the environment during their production phase like many other systems. The energy needed for the production of solar energy systems is still produced in conventional methods today. Some toxic chemical substances used during the production phase are produced as a byproduct. However, the solar panels to be

utilized for this project have been manufactured in China therefore, there is no direct impact on the designated vicinity.

Air Pollution:

Solar cells do not emit any substances to the air during operation. But there could be some emissions during manufacturing and transport. The emissions associated with the transport of the modules are insignificant when compared with the emissions associated with the manufacture, Transport emissions are 0.1-1% of the manufacturing emissions.

Noise Intrusion:

Solar cells do not make a noise during operation. But during the construction phase, there will be a little noise as usual in other construction activities. However, since the solar panels to be utilized for this project have been manufactured in China, this is not a risk for the designated vicinity.

Impact on Air:

There would be no hazardous emissions at site as well as during construction phase except Motor Vehicle and Crane. Moreover, there are no objectionable odors as well as alternation of air temperature.

Impact on Ground Water/ Surface Water:

There would be no use of water during design phase except curing of civil pads during construction, which have no negative impact on environment.

Impact on Solid Waste:

It may only Create litter and trash waste which is recyclable and may be cleared from site after construction. Impact on Soil: No impacts as all installed systems are roof top.

Impact on Natural Resources:

There won't be any increase in the rate of usage of any natural resource like any minerals, additional fuel other than vehicles. But there would be increase in the amount of usage of Paper for mapping, enlisting items etc. However, paper may be recycled by throwing it in ordinary dustbin, further maximum usage of electronic system e.g., emails will be done.

Environment Assessment:

a) Almost all conventional methods of energy generation have varying degrees of adverse environmental impact. These methods have far reached detrimental effects on the climate, air, water, land and wildlife of the adjacent vicinities. However, Solar PV energy technology provides significant environmental advantages in comparison

to the conventional energy sources while contributing to the sustainable development of human activities. Besides slowing down the depletion of natural resources, the main environmental advantage is zero air emissions, waste production and eventual reduction in emissions of greenhouse gases (COx, NOx) and toxic gases (SOx).

b) Solar power plants have zero fuel requirement and hence limit the depletion of natural resources, fossil fuels. Unlike conventional thermal power plants, no water consumption is required for cooling purposes. A very optimized quantity of water is occasionally used for plant maintenance / cleaning. As stated earlier, the proposed system of 507p DC will offset approximately 607 tons of carbon dioxide annually.

Environment	Level of	Reasons	Mitigation
Parameters	Impact		Measures
Air Impact	Low	Solar Energy	No Emissions,
		Carbon Free	however, during
			construction
			adequate measures
			to limit dust
			pollution will be
			taken.
Water	Low	Plant will require a	Specialized
		very low quantity of	equipment that
		water for cleaning	conserves water will
		purpose only	be used to cleaning
			the PV modules.
Land	Low	No Impact on	The land being
		Land	allocated for this
			facility is baren.
Ecosystem	Low	No	There is no
		ecologically	significant
		sensitive area	vegetation cover
		lies with in premises	within the selected
			area, land is barren

The Applicant has carried out environment assessment of the Site for installation of solar:

Socio EcoSystem	Low 🔬	Total area identified	Not Applicable
		for said project is	
		adjacent to the plant	
	~	premises and no	
		acquisitions needed.	
		No displacement	
		will occur.	

PVsyst - Simulation report

Grid-Connected System

Project: Lahore Mes (CMH)

Variant: New simulation variant No 3D scene defined, no shadings System power: 1001 kWp Lahore MES (CMH) - Pakistan

Project: Lahore Mes (CMH)

Variant: New simulation variant

PVsyst V7.3.1 VC0, Simulation date: 08/01/24 10:37 with v7.3.1

		Project s	ummary ———		
Geographical Site Lahore MES (CMH) Pakistan		Situation Latitude Longitude Altitude Time zone	31.54 °N 74.37 °E 210 m UTC+5	Project settings Albedo	0.20
Meteo data Lahore MES (CMH) Meteonorm 8.1 (1996-	2015), Sat=100% - Sy	nthetic			
		System s	ummary —		
Grid-Connected Sy Simulation for year no		No 3D scene defin	ed, no shadings		
PV Field Orientatio Fixed plane Tilt/Azimuth	n 26 / 0 °	Near Shadings No Shadings		User's needs Unlimited load (grid)	
System information	n		Inverters		
Nb. of modules Pnom total		1726 units 1001 kWp	Nb. of units Pnom total Pnom ratio		3 units 900 kWac 1.112
		Results s	ummary — —		
Produced Energy	1201970 kWh/year	Specific production	1201 kWh/kWp/year	Perf. Ratio PR	73.94 %
		Table of c	contents		······································
Project and results sur		s, System losses			
Main results		-			
		· · · · · · · · · · · · · · · · · · ·			

PVsyst V7.3.1 VC0, Simulation date: 08/01/24 10:37 with v7.3.1

Grid-Connected System

26/0*

PV Field Orientation

Project: Lahore Mes (CMH)

Variant: New simulation variant

General parameters

No 3D scene defined, no shadings

Sheds configuration No 3D scene defined

Horizon Free Horizon

Orientation

Fixed plane

Tilt/Azimuth

Near Shadings No Shadings Models usedTranspositionPerezDiffusePerez, MeteonormCircumsolarseparate

User's needs Unlimited load (grid)

	PV Array C	Characteristics	· · · · ·
PV module		Inverter	
Manufacturer	CSI Solar	Manufacturer	Huawei Technologies
Model	CS7L-580MB-AG 1500V	Model	SUN2000-330KTL-H2
(Original PVsyst database)		(Custom parameters de	efinition)
Unit Nom. Power	580 Wp	Unit Nom. Power	300 kWac
Number of PV modules	1726 units	Number of inverters	3 units
Nominal (STC)	1001 kWp	Total power	900 kWac
Array #1 - PV Array			
Number of PV modules	868 units	Number of inverters	8 * MPPT 17% 1.3 unit
Nominal (STC)	503 kWp	Total power	400 kWac
Modules	31 Strings x 28 In series		
At operating cond. (50°C)		Operating voltage	500-1500 V
Pmpp	463 kWp	Max. power (=>30°C)	330 kWac
U mpp	854 V	Pnom ratio (DC:AC)	1.26
t mpp	542 A	No Power sharing between	MPPTs
Array #2 - Sub-array #2			
Number of PV modules	858 units	Number of inverters	10 * MPPT 17% 1.7 units
Nominal (STC)	498 kWp	Total power	500 kWac
Modules	33 Strings x 26 In series		
At operating cond. (50°C)		Operating voltage	500- 1500 V
Pmpp	457 kWp	Max. power (=>30°C)	330 kWac
b mpp	793 V	Pnom ratio (DC:AC)	1.00
Impp	577 A	No Power sharing between	MPPTs
Total PV power		Total inverter power	
Nominal (STC)	1001 kWp	Total power	900 kWac
Total	1726 modules	Number of inverters	3 units
Module area	4885 m²	Pnom ratio	1.11
		No Power sharing	

Array losses

Array Soiling Los:	5 8 5	Thermal Loss factor		Serie Diode Loss	
Loss Fraction	4.0 %	Module temperature acco	rding to irradiance	Voltage drop	0.7 V
		Uc (const)	29.0 W/m²K	Loss Fraction	0.1 % at STC
		Uv (wind)	0.0 W/m²K/m/s		
LID - Light induce	d Degradation	Module Quality Loss		Module mismatch	losses
Loss Fraction	2.0 %	Loss Fraction	-0.4 %	Loss Fraction GIES	2.0 % at MPP
					-121

Project: Lahore Mes (CMH)

Variant: New simulation variant

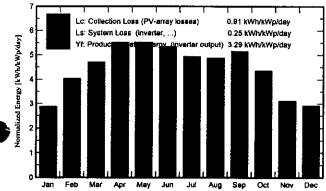
PVsyst V7.3.1 VC0, Simulation date: 08/01/24 10:37 with v7.3.1

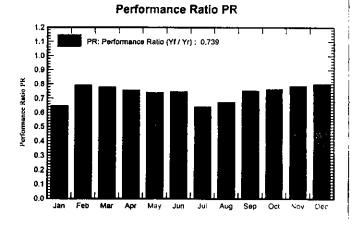
Strings Mismatch los	s	Module ave	rage degrad	ation			
Loss Fraction	0.1 %	Year no	nage degrad	10			
		Loss factor		0.4 %/year			
			e to degradati	•			
		Imp RMS disp	-	0.4 %/year			
		Vmp RMS dis		0.4 %/year			
			poraion	0.4 <i>16</i> /year			
IAM loss factor Incidence effect (IAM): Us	er defined profile						
10° 20°	30°	40°	50°	60°	70°	80°	90°
0.998 0.998	0.995	0.992	0.986	0.970	0.917	0.763	0.000
		DC					
		DC	wiring loss	ies —			·
Global wiring resistance	10 mΩ						
Loss Fraction	1.5 % at STC						
Array #1 - PV Array			An	ay #2 - Sub-ar	rav #2		
Global array res.		26 mΩ		bal array res.		23 r	nΩ
Loss Fraction		1.5 % at STC		s Fraction		1.5 %	% at STC
	·						
		S _}	ystem losse		······		
Unavailability of the s	ystem	Auxiliaries I	055				
ime fraction	3.4 %	Proportionnal	to Power	5.0 W/kW			
	12.4 days,	0.0 kW from P					
	3 periods	Night aux. con	IS.	500 W			
		AC	wiring loss	ies	· · · -		
i nv. output line up to l nverter voltage	WV transto	800 Vac tri					
Loss Fraction		0.08 % at STC					
nverter: SUN2000-330K	ri "H2	0.00 /0 8010	Inv	erter: SUN2000-:	20KTI -42		
Vire section (1 Inv.)		3 x 240 mm²				Alu 2 x 3 x 150 n	2
Vires length		20 m		e section (2 Inv.) rage wires length		Alu 2 X 3 X 150 II 0 r	
-		20 111	Ave	rage miles leligti	•	Ur	11
MV line up to injection	า						
VV Voltage		11 kV					
Nires	Alu 3	3 x 120 mm²					
_ength		100 m					
loss Fraction		0.02 % at STC					
		- AC loss	es in transf	ormers			
WV transfo							
MV transfo Medium voltage		11 kV					
VV transfo Medium voltage Fransformer from Datasi	neets	11 kV					
Medium voltage Fransformer from Datas	neets						
Medium voltage Fransformer from Datas Nominal power		1250 kVA					
Medium voltage Fransformer from Datas Nominal power ron Loss (24/24 Connexi		1250 kVA 1.00 kVA					
Medium voltage Fransformer from Datas Nominal power ron Loss (24/24 Connexi ron loss fraction		1250 kVA 1.00 kVA 0.08 % of PNom				ES	
Medium voltage Fransformer from Datas Nominal power ron Loss (24/24 Connexi ron loss fraction Copper loss		1250 kVA 1.00 kVA 0.08 % of PNom 20.00 kVA			44	ESIP	
Medium voltage Fransformer from Datas Nominal power ron Loss (24/24 Connexi ron loss fraction	on)	1250 kVA 1.00 kVA 0.08 % of PNom			ENED	ES (Q)	

PVsyst V7.3.1 VC0, Simulation date: 08/01/24 10:37 with v7.3.1

Project: Lahore Mes (CMH)

Variant: New simulation variant


Main results


System Production

Produced Energy (P50) 1201970 kWh/year Produced Energy (P90) 1103932 kWh/year Produced Energy (P99) 1024030 kWh/year Specific production (P50) Produced Energy (P90) Produced Energy (P99)

1201 kWh/kWp/year Performance Ratio PR 73.94 % 1103 kWh/kWp/year 1023 kWh/kWp/year

	GlobHor	DiffHor	T_Amb	Globinc	GlobEff	EArray	PR
	kWh/m²	kWh/m²	°C	kWh/m²	kWh/m²	kWh	ratio
January	69.8	43.8	11.97	89.2	84.1	75051	0.648
February	91.5	47.0	16.08	112.8	106.6	93022	0.793
March	130.8	77.5	22.10	145.7	137.2	117704	0.779
Aprii	160.2	87.6	27.05	165.9	156.2	130724	0 760
Мау	176.0	99.4	33.10	171.5	161.5	132088	0.742
June	169.5	102.6	33.05	160.2	150.7	124093	0.747
July	160.6	102.3	31.57	153.2	144.1	119855	0.641
August	151.4	95.3	30.79	151.6	142.7	118810	0.675
September	141.5	71.5	29.07	154.5	145.6	121017	0.755
October	115.7	69.5	26.00	135.2	127.6	107744	0.768
tovember	76.5	52.0	19.07	93.4	88.0	76644	0.788
December	68.5	41.9	13.92	90.7	85.5	75 726	0.801
Year	1511.9	890.5	24.52	1623.8	1529.9	1292479	0.739

Balances and main results

Clabilla

reguinas	
GlobHor	Global horizontal irradiation
DiffHor	Horizontal diffuse irradiation
T_Amb	Ambient Temperature
GlobInc	Global incident in coll. plane
GlobEff	Effective Global, corr. for IAM and shadings

EArray PR

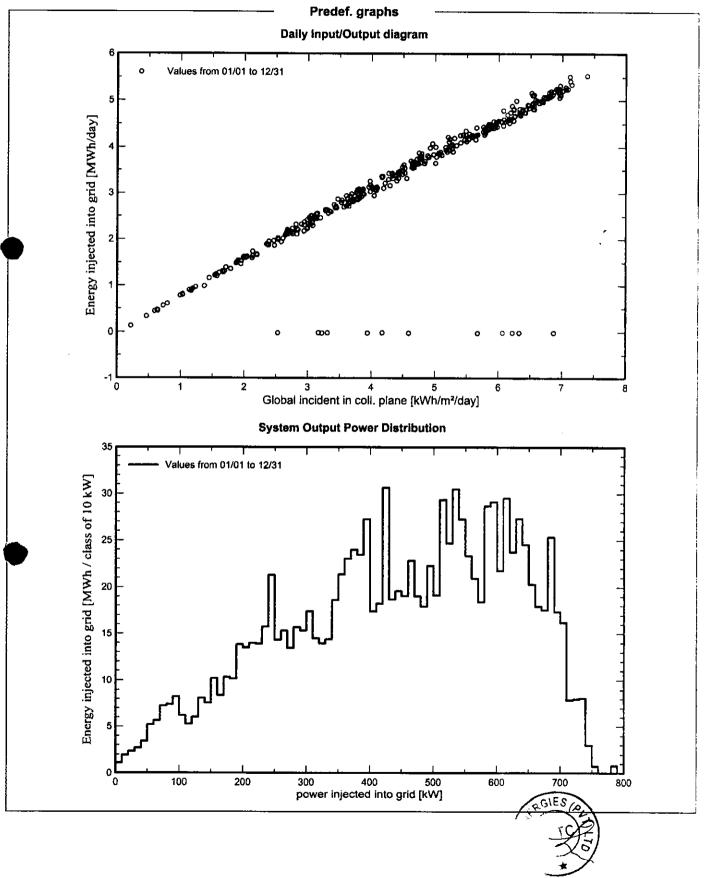
Effective energy at the output of the array Performance Ratio

PVsyst V7.3.1 VC0, Simulation date: 08/01/24 10:37 with v7.3.1

Project: Lahore Mes (CMH)

Variant: New simulation variant

	Loss dia	A.e.u.
1512 kWh/m²		Global horizontal irradiation
	+7.4%	Global incident in coll. plane
	-1.86%	IAM factor on global
	-4.00%	Soiling loss factor
1530 kWh/m² * 4885	m² coll.	Effective irradiation on collectors
efficiency at STC = 2	20.58%	PV conversion
1538279 kWł	1	Array nominal energy (at STC effic.)
	-3.80%	Module Degradation Loss (for year #10)
	9 -0.27%	PV loss due to irradiance level
	-6.53%	PV loss due to temperature
	(+0.43%	Module quality loss
	-2.00%	LID - Light induced degradation
	9-3.91%	Mismatch loss, modules and strings (including 1.8% for degradation dispersior
	-0.93%	Ohmic wiring loss
1292479 kWh		Array virtual energy at MPP
	-1.66%	Inverter Loss during operation (efficiency)
	9 0.00%	Inverter Loss over nominal Inv. power
	0.00%	Inverter Loss due to max. input current
	9 0.00%	Inverter Loss over nominal inv. voltage
	→ -0.01%	Inverter Loss due to power threshold
	9 0.00%	Inverter Loss due to voltage threshold
) -0.01%	Night consumption
1270870 kWh		Available Energy at Inverter Output
	- 0.66%	Auxiliaries (fans, other)
	9 -0.03%	AC ohmic loss
	4 -1.24%	Medium voltage transfo loss
	9 -0.01%	MV line ohmic loss
	-3.55%	System unavailability
1201970 kWh		Energy injected into grid


...

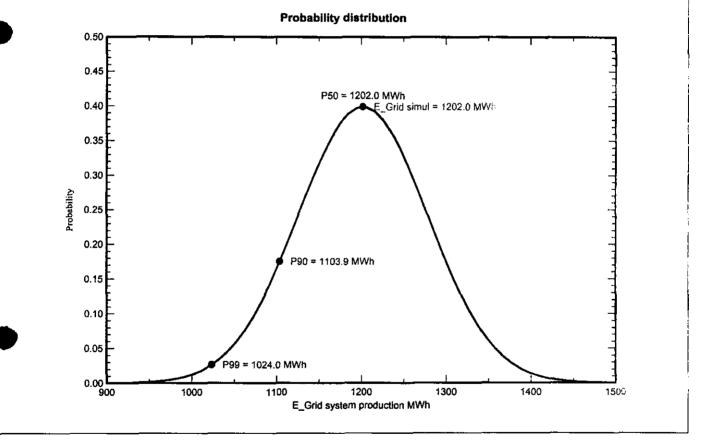
Project: Lahore Mes (CMH)

Variant: New simulation variant

PVsyst V7.3.1 VC0, Simulation date: 08/01/24 10:37 with v7.3.1

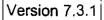
Project: Lahore Mes (CMH)

Variant: New simulation variant


PVsyst V7.3.1 VC0, Simulation date: 08/01/24 10:37 with v7.3.1

			F 30
Meteo d	ata		
Source	Meteonorm 8.1 (1996-20	015), Sat=100%	
Kind	Mc	onthly averages	
Synthetic	- Multi-year average		
Year-to-y	ear variability(Variance)	6.1 %	
Specified	1 Deviation		
Climate o	hange	0.0 %	
Global	/ariability (meteo + sys	stem)	
Variability	(Quadratic sum)	6.4 %	

P50 - P90 evaluation


Simulation and parameters uncerta	ainties
PV module modelling/parameters	1.0 %
inverter efficiency uncertainty	0.5 %
Soiling and mismatch uncertainties	1.0 %
Degradation uncertainty	1.0 %
Annual production probability	
Variability	76.5 MWh
P50	1202.0 MWh
P90	1103.9 MWh

1024.0 MWh

P99

PVsyst - Simulation report

Grid-Connected System

Project: MES Lahore (MM Line)

Variant: New simulation variant No 3D scene defined, no shadings System power: 501 kWp Lahore MES (MM Line) - Pakistan

Author

.

Project: MES Lahore (MM Line)

Variant: New simulation variant

PVsyst V7.3.1 VC0, Simulation date: 08/01/24 10:48 with v7.3.1

		—— Project s	ummary		
Geographical Site Lahore MES (MM Lin Pakistan	e)	Situation Latitude Longitude Attitude Time zone	31.51 °N 74.36 °E 207 m UTC+5	Project settings Albedo	0.20
Meteo data Lahore MES (MM Line Meteonorm 8.1 (1996-) 2015), Sat=100% - Syr	nthetic			
		System s	summary	····	
Grid-Connected Sy Simulation for year no		No 3D scene defin	ed, no shadings		
PV Field Orientatio Fixed plane Tilt/Azimuth	n 26 / 0 °	Near Shadings No Shadings		User's needs Unlimited load (grid)
System information PV Array	n		Inverters		
Nb. of modules Pnom total		864 units 501 kWp	Nb. of units Pnom total Pnom ratio		2 units 600 kWac 0.835
			umma r y		
Produced Energy	593959 kWh/year	Specific production	1185 kWh/kWp/year	Perf. Ratio PR	72.74 %
·····		Table of d	contents		
•	V Array Characteristics	s, System losses			
Loss diagram					

PVsyst V7.3.1 VC0, Simulation date: 08/01/24 10:48 with v7.3.1

Project: MES Lahore (MM Line)

Variant: New simulation variant

		Ger	eral param	eters —	· · · ·	-		
Grid-Connected Sys	tem	No 3D scei	ne defined, n	o shadings				
PV Field Orientation								
Orientation		Sheds confi	guration		Models us	sed		
Fixed plane		No 3D scene	defined		Transposit	tion	Perez	
Tilt/Azlmuth	26/0°				Diffuse	Perez, Met	eonorm	
					Circumsol	ar s	eparate	
Horizon		Near Shad	inas		User's n	ande		
Free Horizon		No Shadings	-		Unlimited I			
······································	·	– PV Arı	ray Charact	eristics -	·			
PV module			Inv	verter				
Manufacturer		CSI Solar	Ma	nufacturer		Huawei 1	Technologies	
Model	CS7L-5	580MB-AG 1500V	Mo	del		SUN2000	-330KTL-H2	
(Original PVsyst data	abase)			(Custom paramet	ters definition)			
Unit Nom. Power		580 Wp	Un	t Nom. Power		300	0 kWac	
Number of PV modules		864 units	Nu	mber of inverters		2	2 units	
Nominal (STC)		501 kWp	Tot	al power		600	0 kWac	
Modules	32 String	s x 27 in series	Ор	erating voltage		500-1500	υv	
At operating cond. (50°	C)			x. power (=>30°C))	330	0 kWac	
Ртрр		460 kWp	Pn	om ratio (DC:AC)		0.84	4	
U mpp		823 V	Po	ver sharing within	this inverter			
l mpp		559 A						
Total PV power			То	tal inverter pow	/er			
Nominal (STC)		501 kWp		al power		600) kWac	
Total		864 modules		nber of inverters	2 units		2 units	
Module area		2445 m²	Pn	om ratio		0.84	0.84	
			Array losse	s ——				
Array Soiling Losses	•	Thermal Lo	ss factor		DC wirin	g losses		
Loss Fraction	4.0 %	Module temp	erature accordi	ng to irradiance	Global arra	ay res.	24 mΩ	
		Uc (const)		29.0 W/m²K	Loss Fract	ion	1.5 % at ST	
•		Uv (wind)		0.0 W/m²K/m/s				
Serie Diode Loss		LID - Light	Induced Deg	radation	Module C	Quality Loss		
Voltage drop	0.7 V	Loss Fraction	-	2.0 %	Loss Fract	-	-0.4 %	
Loss Fraction	0.1 % at STC							
Module mismatch lo	65 8 5	Strings Mis	match loss		Module a	verage degra	adation	
Loss Fraction	2.0 % at MPP	Loss Fraction		0.1 %	Year no		10	
					Loss factor	r	0.4 %/year	
					Mismatch	due to degrad		
					Imp RMS o	dispersion	0.4 %/year	
					Vmp RMS	dispersion	0 4 %/year	
AM loss factor								
incidence effect (IAM): U	ser defined profile							
10° 20'	30°	40°	50°	60°	70°	80°	90*	
10 20							50	

0.986

0.970

0.000

Page 3/8

0.917

0.998

0.998

0.995

0.992

Variant: New simulation variant

PVsyst V7.3.1 VC0, Simulation date: 08/01/24 10:48 with v7.3.1

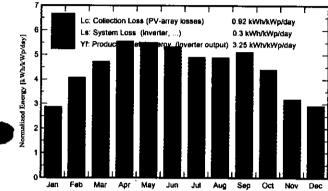
		System los	ses	
Unavailability of the	system	Auxiliaries loss		
Time fraction	3.4 %	Proportionnal to Power	5.0 W/kW	
	12.4 days,	0.0 kW from Power threst	i.	
	3 periods	Night aux. cons.	500 W	
	· · · · · · · · · · · · · · · · · · ·	AC wiring lo	\$\$ 6 \$	
inv. output line up to	MV transfo			
Inverter voltage		800 Vac tri		
Loss Fraction		0.10 % at STC		
Inverter: SUN2000-330H	(TL-H2			
Wire section (2 Inv.)	Alu 2 x 3	x 240 mm²		
Average wires length		20 m		
MV line up to Injectio	n			
MV Voltage		11 kV		
Wires	Alu 3 x 95 mm²			
Length	100 m			
Loss Fraction		0.01 % at STC		
		- AC losses in trar	sformers	······
MV transfo				
Medium voltage		11 kV		
Transformer from Datas	sheets			
Nominal power		630 kVA		
Iron Loss (24/24 Connex	ion)	on) 1.00 kVA		
Iron loss fraction		0.16 % of PNom		
Copper loss		20.00 kVA		
Copper loss fraction		3.17 % at PNom		
Coils equivalent resistance	xe 3 x	32.25 mΩ		

PVsyst V7.3.1 VC0, Simulation date: 08/01/24 10:48 with v7.3.1

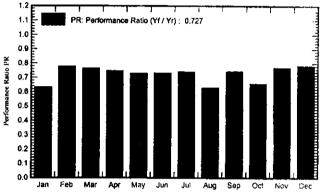
Project: MES Lahore (MM Line)

Variant: New simulation variant

Main results


System Production

Produced Energy (P50) 593959 kWh/year Produced Energy (P90) 556330 kWh/year Produced Energy (P99) 525662 kWh/year


Wh/year Speci Wh/year Produ Wh/year Produ

Specific production (P50) Produced Energy (P90) Produced Energy (P99) 1185 kWh/kWp/yearPerformance Ratio PR72.74 %1110 kWh/kWp/year1049 kWh/kWp/year

Normalized productions (per installed kWp)

Performance Ratio PR

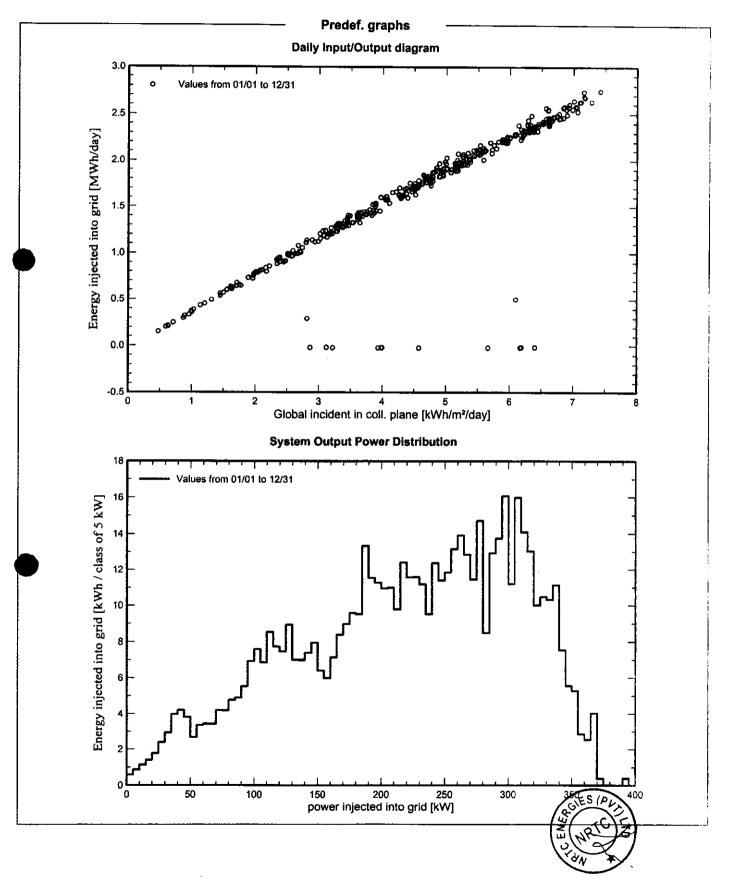
GlobHor DiffHor T_Amb GlobInc GlobEff EArray E_Grid PR kWh/m² kWh/m² °C kWh/m² kWh/m² kWh kWh ratio 69.8 43.7 January 11.88 89.2 84.1 37531 28331 0.634 February 92.3 46.7 16.09 114.0 107.7 46962 44484 0.779 March 131.6 77.3 22.10 146.8 138.3 59265 56348 0.766 161.0 April 87.3 27.05 166.8 157.0 65711 62574 0.749 Мау 176.7 96.9 170.8 32.91 160.7 65704 62568 0.731 June 169.5 100.5 32.80 160.2 150.8 61926 58956 0.735 160.5 102.3 July 31.45 152.3 143.1 595**9**4 **567**15 0.743 August 151.5 96.0 30.72 151.7 142.8 59496 48077 0.633 September 141.8 76.6 29.06 154.1 145.1 60591 57635 0.746 October 116.4 68.0 25.94 136.8 129.1 54502 45298 0.661 November 77.4 49.9 19.09 96.0 90.5 39361 37144 0.772 December 68.6 41.9 13.95 90.9 85.7 38037 35830 0.786 1517.1 887.0 Year 24.46 1629.4 1535.0 648681 593959 0.727

Balances and main results

Legends			
GlobHor	Global horizontal irradiation	EArray	Effective energy at the output of the array
DiffHor	Horizontal diffuse irradiation	E_Grid	Energy injected into grid
T_Amb	Ambient Temperature	PR	Performance Ratio
Globinc	Global incident in coll. plane		
GlobEff	Effective Global, corr. for IAM and shadings		

Variant: New simulation variant

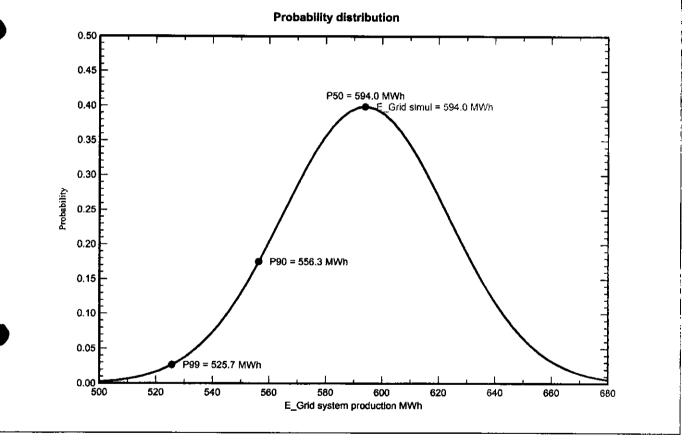
PVsyst V7.3.1 VC0, Simulation date: 08/01/24 10:48 with v7.3.1


		Loss dia	gram	
	1517 kWh/m²		Global horizontal irradiation	
		+7.4%	Global incident in coll. plane	
		-1.87%	IAM factor on global	
		-4.00%	Soiling loss factor	
	1535 kWh/m² * 2445 m²	coll.	Effective irradiation on collectors	
	efficiency at STC = 20.5	8%	PV conversion	
	772638 kWh		Array nominal energy (at STC effic.)	
]		3.80%	Module Degradation Loss (for year #10)	
		+-0.27%	PV loss due to irradiance level	
		-6.47%	PV loss due to temperature	
{		(+0.43%	Module quality loss	i
		-2.00%	LID - Light induced degradation	
		4.00%	Mismatch loss, modules and strings (including 1.9% for degradation dispersion	
		-0.98%	Ohmic wiring loss	
	648681 kWh		Array virtual energy at MPP	
		9-1.69%	Inverter Loss during operation (efficiency)	ļ
		9 0.00%	Inverter Loss over nominal inv. power	
1		> 0.00%	Inverter Loss due to max. input current	ĺ
		₩ 0.00%	Inverter Loss over nominal inv. voltage	
		9 0.00%	Inverter Loss due to power threshold	
		∀ 0.00%	Inverter Loss due to voltage threshold	
		→ -0.01%	Night consumption	
	637660 kWh		Available Energy at Inverter Output	
		-0.84%	Auxiliaries (fans, other)	
		9-0.04%	AC ohmic loss	ļ
8		-2.46%	Medium voltage transfo loss	
		9 -0.01%	MV line ohmic loss	
		9-3.64%	System unavailability	
	593959 kWh		Energy injected into grid	
)		ļ

Variant: New simulation variant

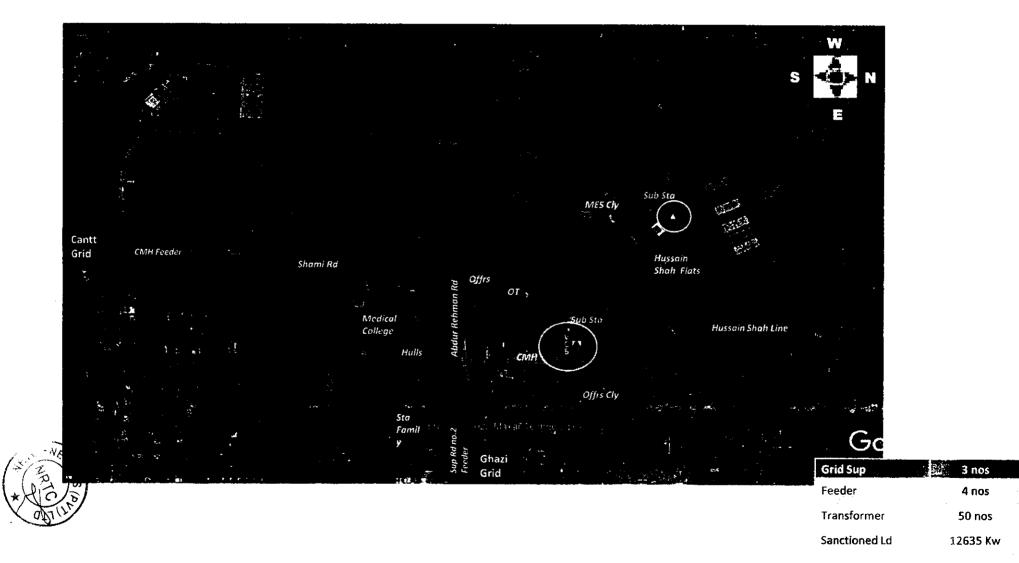
PVsyst V7.3.1 VC0, Simulation date: 08/01/24 10:48 with v7.3.1

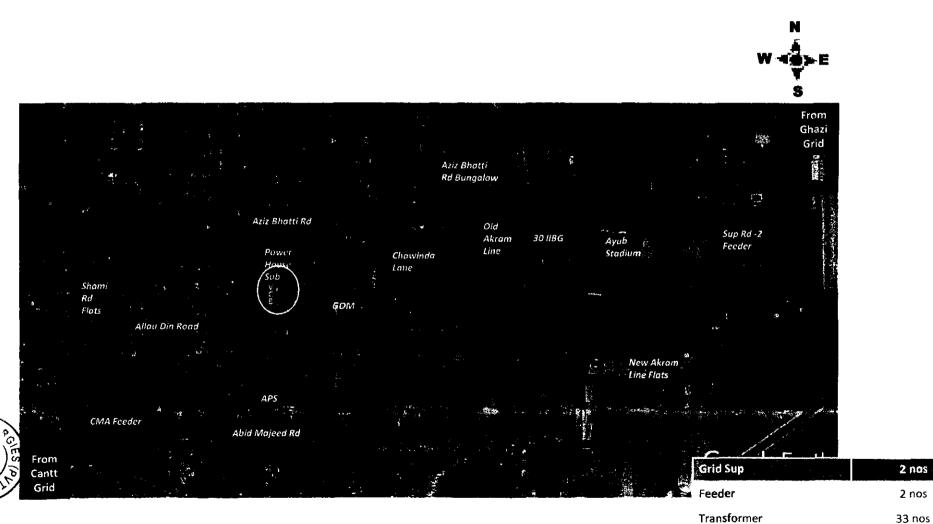
Variant: New simulation variant

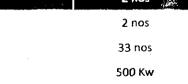

PVsyst V7.3.1 VC0, Simulation date: 08/01/24 10:48 with v7.3.1

		1.0
Meteo d	lata	
Source	Meteonorm 8.1 (1996-2015),	Sat=100%
Kind	Monthi	y averages
Synthetic	- Multi-year average	
Year-to-y	ear variability(Variance)	4.6 %
Specified	d Deviation	
Climate o	hange	0.0 %
Global v	variability (meteo + system	1)
Variability	(Quadratic sum)	4.9 %

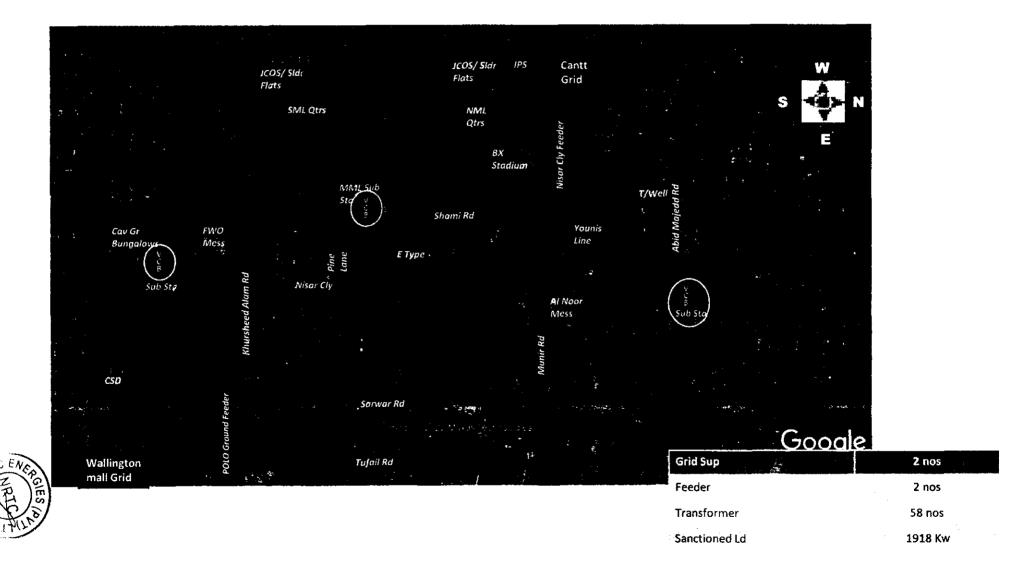
P50 - P90 evaluation


PV module modelling/parameters	1.0 %
Inverter efficiency uncertainty	0.5 %
Soiling and mismatch uncertainties	1.0 %
Degradation uncertainty	1.0 %
Annual production probability	
Variability	29.3 MWh
BFA	
P50	594.0 MWh
P50 P90	594.0 MWh 556.3 MWh

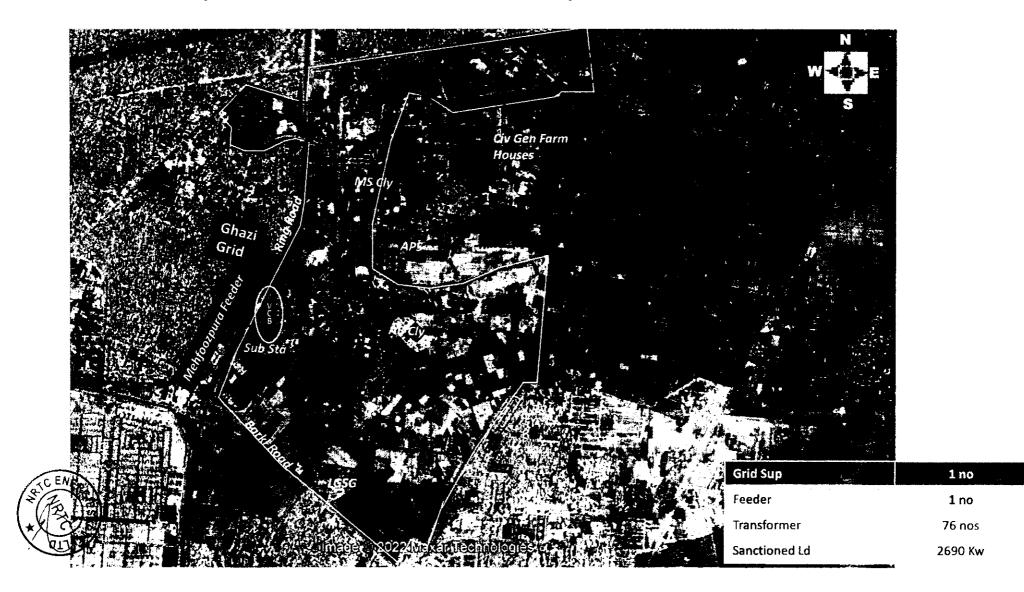

Simulation and parameters uncertainties



Proposed Solar 1 MW – CMH Feeder from Cantt Grid

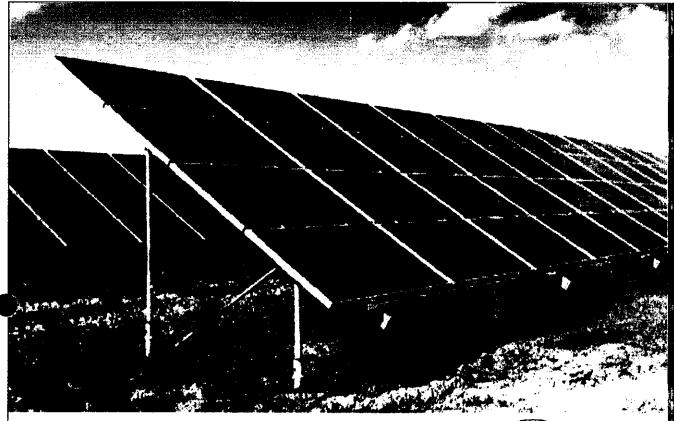


Proposed Solar 0.5 MW - Akram Line - CMA Feeder from Cantt Grid



Sanctioned Ld

Proposed Solar 0.5 MW – MM Line – Nisar Cly Feeder from Cantt Grid



Proposed Solar 0.5 MW – MSG – Mehfoozpura Feeder from Ghazi Grid

	Capacity and Degradation Factor (3.5MW)						
	Description	CMH Lahore	Okara	MM Lines	Akram Lines	MSG	
Sr. No.	Description	1MW	1MW	500kW	500kW	500kW	
1	Total Installed Capacity of the Generation Facility/Solar Power Plant! Ground Mount Solar	1,000	1,000	500	500	500	
Average Sun Hour Availability/ 2 Day (Irradiation on Inclined Surface)		5 - 5.5 Hrs	- 5.5 Hrs				
3	No. of days per year	365	365	365	365	365	
4	Annual generating capacity of Generation Facility/Solar Power Plantl Ground Mount Solar (As Per Simulation) (MW)	1,391.4	1,391.4	695.7	695.7	695.7	
5	Total expected generation of the Generation Facility/Solar Power Plant! Ground Mount Solar during the twenty-five (25) years term of this license (MW) with Degradation Factor	28,524	28,629	14,088	14,175	14,227	
7	Net Capacity Factor of Generation Facility/Solar Power Plant! Ground Mount Solar	15.86	15.90	15.76	15.80	15.82	
8	Degradation Factor after 25 years	18.00	17.70	19.00	18.50	18.20	

SYSTEM STUDY ANALYSIS OF COMBINED MILITARY HOSPITAL (CMH) 999kW SOLAR PV SYSTEM

Report

ARCO Energy **PAKISTAN**

Tel: +92-300-8827101

٠

CONTENTS

EXECUTIVE SUMMARY
1 INTRODUCTION
1.1 Project Description
1.2 Interconnection Arrangement
1.3 Objective of System Study Analysis
1.4 Study Components
2 STUDY METHODOLOGY
2.1 Study Criteria
2.2 Steady State Analysis
2.2.1 System Intact Analysis
2.2.2 Transmission Line Loading Analysis
2.2.3 Voltage Analysis
3 STEADY STATE ANALYSIS
3.1 Model Development
3.2 Power Flow Assessment Without CMH PP and with Sanctioned Load In Service 8
3.2.1 Base Year 2025: Peak Loading Summer with Sanctioned Load in Service
3.3 Power Flow Assessment with CMH PP
3.3.1 Base Year 2025: Peak Loading Summer with Sanctioned Load In Service
3.4 Conclusion
4 CONCLUSION
4.1 Steady State Assessment
LIST OF ANNEXURES

EXECUTIVE SUMMARY

This report provides the documentation of an assessment that has been performed for the interconnection of a 999kW Solar PV Power Generation project at Combined Military Hospital (CMH) distribution system at 11kV project of "Military Engineering Services" (MES). The project will be a Grid tied 999kW Solar PV based system connected with the power network of CMH. The '999kW CMH solar PV Power Generation project' is located at CMH, Cantt, Lahore, Punjab, Pakistan.

The integration of solar power generation at the CMH premises necessitates a comprehensive system study analysis to ensure optimal operation of the electrical network. CMH currently receives a single point supply from LESCO with a sanctioned load of 4.6MW. The introduction of solar power generation will influence the flow of electricity within the premises, impacting both consumption and injection dynamics.

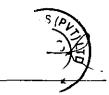
The existing setup includes transformers, switchgear, and distribution panels to distribute electricity throughout the premises. The sanctioned load of 4.6MW is the maximum load that can be drawn from LESCO's grid.

The entire solar generation within the CMH premises will be consumed internally without exporting any power to the grid. To ensure the safe and efficient integration of solar power, a load flow study is required to analyze the impact of this interconnection on the existing electrical network. This study will assist in obtaining solar generation concurrence and ensuring compliance with relevant technical and regulatory requirements.

The analyses have been carried out in following scenarios;

- Without 999kW CMH solar PV system with sanctioned load in service.
- With 999kW CMH solar PV system with sanctioned load in service.

Steady state power flow assessment has been performed using the network data of CMH. Power flow study was conducted without Solar Project with sanctioned load in service to analyze the magnitude and phase angles of bus voltages, line loadings and power flows under steady-state conditions. Power flow analysis was also conducted with sanctioned load in service after the interconnection of the Solar project with the CMH distribution system. The power flow results for the system intact shows that the power flows on all the CMH transmission and distribution line branches are within their normal



line loading limit. There is no capacity constraint in terms of power flow or voltage ratings within the study area.

This systems study is a critical step in obtaining solar generation concurrence for CMH. By ensuring the stability and reliability of the electrical system, the study facilitates seamless solar power integration while maintaining compliance with CMH and regulatory requirements.

Based on the study results, it is concluded that proposed generation interconnection assessment for 999kW CMH solar PV Power Generation project meets the NEPRA grid code planning criteria.

1 INTRODUCTION

1.1 **Project Description**

This report provides the documentation of an assessment that has been performed by ARCO Energy in response to a request made by Combined Military Hospital (CMH) ("Project Owner" or "PO") for the interconnection of a 999kWp Solar PV Power Generation project ("Project") to the CMH power System at 11kV.

The '999kW CMH solar PV Power Generation project' is located at CMH, Cantt, Lahore, Punjab, Pakistan. Figure 1.1 shows Google site map of the project.

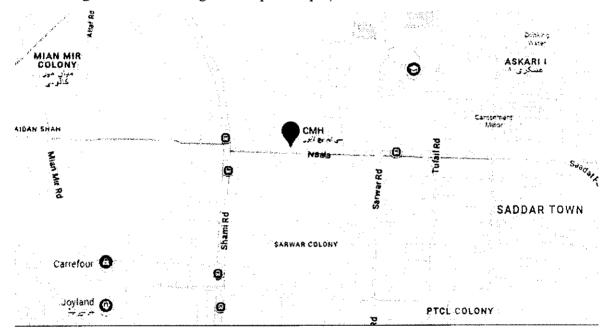


Figure 1.1: Google Site Map of the Solar PV Power Generation Project.

1.2 Interconnection Arrangement

CMH aims to integrate solar power generation into its existing electrical infrastructure. CMH currently receives a single-point power supply from LESCO with a sanctioned load of 4.6MW. The entire solar generation within the CMH premises will be consumed internally without exporting any power to the grid. The objective of the analyses is to evaluate the impact of the solar power plant on the CMH transmission and distribution system.

1.3 Objective of System Study Analysis

The primary objectives of the load flow study are:

- To evaluate the impact of solar power injection on the voltage levels and power distribution within CMH premises.
- To determine the changes in power flow patterns resulting from the integration of solar generation.
- To ensure that the existing electrical infrastructure can support the additional solar power without causing instability or operational issues.
- To verify compliance with regulatory requirements for solar power interconnection and obtain concurrence for solar generation.

1.4 Study Components

999kW solar PV system is modelled into the CMH distribution system by ARCO Energy. Technical analysis includes:

- i) Data gathering and modelling
- ii) Steady state analysis
- iii) Conclusion

The above scope of work involved in the technical analysis has been carried to demonstrate that connection assessment of this PV system meets the National Electric Power Regulatory Authority (NEPRA) distribution code.

The analyses have been carried out in following scenarios;

- Without 999kW CMH solar PV system with sanctioned load in service.
- With 999kW CMH solar PV system with sanctioned load in service.

This report documents the results of the steady state analyses. The principal objective of these analyses is to evaluate the impact of 999kW solar PV system to the distribution system of CMH and vice versa.

2 STUDY METHODOLOGY

2.1 Study Criteria

The study has been carried out based on the National Electric Power Regulatory Authority (NEPRA) Grid Code planning criteria. Key parameters and their corresponding limits have been summarized in table below.

Para	ameter	Range		
Voltage Level	Normal Condition	±5 % p.u at 132kV and below +8%,-5% p.u at 220kVand above		
	Contingency	±10 % p.u		
T/Line Loading	Normal Condition	100%		
Capacity	Contingency	100%		
	Nominal	50 Hz		
Frequency	Normal Variation	49.8 Hz - 50.2 Hz		
	Contingency Band	49.4 Hz - 50.5 Hz		
Power Factor	Lagging	0.95		
rower ractor	Leading	0.95		

2.2 Steady State Analysis

The purpose of steady-state analysis is to analyse the impact of the proposed solar power plant on distribution system facilities under steady-state conditions. It involves two distinct analyses: line loading analysis and voltage analysis. Power flow solutions using the PSS/E® program (Version 33.4) has been performed.

A "study area" was defined to represent the areas of interest within CMH.

2.2.1 System Intact Analysis

The incremental impact of the project on substations and transmission line loading under normal conditions was evaluated by comparing transmission and distribution system power flows through different scenarios for the project.

2.2.2 Transmission Line Loading Analysis

11kV and 0.4kV rated transmission and distribution facilities in the study area have been monitored for line loadings.

2.2.3 Voltage Analysis

Voltages at buses inside the study area have been monitored for possible for voltage violations in accordance with NEPRA Grid Code guidelines.

7

3 STEADY STATE ANALYSIS

3.1 Model Development

Project specific data was provided by the plant owner and it has been compiled and presented in **Annexure-A**. The steady state model of the power plant is presented in table below:

, <u>, , , , , , , , , , , , , , , , , , </u>	Generator
No. of Collector Units	1
Generation size of each collector (kVA)	841
Active Power of each collector Pgen. (kW)	799
Power Factor	0.95 lagging, 0.95 leading
Qmin, Qmax (kVAR)	- 0.2626, 0.2626
Rated Frequency	50 Hz
Generation Voltage	440V
Xsource	∞
·····	Generation Step Up Transformer
No of Transformer	1
kVA Capacity of each GSU	1250
% Reactance (X)	5 %
	СМН
Sanctioned Load (LESCO)	4600 kW

Steady state power flow assessment has been performed using the network data of CMH.

3.2 Power Flow Assessment Without CMH PP and with Sanctioned Load In Service

Power flow study without CMH solar and with sanctioned load in service, was conducted to analyze the magnitude and phase angles of bus voltages, line loadings and power flows under steady-state conditions.

The result of this power flow analysis is in Annexure-B.

3.2.1 Base Year 2025: Peak Loading Summer with Sanctioned Load in Service

Power flow analysis has been performed on the peak loading summer (June) 2025 case of CMH network. This base case included a detailed representation of the CMH transmission and distribution system in the study area.

The steady state results, depicts that the power flows on all the CMH distribution line branches are within their normal loading limits. There is no capacity constraint in terms of load flow or voltage ratings around the study area. Result of the power flow analysis is attached in Figure B-1.

3.3 Power Flow Assessment with CMH PP

Power flow study of CMH solar project was conducted with sanctioned load (in service and out or service) to determine the reliability impact of the 999kW CMH solar project on the CMH distribution system. This includes the performance of load flow analysis to identify any facility overload or voltage condition that violates the NEPRA planning criteria. Any such violation that is either directly attributable to this project or for which it will have a shared responsibility is included in this report.

The results of the project power flow analysis are plotted in Annexure-B.

3.3.1 Base Year 2025: Peak Loading Summer with Sanctioned Load In Service

A base case has been developed with sanctioned load in service at CMH solar for peak loading summer (June) 2025 that allow us to judge the impact of CMH solar project on the CMH network. Project power flow analysis has been performed after the connection of the project with the CMH distribution system. This includes the detailed representation of the power plant.

The steady state result, with sanctioned load in service at CMH solar depicts that the power flows on all the transmission line branches are within their normal loading limits. There is no capacity constraint in terms of load flow or voltage ratings around the study area. Result of the power flow analysis is attached in **Figure B-2**.

The results of the project bus voltages analysis are attached in Annexure-C.

3.4 Conclusion

Steady state power flow assessment has been performed. Power flow study was conducted without solar Project with sanctioned load in service to analyze the magnitude and phase angles of bus voltages, line loadings and power flows under steady-state conditions. Power flow analysis was also conducted

with sanctioned load in service after the interconnection of the Solar project with the CMH distribution system. The power flow results for the system intact shows that the power flows on all the CMH distribution line branches are within their normal line loading limit. There is no capacity constraint in terms of power flow or voltage ratings within the study area.

4 CONCLUSION

4.1 Steady State Assessment

Steady state power flow assessment has been performed. Power flow study was conducted without CMH solar with sanctioned load in service, to analyze the magnitude and phase angles of bus voltages, line loadings, and power flows under steady-state conditions. Power flow analysis was also conducted with CMH solar and with sanctioned load in service with CMH distribution system. Power flow results showed that the power flows on all the CMH distribution branches are within their normal loading limit. There is no capacity constraint in terms of power flow or voltage ratings within the study area.

The steady state results found no capacity constraint in terms of power flow and voltage ranges.

Hence, it is concluded that based on the study results the Interconnection Assessment for 999kW CMH solar PV system with CMH Transmission and Distribution Network, meets the NEPRA grid code planning criteria.

LIST OF ANNEXURES

Annex A: Project Specific Data.

Annex A-1: Project Site Map.

Annex A-2: Power Plant Data.

Annex B: Power Flow Steady State Analysis Result

Figure B-1: Base Year 2025 - Peak loading summer without CMH solar and Sanctioned load in service.

Figure B-2: Base Year 2025 - Peak loading summer with CMH solar and Sanctioned load in service.

Annex C: Assessment of Bus Voltages.

Annex C-1: Without CMH solar and with Sanctioned Load In Service.

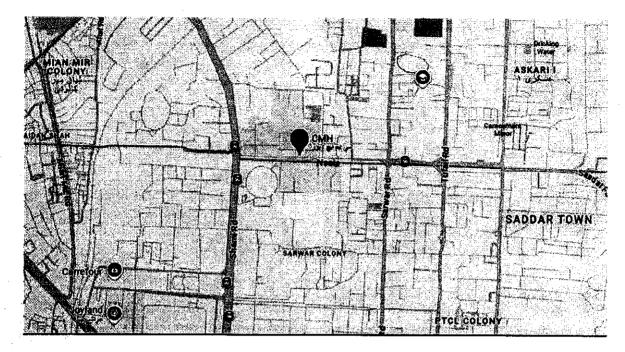
Annex C-2: With CMH solar and with Sanctioned Load In Service.

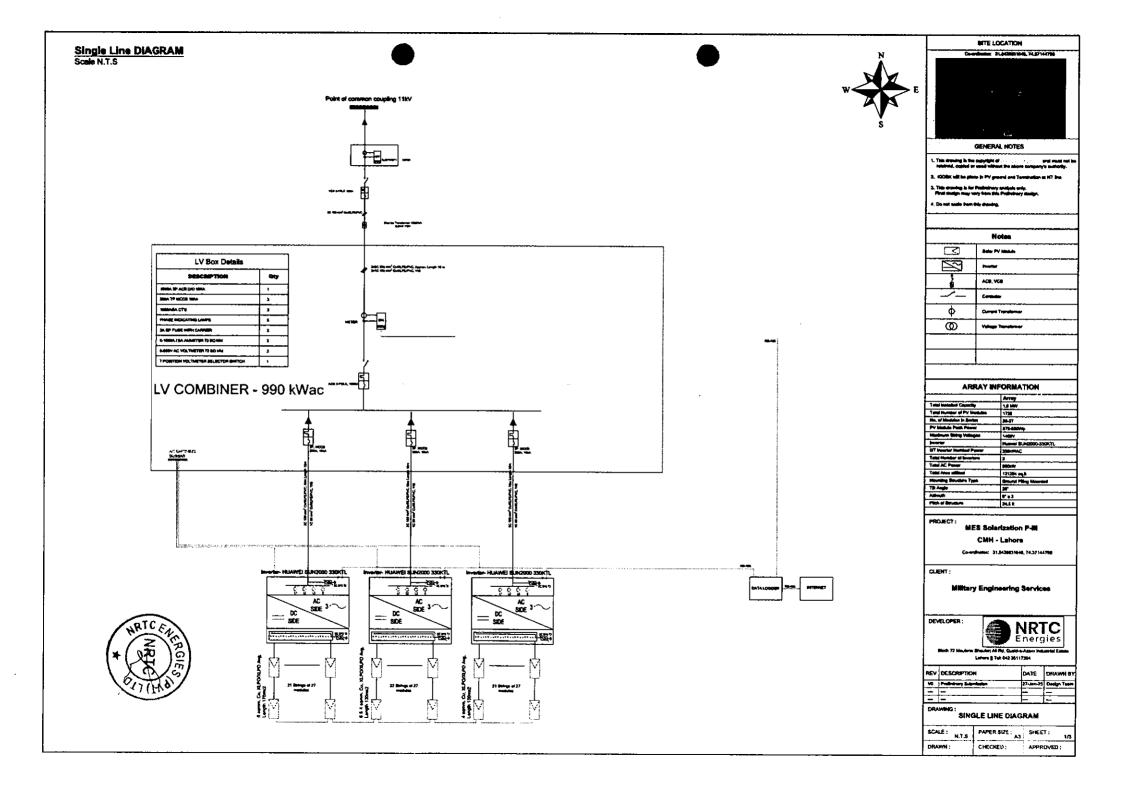
Annexure-A

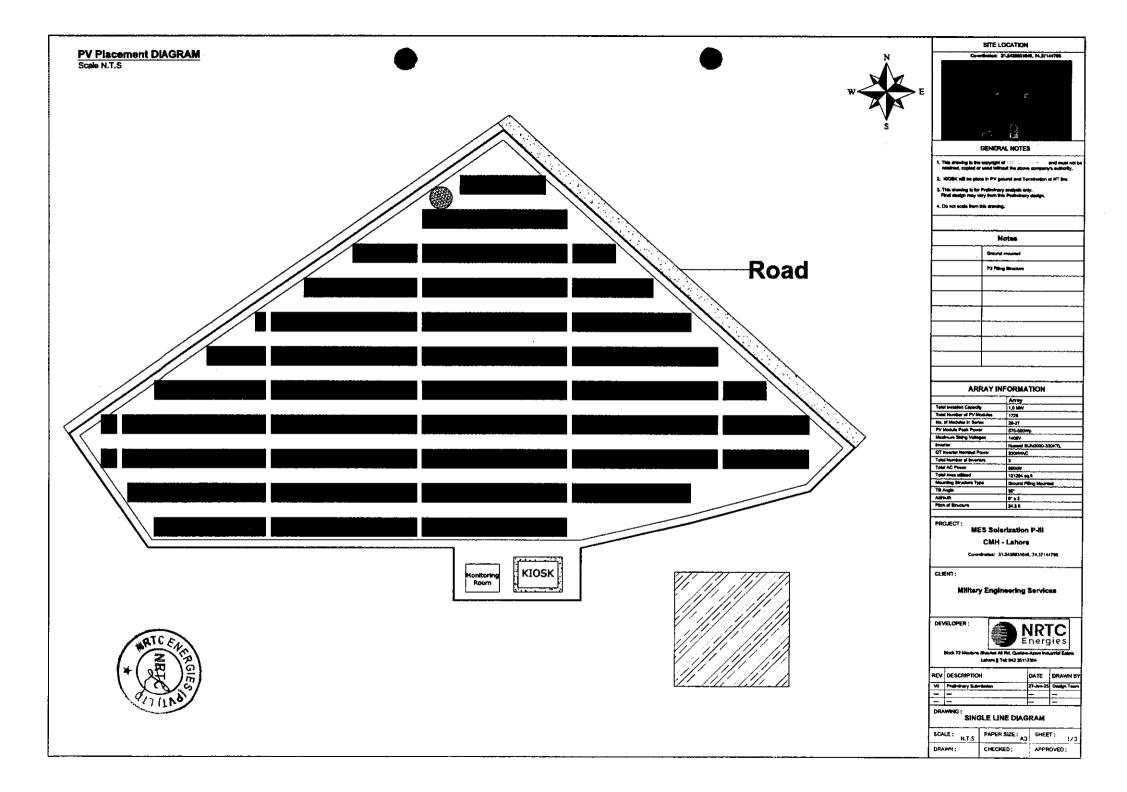
Project Specific Data

Annexure-A-1

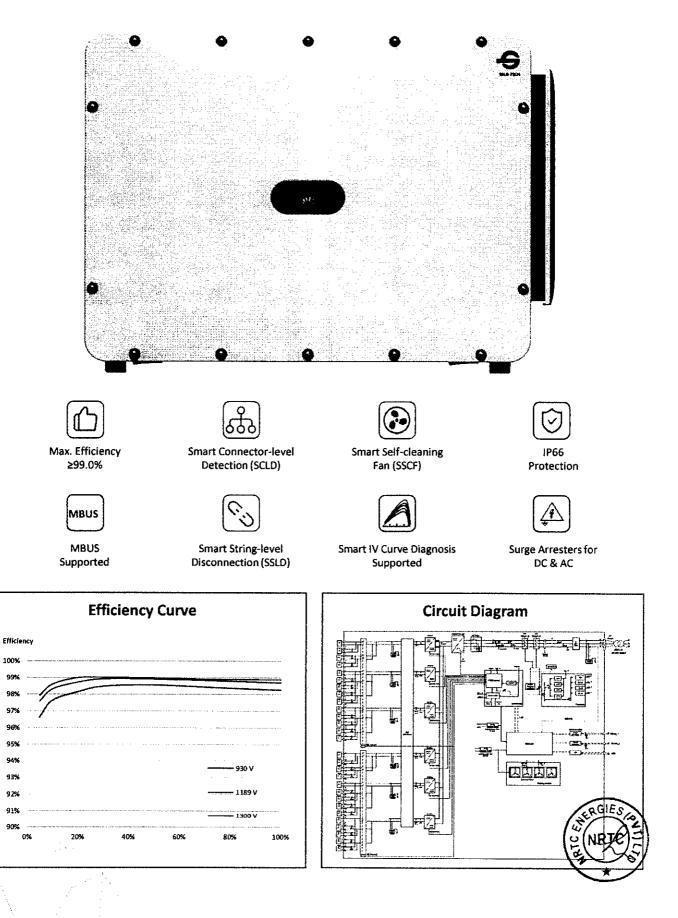
Project Site Map




Figure 1.1: Google Site Map of the Solar PV Power Generation Project.


Annexure-A-2

7


Power Plant Data

SUN2000-330KTL-H1 Smart String Inverter

SOLAR.HUAWEI.COM

sun2000-330kTL-H1 Technical Specifications

Protection Degree	IP 66
AC Cannector	Waterproof Connector + OT/DT Terminal
Relative Humidity	0~100%
Max. Operating Altitude without Derating	4,000 m (13,123 ft.)
Cooling Method	Smart Air Cooling
Operating Temperature Range	-25 ℃ ~ 60 ℃
Weight (with mounting plate)	≤112 kg
Dimensions (W x H x D)	1,048 x 732 x 395 mm
	General
R5485	Yes
MBUS	Yes
USB	Yes
Display	LED Indicators, WLAN + APP
nesidai con ciri MURILURING UNL	Yes Communication
Residual Current Monitoring Unit	Yes
AC Grounding Fault Protection	Yes
AC Surge Arrester DC Insulation Resistance Detection	Type II Vec
DC Surge Arrester	Type II
PV-array String Fault Monitoring	Yes
DC Reverse-polarity Protection	Yes
AC Overcurrent Protection	Yes
Anti-islanding Protection	Yes
Smart String-Level Disconnector(SSLD)	Yes
	Protection
Total Harmonic Distortion	<1%
Adjustable Power Factor Range	0.8 LG 0.8 LD
Max. Output Current	238.2 A
Nominal Output Current	216.6 A
Rated AC Grid Frequency	50 Hz / 60 Hz
Nominal Output Voltage	800 V, 3W + PE
Max. AC Active Power (cosφ=1)	330,000 W
Max. AC Apparent Power	330,000 VA
Nominal AC Active Power	300,000 W
	Output
Nominal Input Voltage	1,080 V
MPPT Operating Voltage Range	500 V ~ 1,500 V
Start Voltage	550 V
Max. PV Inputs per MPPT	4/5/5/4/5/5
Max. Short Circuit Current per MPPT	115 A
Max. Current per MPPT	
Number of MPP Trackers	6
Max. Input Voltage	1,500 V
	Input
European Efficiency	≥98.8%

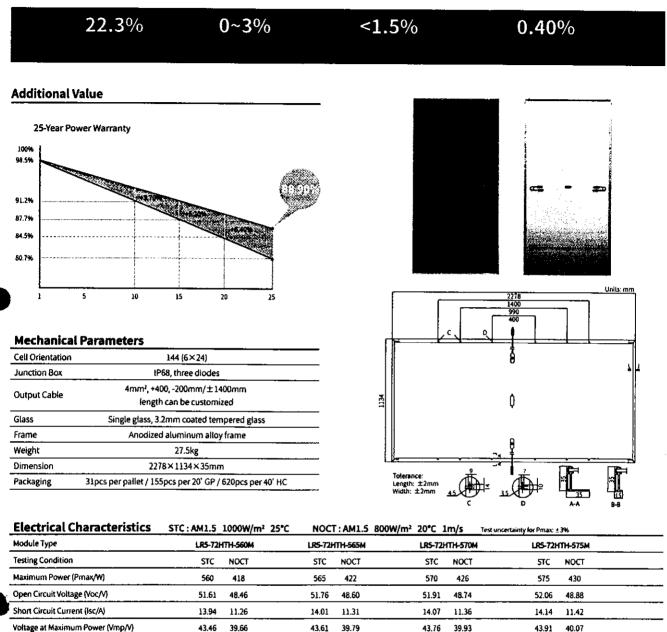
LR5-72HTH 560~575M

- Suitable for distributed projects
- Excellent outdoor power generation performance
- High module quality ensures long-term reliability

15-year Warranty for Materials and Processing

25-year Warranty for Extra Linear Power Output

Complete System and Product Certifications


IEC 61215, IEC 61730, UL 61730 ISO9001:2015: ISO Quality Management System ISO14001: 2015: ISO Environment Management System ISO45001: 2018: Occupational Health and Safety IEC62941: Guideline for module design qualification and type approval

Hi-MO 🗗

LR5-72HTH 560~575M

Operating Parameters

Current at Maximum Power (Imp/A)

Module Efficiency(%)

Operational Temperature	-40°C ~ +85°C	
Power Output Tolerance	0 ~ 3%	
Voc and Isc Tolerance	±3%	
Maximum System Voltage	DC1500V (IEC/UL)	
Maximum Series Fuse Rating	25A	
Nominal Operating Cell Temperature	45±2°C	
Protection Class	Class II	
Size Patien	UL type 1 or 2	
Fire Rating	IEC Class C	

12.89

10.55

21.7

Mechanical Loading

Front Side Maximum Static Loading	5400Pa
Rear Side Maximum Static Loading	2400Pa
Hailstone Test	25mm Hailstone at the speed of 23m/s

13.10

10.72

22,3

Temperature Ratings (STC)

13.03

10.67

22.1

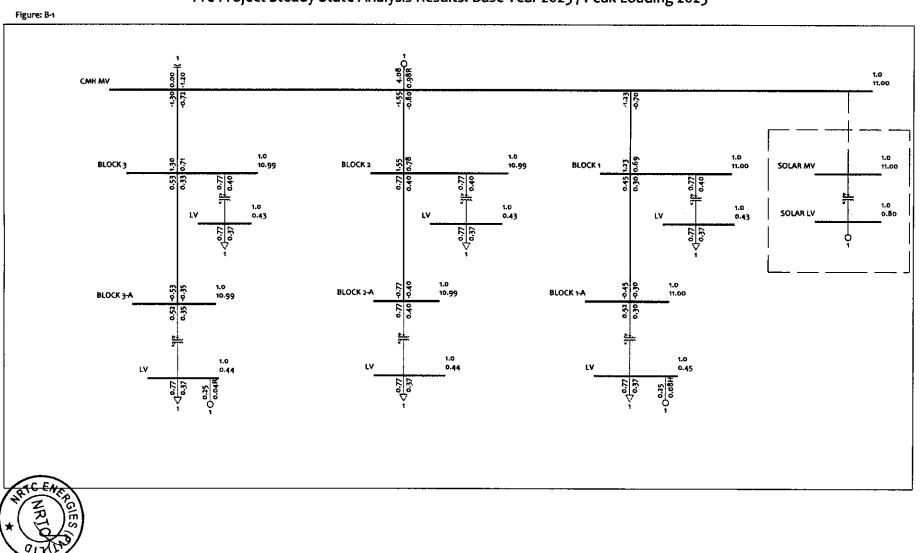
Temperature Coefficient of Isc	+0.050%/°C	
Temperature Coefficient of Voc	-0.230%/*C	
Temperature Coefficient of Pmax	-0.290%/"C	

No.8369 Shangyuan Road, Xi'an Economic And Technological Development Zone, Xi'an, Shaanxi, China. Web: www.longi.com

12.96

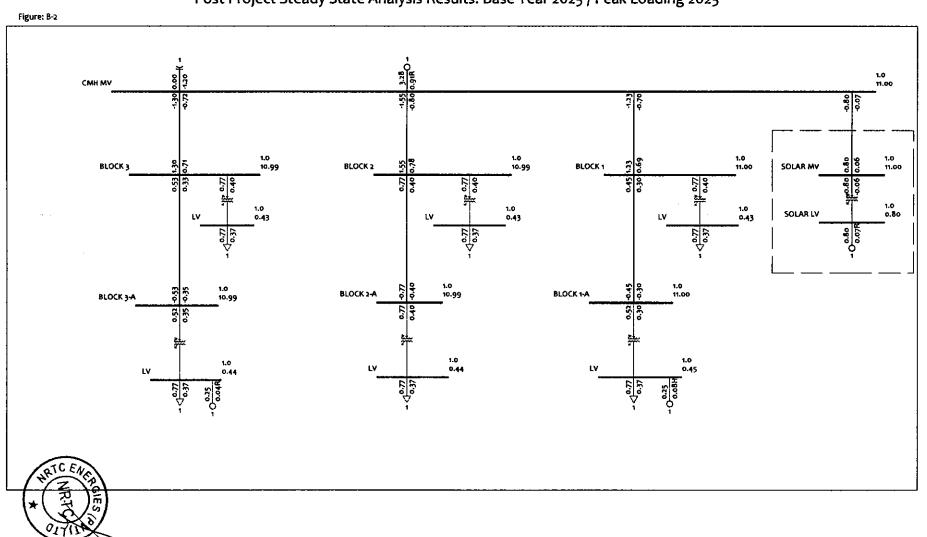
10.61

21.9


Specifications included in the parameter are subject to change without holice. LONGI reserves the rightop holic.

Annexure-B

Steady State Analysis Results



Load Flow Analysis of 999kW Solar PV System at Combined Military Hospital (CMH)

Pre Project Steady State Analysis Results: Base Year 2025 / Peak Loading 2025

Load Flow Analysis of 990kW Solar PV System at Combined Military Hospital (CMH)

Post Project Steady State Analysis Results: Base Year 2025 / Peak Loading 2025

Annexure-C

Assessment of bus voltages

Annexure-C-1

Without CMH PP and With Sanctioned Load

5

In Service

PTI INTERACTIVE POWER SYSTEM SIMULATORPSS(R)E	SAT, FEB 15 2025 17:10
CMH SOLAR PV SYSTEM	%MVA FOR TRANSFORMERS

% I FOR NON-TRANSFORMER BRANCHES

X FROM B		AREA	VOLT		GEN	LOAD	SHUNT	Х ТО ВО	is	x		
		ZONE	PU/KV	ANGLE	MW/MVAR	MW/MVAR	MW/MVAR	BUS# X NAME -	X BASKV	AREA CKT	MW	MVAR
	11.000	4	1.0000	0.0	4.1	0.0	0.0					
14 10		1	11.000		1.0R	0.0	-1.2	41001 BLOCK 1	11.000	41	1.2	0.7
								41005 BLOCK 2	11.000	4 1	1.5	0.8
17 10								41009 BLOCK 3	11.000	41	1.3	0.7
15 10 41001 BLOCK 1		4	0.9997	-0.0	0.0	0.0	0.0					
		1	10.997		0.0	0.0	0.0	4100 CMH MV	11.000	4 1	-1.2	-0.7
.4 10								41002 LV	0.4400	4 1	0.8	0.4
.000LK	54 2							41003 BLOCK 1-A	11.000	4 1	0.5	0.3
5 10 41002 LV		4	0.9875	-1.4	0.0	0.8	0.0					
. 000un		1	0.4345		0.0	0.4	0.0	41001 BLOCK 1	11.000	4 1	-0.8	-0.4
41003 BLOCK 1-1		4	0.9996	-0.0	0.0	0.0	0.0					
		1	10.995		0.0	0.0	0.0	41001 BLOCK 1	11.000	4 1	-0.5	-0.3
10								41004 LV	0.4400	4 1	0.5	0.3
41004 LV	38 2 0.4400	4	1.0160	-0.9	0.2	0.8	0.0					
.000UN		1	0.4470		0.1H	0.4	0.0	41003 BLOCK 1-A	11.000	4 1	÷0.5	-0.3
41005 BLOCK 2		4	0.9993	-0.0	0.0	0.0	0.0					
		1	10.992		0.0	0.0	0.0	4100 CMH MV	11.000	4 1	-1.5	-0.8
17 10	F A 0							41006 LV	0.4400	4 1	0.8	0.4
.000LK	54 2											

9 10							41007 BLOCK 2-A	11.000	4	1	0.8	0.4
41006 LV		4 0.9870	-1.4	0.0	0.8	0.0						
1.000UN		1 0.4343		0.0	0.4	0.0	41005 BLOCK 2	11.000	4	1	-0.8	-0.4
41007 BLOCK 2-2		4 0.9993	-0.0	0.0	0.0	0.0						
9 1.0		1 10.992		0.0	0.0	0.0	41005 BLOCK 2	11.000	4	1	-0.8	-0.4
0.988LK	54 2						41008 LV	0.4400	4	1	0.8	0.4
41008 LV	0.4400	4 0.9999	-1.4	0.0	0.8	0.0						
1.000UN	54 2	1 0.4399		0.0	0.4	0.0	41007 BLOCK 2-A	11.000	4	1	-0.8	-0.4
41009 BLOCK 3		4 0.9991	-0.0	0.0	0.0	0.0	* * * * * * * * * * * * * * * * * * * *					
15 10		1 10.990		0.0	0.0	0.0	4100 CMH MV	11.000	4	1	-1.3	-0.7
.000LK	54 2						410010 LV	0.4400	4	1	0.8	0.4
6 10							410011 BLOCK 3-A	11.000	4	1	0.5	0.3
410010 LV	0.4400	4 0.9868	-1.5	0.0	0.8	0.0						
1.000UN		1 0.4342		0.0	0.4	0.0	41009 BLOCK 3	11.000	4	1	-0.8	-0.4
410011 BLOCK 3-2		4 0.9987	-0.1	0.0	0.0	0.0 -						
 6 10		1 10.985		0.0	0.0	0.0	41009 BLOCK 3	11.000	4	1	-0.5	-0.3
	21 3					4	410012 LV	0.4400	4	1	0.5	0.3
410012 LV	0.4400	4 1.0045	-0.6	0.2	0.8	0.0 -						
1.000UN		1 0.4420		0.0R	0.4	0.0 4	410011 BLOCK 3-A	11.000	4	1	-0.5	-0.3

Annexure-C-2

筆 海绵子

With CMH PP and With Sanctioned Load

In Service

	CI	MH SO	PTI LAR PV S		CTIVE PO	WER SYSTI	em simulj	ATORPSS(R)E	%MVA F	15 2025 1 OR TRANSFOR OR NON-TRAN	MERS	BRANCHES
X FROM BUS	SX	AREA	VOLT		GEN	LOAD	SHUNT	Х ТО В	US	x		
	-X BASKV	ZONE	PU/KV	ANGLE	MW/MVAR	MW/MVAR	MW/MVAR	BUS# X NAME	X BASKV	AREA CKT	MW	MVAR
4100 CMH MV	11.000	4	1.0000	0.0	3.3	0.0	0.0	~~~~~~~~~		·		
4 10		1	11.000		0.9R	0.0	~1.2	41001 BLOCK 1	11.000	4 1	1.2	0.7
								41005 BLOCK 2	11.000	4 1	1.5	0.8
7 10								41009 BLOCK 3	11.000	4 1	1.3	0.7
5 10								410013 SOLAR MV	11.000	4 1	-0.8	-0.1
10 41001 BLOCK 1	11.000	4	0.9997	-0.0	0.0	0.0	0.0					
		1	10.997		0.0	0.0	0.0	4100 CMH MV	11.000	4 1	-1.2	-0.7
1 10			· · · ·					41002 LV	0.4400	4 1	0.8	0.4
.000LK 5	4 2							41003 BLOCK 1-A	11.000	4 1	0.5	0.3
	0.4400	4	0.9875	-1.4	0.0	0.8	0.0					
5		1	0.4345		0.0	0.4	0.0	41001 BLOCK 1	11.000	4 1	-0.8	-0.4
41003 BLOCK 1-A		4	0.9996	-0.0	0.0	0.0	0.0					
		1	10.995		0.0	0.0	0.0	41001 BLOCK 1	11.000	4 1	~0.5	-0.3
10								41004 LV	0.4400	4 1	0.5	0.3
.975LK 3 41004 LV	0.4400	4	1.0160	-0.9	0.2	0.8	0.0					
.000UN 3		1	0.4470		0.1H	0.4	0.0	41003 BLOCK 1-A	11.000	4 1	-0.5	-0.3
41005 BLOCK 2	11.000	4	0.9993	-0.0	0.0	0.0	0.0	*****				

1 10.992 0.0 0.0 0.0 4100 CMH MV 11.000 4 1 -1.5 -0.8

17 10

1.000LK 54	2						41006 LV	0.4400	4	1	0.8	0.4
9 10	2						41007 BLOCK 2-A	11.000	4	1	0.8	0.4
41006 LV (4 0.9870	-1.4	0.0	0.8	0.0						
1.000UN 54		1 0.4343		0.0	0.4	0.0	41005 BLOCK 2	11.000	4	1	-0.8	-0.4
41007 BLOCK 2-A	L1.000	4 0.9993	-0.0	0.0	0.0	0.0						
9 10	-	1 10.992		0.0	0.0	0.0	41005 BLOCK 2 41008 LV			1 1		
0.988LK 54 41008 LV 0	.4400	4 0.9999	-1.4	0.0	0.8	0.0						-
1.000UN 54		1 0.4399		0.0	0.4	0.0	41007 BLOCK 2-A	11.000	4	1	-0.8	-0.4
41009 BLOCK 3 1		4 0.9991	-0.0	0.0	0.0	0.0					<u>-</u>	
15 10	-	1 10.990		0.0	0.0	0.0	4100 CMH MV	11.000	4	1	-1.3	-0.7
1.000LK 54	2						410010 LV	0.4400	4	1	0.8	0.4
6 10	2						410011 BLOCK 3-A	11.000	4	1	0.5	0.3
410010 LV (4 0.9868	-1.5	0.0	0.8	0.0						
1.000UN 54		1 0.4342		0.0	0.4	0.0	41009 BLOCK 3	11.000	4	1	-0.8	-0.4
410011 BLOCK 3-A		4 0.9987	-0.1	0.0	0.0	0.0						
6 10	_	1 10.985		0.0	0.0	0.0	41009 BLOCK 3	11.000	4	1	-0.5	-0.3
0.988LK 21	2						410012 LV	0.4400	4	1	0.5	0.3
410012 LV (.4400	4 1.0045	-0.6	0.2	0.8	0.0						
1.000UN 21		1 0.4420		0.0R	0.4	0.0	410011 BLOCK 3-A	11.000	4	1	-0.5	-0.3
410013 SOLAR MV 1	1.000	4 1.0002	0.0	0.0	0.0	0.0						
6 10	•	1 11.002		0.0	0.0	0.0	4100 CMH MV	11.000	4	1	0.8	0.1

TC NRM C G ×

1.000UN

-0.1

0.1

1.000LK 64 1 410014 SOLAR LV 0.8000 4 1.0015 0.8 0.9 0.0 0.0 ----and the second 1 0.8012 0.1R 0.0 410013 SOLAR MV 11.000 4 1 0.8 0.0 64 1

410014 SOLAR LV 0.8000 4 1 -0.8

SYSTEM STUDY ANALYSIS OF NEW AKRAM LINE (NAL) 500kW SOLAR PV SYSTEM

Report

ARCO Energy

PAKISTAN Tel: +92-300-8827101

CONTENTS

EXECUTIVE SUMMARY	
1 INTRODUCTION	
1.1 Project Description	
1.2 Interconnection Arrangement	4
1.3 Objective of System Study Analysis	4
1.4 Study Components	4
2 STUDY METHODOLOGY	6
2.1 Study Criteria	6
2.2 Steady State Analysis	6
2.2.1 System Intact Analysis	6
2.2.2 Transmission Line Loading Analysis	6
2.2.3 Voltage Analysis	7
3 STEADY STATE ANALYSIS	
3.1 Model Development	8
3.2 Power Flow Assessment Without NAL PP and with Sanctioned Load In Service	e 8
3.2.1 Base Year 2025: Peak Loading Summer with Sanctioned Load in Service	9
3.3 Power Flow Assessment with NAL PP	9
3.3.1 Base Year 2025: Peak Loading Summer with Sanctioned Load In Service	9
3.4 Conclusion	9
4 CONCLUSION	11
4.1 Steady State Assessment	11
LIST OF ANNEXURES	

EXECUTIVE SUMMARY

This report provides the documentation of an assessment that has been performed for the interconnection of a 500kW Solar PV Power Generation project at New Akram Line (NAL) distribution system at 11kV project of "Military Engineering Services" (MES). The project will be a Grid tied 500kW Solar PV based system connected with the power network of NAL. The '500kW NAL solar PV Power Generation project' is located at G9FV+RF5, Abid Majeed Rd, Cantt, Lahore, Punjab, Pakistan.

The integration of solar power generation at the NAL premises necessitates a comprehensive system study analysis to ensure optimal operation of the electrical network. NAL currently receives a single point supply from LESCO with a sanctioned load of 0.5MW. The introduction of solar power generation will influence the flow of electricity within the premises, impacting both consumption and injection dynamics.

The existing setup includes transformers, switchgear, and distribution panels to distribute electricity throughout the premises. The sanctioned load of 0.5MW is the maximum load that can be drawn from LESCO's grid.

The entire solar generation within the NAL premises will be consumed internally without exporting any power to the grid. To ensure the safe and efficient integration of solar power, a load flow study is required to analyze the impact of this interconnection on the existing electrical network. This study will assist in obtaining solar generation concurrence and ensuring compliance with relevant technical and regulatory requirements.

The analyses have been carried out in following scenarios;

- Without 500kW NAL solar PV with sanctioned load in service.
- With 500kW NAL solar PV with sanctioned load in service.

Steady state power flow assessment has been performed using the network data of NAL. Power flow study was conducted without Solar Project with sanctioned load in service to analyze the magnitude and phase angles of bus voltages, line loadings and power flows under steady-state conditions. Power flow analysis was also conducted with sanctioned load in service after the interconnection of the Solar project with the NAL distribution system. The power flow results for the system intact shows that the

power flows on all the NAL transmission and distribution line branches are within their normal line loading limit. There is no capacity constraint in terms of power flow or voltage ratings within the study area.

This systems study is a critical step in obtaining solar generation concurrence for NAL. By ensuring the stability and reliability of the electrical system, the study facilitates seamless solar power integration while maintaining compliance with NAL and regulatory requirements.

Based on the study results, it is concluded that proposed generation interconnection assessment for 500kW NAL solar PV Power Generation project meets the NEPRA grid code planning criteria.

1 INTRODUCTION

1.1 Project Description

This report provides the documentation of an assessment that has been performed by ARCO Energy in response to a request made by New Akram Line (NAL) ("Project Owner" or "PO") for the interconnection of a 500kWp Solar PV Power Generation project ("Project") to the NAL power System at 11kV.

The '500kW NAL solar PV Power Generation project' is located at G9FV+RF5, Abid Majeed Rd, Cantt, Lahore, Punjab, Pakistan. Figure 1.1 shows Google site map of the project.

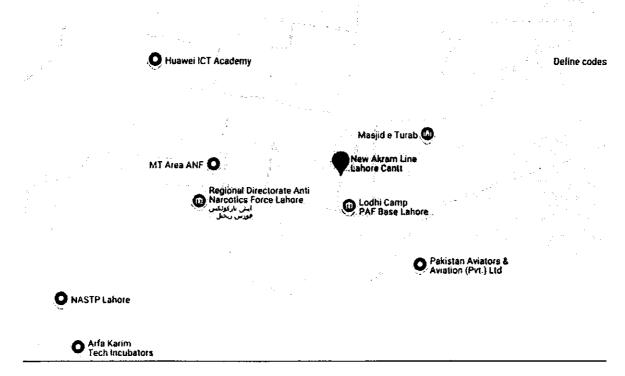


Figure 1.1: Google Site Map of the Solar PV Power Generation Project.

1.2 Interconnection Arrangement

NAL aims to integrate solar power generation into its existing electrical infrastructure. NAL currently receives a single-point power supply from LESCO with a sanctioned load of 0.5MW. The entire solar generation within the NAL premises will be consumed internally without exporting any power to the grid. The objective of the analyses is to evaluate the impact of the solar power plant on the NAL transmission and distribution system.

1.3 Objective of System Study Analysis

The primary objectives of the load flow study are:

- To evaluate the impact of solar power injection on the voltage levels and power distribution within NAL premises.
- To determine the changes in power flow patterns resulting from the integration of solar generation.
- To ensure that the existing electrical infrastructure can support the additional solar power without causing instability or operational issues.
- To verify compliance with regulatory requirements for solar power interconnection and obtain concurrence for solar generation.

1.4 Study Components

500kW solar PV system is modelled into the NAL distribution system by ARCO Energy. Technical analysis includes:

- i) Data gathering and modelling
- ii) Steady state analysis
- iii) Conclusion

The above scope of work involved in the technical analysis has been carried to demonstrate that connection assessment of this PV system meets the National Electric Power Regulatory Authority (NEPRA) distribution code.

The analyses have been carried out in following scenarios;

- Without 500kW NAL solar PV with sanctioned load in service.
- With 500kW NAL solar PV with sanctioned load in service.

This report documents the results of the steady state analyses. The principal objective of these analyses is to evaluate the impact of 500kW solar PV system to the distribution system of NAL and vice versa.

2 STUDY METHODOLOGY

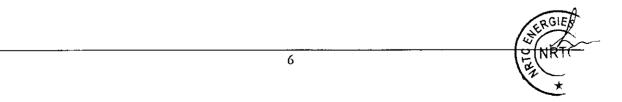
2.1 Study Criteria

The study has been carried out based on the National Electric Power Regulatory Authority (NEPRA) Grid Code planning criteria. Key parameters and their corresponding limits have been summarized in table below.

Para	ameter	Range
Voltage Level	Normal Condition	±5 % p.u at 132kV and below +8%,-5% p.u at 220kVand above
	Contingency	±10 % p.u
T/Line Loading	Normal Condition	100%
Capacity	Contingency	100%
	Nominal	50 Hz
Frequency	Normal Variation	49.8 Hz - 50.2 Hz
	Contingency Band	49.4 Hz - 50.5 Hz
Power Factor	Lagging	0.95
I OWEL PACION	Leading	0.95

2.2 Steady State Analysis

The purpose of steady-state analysis is to analyse the impact of the proposed solar power plant on distribution system facilities under steady-state conditions. It involves two distinct analyses: line loading analysis and voltage analysis. Power flow solutions using the PSS/E® program (Version 33.4) has been performed.


A "study area" was defined to represent the areas of interest within NAL.

2.2.1 System Intact Analysis

The incremental impact of the project on substations and transmission line loading under normal conditions was evaluated by comparing transmission and distribution system power flows through different scenarios for the project.

2.2.2 Transmission Line Loading Analysis

11kV and 0.4kV rated transmission and distribution facilities in the study area have been monitored for line loadings.

2.2.3 Voltage Analysis

Voltages at buses inside the study area have been monitored for possible for voltage violations in accordance with NEPRA Grid Code guidelines.

3 STEADY STATE ANALYSIS

3.1 Model Development

Project specific data was provided by the plant owner and it has been compiled and presented in **Annexure-A**. The steady state model of the power plant is presented in table below:

	Generator
No. of Collector Units	1
Generation size of each	421
collector (kVA)	421
Active Power of each	400
collector Pgen. (kW)	400
Power Factor	0.95 lagging, 0.95 leading
Qmin, Qmax (kVAR)	- 0.1315, 0.1315
Rated Frequency	50 Hz
Generation Voltage	0.8V
Xsource	∞
	Generation Step Up Transformer
No of Transformer	1
kVA Capacity of each	630
GSU	
% Reactance (X)	5 %
	New Akram Line
Sanctioned Load (LESCO)	500 kW

Steady state power flow assessment has been performed using the network data of NAL.

3.2 Power Flow Assessment Without NAL PP and with Sanctioned Load In Service

Power flow study without NAL solar and with sanctioned load in service, was conducted to analyze the magnitude and phase angles of bus voltages, line loadings and power flows under steady-state conditions.

The result of this power flow analysis is in Annexure-B.

3.2.1 Base Year 2025: Peak Loading Summer with Sanctioned Load in Service

Power flow analysis has been performed on the peak loading summer (June) 2025 case of NAL network. This base case included a detailed representation of the NAL transmission and distribution system in the study area.

The steady state results, depicts that the power flows on all the NAL distribution line branches are within their normal loading limits. There is no capacity constraint in terms of load flow or voltage ratings around the study area. Result of the power flow analysis is attached in **Figure B-1**.

3.3 Power Flow Assessment with NAL PP

Power flow study of NAL solar project was conducted with sanctioned load (in service and out of service) to determine the reliability impact of the 500kW NAL solar project on the NAL distribution system. This includes the performance of load flow analysis to identify any facility overload or voltage condition that violates the NEPRA planning criteria. Any such violation that is either directly attributable to this project or for which it will have a shared responsibility is included in this report.

The results of the project power flow analysis are plotted in Annexure-B.

3.3.1 Base Year 2025: Peak Loading Summer with Sanctioned Load In Service

A base case has been developed with sanctioned load in service at NAL solar for peak loading summer (June) 2025 that allow us to judge the impact of NAL solar project on the NAL network. Project power flow analysis has been performed after the connection of the project with the NAL distribution system. This includes the detailed representation of the power plant.

The steady state result, with sanctioned load in service at NAL solar depicts that the power flows on all the transmission line branches are within their normal loading limits. There is no capacity constraint in terms of load flow or voltage ratings around the study area.

Result of the power flow analysis is attached in Figure B-2.

The results of the project bus voltages analysis are attached in Annexure-C.

3.4 Conclusion

Steady state power flow assessment has been performed. Power flow study was conducted without solar Project with sanctioned load in service to analyze the magnitude and phase angles of bus voltages, line loadings and power flows under steady-state conditions. Power flow analysis was also conducted

with sanctioned load in service after the interconnection of the Solar project with the NAL distribution system. The power flow results for the system intact shows that the power flows on all the NAL distribution line branches are within their normal line loading limit. There is no capacity constraint in terms of power flow or voltage ratings within the study area.

Akram Line

4 CONCLUSION

4.1 Steady State Assessment

Steady state power flow assessment has been performed. Power flow study was conducted without NAL solar with sanctioned load in service, to analyze the magnitude and phase angles of bus voltages, line loadings, and power flows under steady-state conditions. Power flow analysis was also conducted with NAL solar and with sanctioned load in service with NAL distribution system. Power flow results showed that the power flows on all the NAL distribution branches are within their normal loading limit. There is no capacity constraint in terms of power flow or voltage ratings within the study area.

The steady state results found no capacity constraint in terms of power flow and voltage ranges.

Hence, it is concluded that based on the study results the Interconnection Assessment for 500kW New Akram Line solar PV system with NAL Transmission and Distribution Network, meets the NEPRA grid code planning criteria.

Akram Line

LIST OF ANNEXURES

Annex A: Project Specific Data.

Annex A-1: Project Site Map.

Annex A-2: Power Plant Data.

Annex B: Power Flow Steady State Analysis Result

Figure B-1: Base Year 2025 - Peak loading summer without NAL solar and Sanctioned load in service.

Figure B-2: Base Year 2025 - Peak loading summer with NAL solar and Sanctioned load in service.

Annex C: Assessment of Bus Voltages.

Annex C-1: Without NAL solar and with Sanctioned Load In Service.

Annex C-2: With NAL solar and with Sanctioned Load In Service.

Annexure-A

き 神道である

. . .

4

Project Specific Data

Annexure-A-1

34.1.3

تيدن الروا

anto distant

Project Site Map

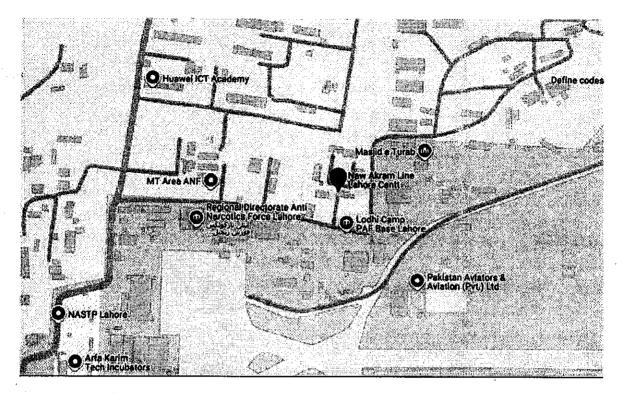
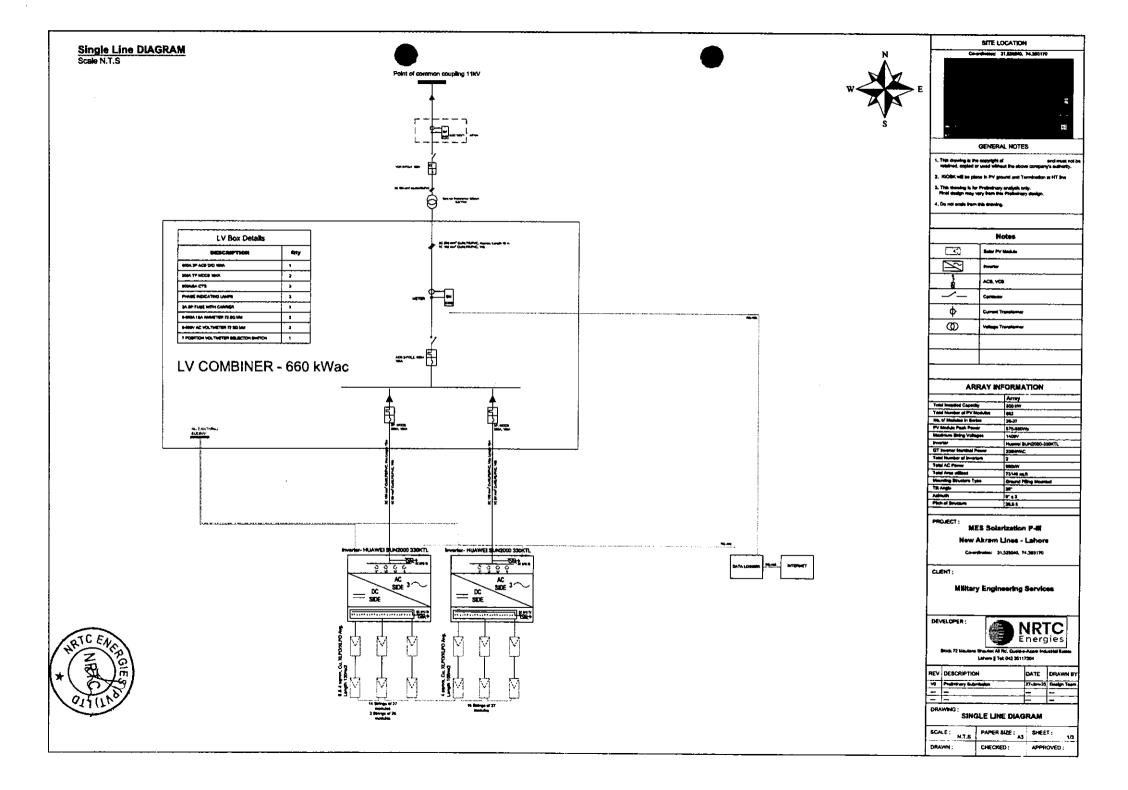
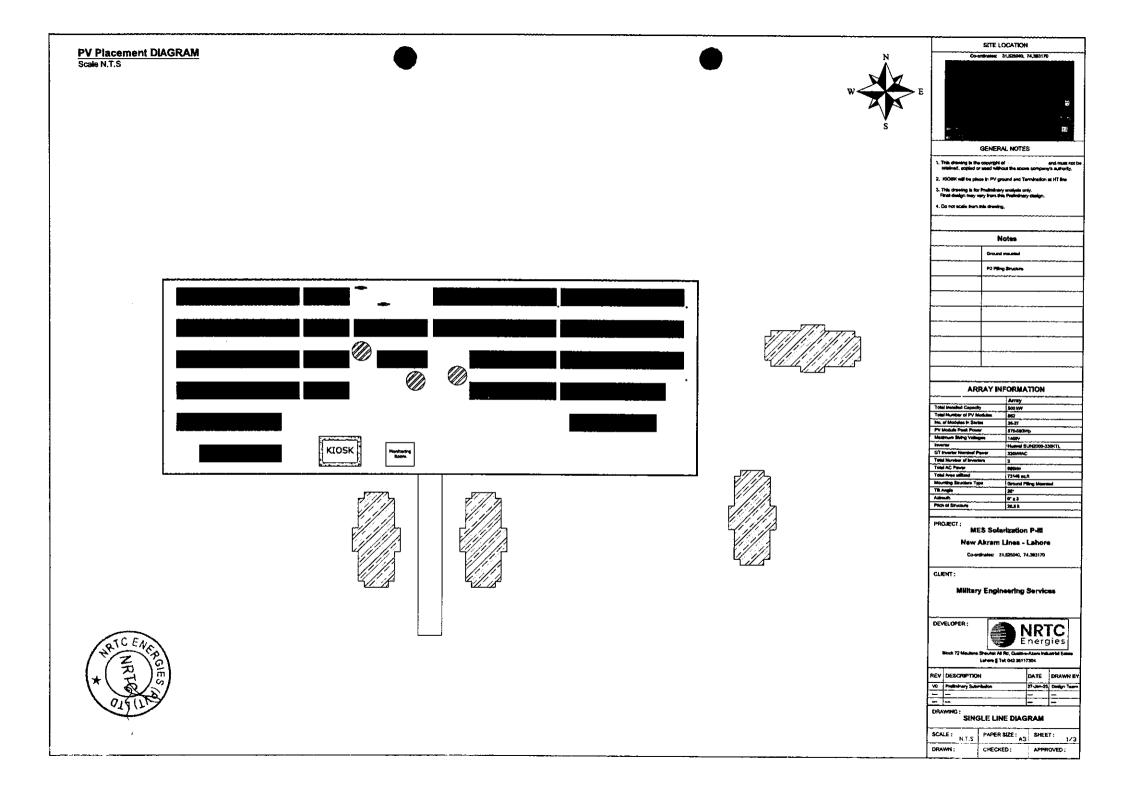
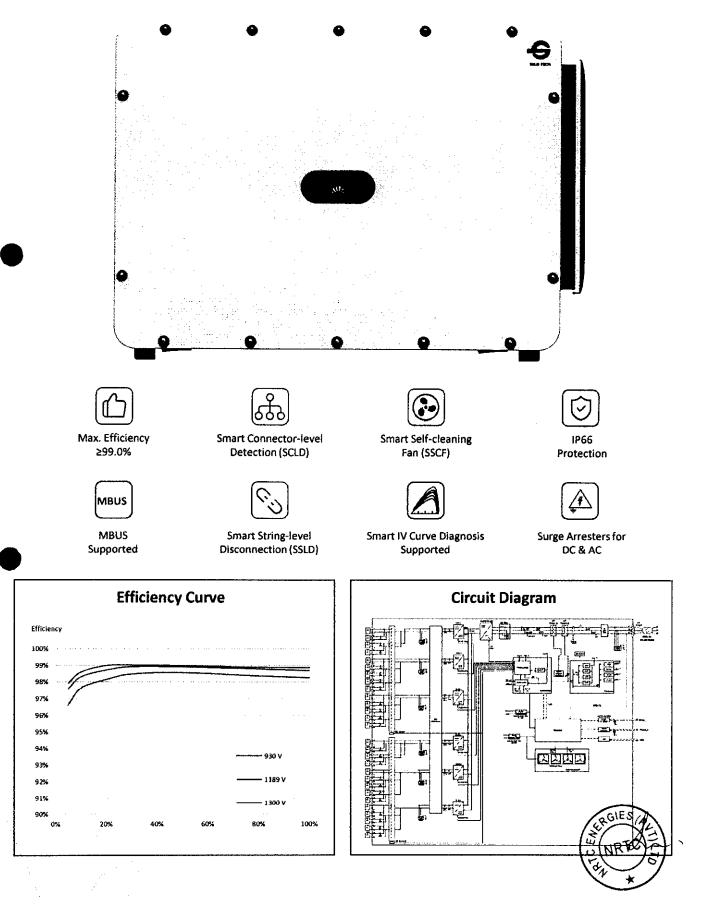


Figure 1.1: Google Site Map of the Solar PV Power Generation Project.




Annexure-A-2

×.


Power Plant Data

SUN2000-330KTL-H1 Smart String Inverter

SOLAR.HUAWEI.COM

sun2000-330кт1-н1 Technical Specifications

Max. Efficiency	≥99.0%
European Efficiency	≥98.8%
	Input
Max. Input Voltage	• 1,500 V
Number of MPP Trackers	6
Max. Current per MPPT	. 65 A
Max. Short Circult Current per MPPT	115 A
Max. PV Inputs per MPPT	4/5/5/4/5/5
Start Voltage	550 V
MPPT Operating Voltage Range	500 V ~ 1,500 V
Nominal Input Voltage	1,080 V
	Output
Nominal AC Active Power	300,000 W
Max. AC Apparent Power	330,000 VA
Max. AC Active Power (coso=1)	
Nominal Output Voltage	330,000 W
Rated AC Grid Frequency	800 V, 3W + PE
Nominal Output Current	50 Hz / 60 Hz 216.6 A
азманнын шталын илтала кенактала экс на на алаалаа алаала шалаунаа цистран на на _с акаланаа алаала.	
Max. Output Current	238.2 A
Adjustable Power Factor Range	0.8 LG 0.8 LD
Total Harmonic Distortion	<1%
	Protection
Smart String-Level Disconnector(SSLD)	Yes
Anti-Islanding Protection	Yes
AC Overcurrent Protection	Yes
DC Reverse-polarity Protection	Yes
PV-array String Fault Monitoring	Yes
DC Surge Arrester	Туре ІІ
AC Surge Arrester	Type II
DC Insulation Resistance Detection	Yes
AC Grounding Fault Protection	Yes
Residual Current Monitoring Unit	Yes
	Communication
Display	LED Indicators, WLAN + APP
JSB	Yes
MBUS	Yes
R5485	Yes
	General
Dimensions (W x H x D)	1,048 x 732 x 395 mm
Weight (with mounting plate)	≤112 kg
	-25 °C ~ 60 °C
Operating Temperature Range	
Cooling Method	Smart Air Cooling
Max. Operating Altitude without Derating	4,000 m (13,123 ft.)
	0~100%
Relative Humidity	
Relative Humidity AC Connector Protection Degree	Waterproof Connector + OT/DT Terminal IP 66

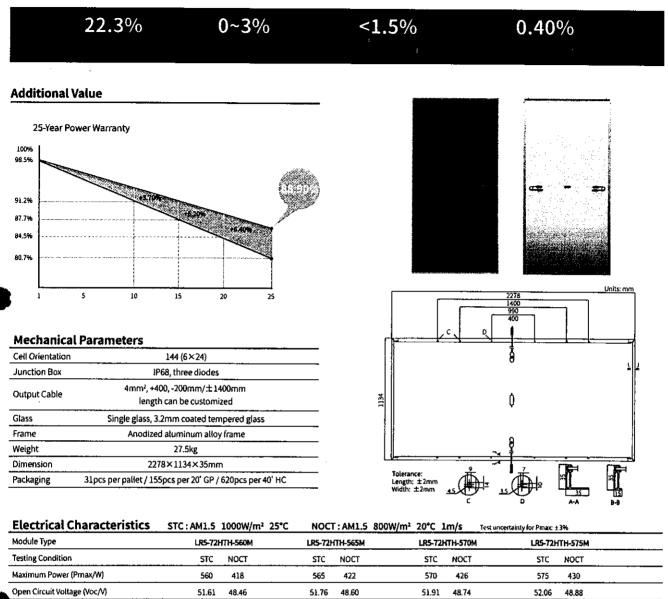
LR5-72HTH 560~575M

- Suitable for distributed projects
- Excellent outdoor power generation performance
- High module quality ensures long-term reliability

15-year Warranty for Materials and Processing

25-year Warranty for Extra Linear Power Output

Complete System and Product Certifications


IEC 61215, IEC 61730, UL 61730 ISO9001:2015: ISO Quality Management System ISO14001: 2015: ISO Environment Management System ISO45001: 2018: Occupational Health and Safety IEC62941: Guideline for module design qualification and type approval

Hi-MO

LR5-72HTH 560~575M

Voltage at Maximum Power (Vmp/V)	43.46	39.66	43.61	39.79	43.76	39.93
Current at Maximum Power (Imp/A)	12.89	10.55	12.96	10.61	13.03	10.67
Module Efficiency(%)	2	1.7	2	1.9	2	2.1

14.01

11.31

11.26

13.94

Operating Parameters

Short Circuit Current (Isc/A)

Operational Temperature	-40°C ~ +85°C	
Power Output Tolerance	0~3%	
Voc and Isc Tolerance	±3%	
Maximum System Voltage	DC1500V (IEC/UL)	
Maximum Series Fuse Rating	25A	
Nominal Operating Cell Temperature	45±2°C	
Protection Class	Class II	
Fire Detine	UL type 1 or 2	
Fire Rating	IEC Class C	

Mechanical Loading

5400Pa
2400Pa
25mm Hailstone at the speed of 23m/s

14.14

43.91

13.10

11.42

40.07

10,72

22,3

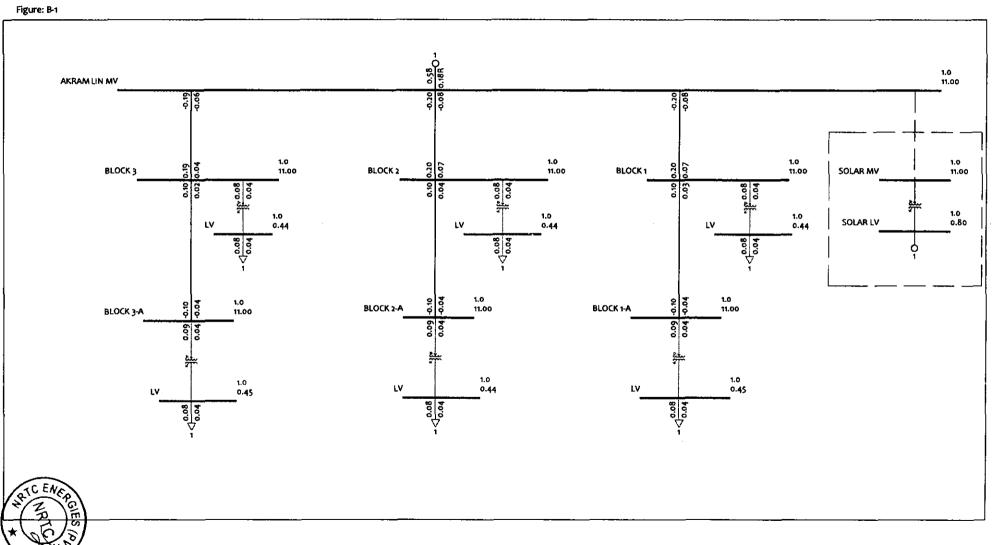
11.36

14.07

Temperature Ratings (STC)

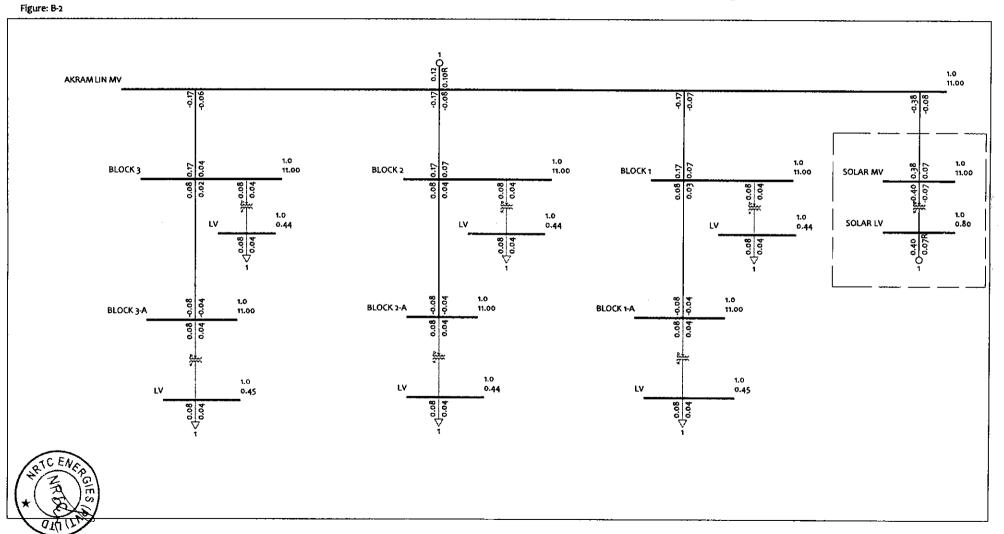
Temperature Coefficient of Isc	+0.050%/°C
Temperature Coefficient of Voc	-0.230%/°C
Temperature Coefficient of Prnax	-0.290%/°C

No.8369 Shangyuan Road, Xi'an Economic And Technological Development Zone, Xi'an, Shaanxi, China. Web: www.longi.com


Specifications include are subject to change LONGi reserves the rig interpretation. (2022)

Annexure-B

Steady State Analysis Results


Load Flow Analysis of 500kWp Solar PV System at New Akram Line (NAL)

Pre Project Steady State Analysis Results: Base Year 2025 / Peak Loading 2025

1

Load Flow Analysis of 500kWp Solar PV System at New Akram Line (NAL)

Post Project Steady State Analysis Results: Base Year 2025 / Peak Loading 2025

1

Annexure-C

Assessment of bus voltages

Annexure-C-1

Without NAL PP and With Sanctioned Load

In Service

PTI INTERACTIVE POWER SYSTEM SIMULATOR--PSS(R)E SAT, FEB 15 2025 17:14 AKRAM LINE SOLAR PV SYSTEM %MVA FOR TRANSFORMERS

% I FOR NON-TRANSFORMER BRANCHES

X FROM BUS - TRANSFORMER RATI		AREA	VOLT		GEN	LOAD	SHUNT	XX
	BASKV	ZONE	PU/KV	ANGLE	MW/MVAR	MW/MVAR	MW/MVAR	BUS# X NAME X BASKV AREA CKT MW MVAR
4100 AKRAM LIN MV		4	1.0000	0.0	0.6	0.0	0.0	
2 10	-	1	11.000		0.2R	0.0	0.0	41001 BLOCK 1 11.000 4 1 0.2 0.1
2 10								41005 BLOCK 2 11.000 4 1 0.2 0.1
2 10								41009 BLOCK 3 11.000 4 1 0.2 0.0
41001 BLOCK 1		4	1.0000	-0.0	0.0	0.0	0.0	
2 10		1	11.000		0.0	0.0	0.0	4100 AKRAM LIN MV11.000 4 1 -0.2 -0.1
1.000LK 6	2							41002 LV 0.4400 4 1 0.1 0.0
1 10	-							41003 BLOCK 1-A 11.000 4 1 0.1 0.0
41002 LV		4	0.9987	-0.2	0.0	0.1	0.0	
1.000UN 6	2	1	0.4394		0.0	0.0	0.0	41001 BLOCK 1 11.000 4 1 -0.1 -0.0
41003 BLOCK 1-A		4	0.9999	-0.0	0.0	0.0	0.0	
1 10		1	10.999		0.0	0.0	0.0	41001 BLOCK 1 11.000 4 1 -0.1 -0.0
0.975LK 6 41004 LV		,	1.0243	-0.2	0.0	0.1	0.0	41004 LV 0.4400 4 1 0.1 0.0
1.000UN 6			0.4507	-0.2	0.0	0.0		41003 BLOCK 1-A 11.000 4 1 -0.1 -0.0
41005 BLOCK 2	11.000	4	0.9999	-0.0	0.0	0.0	0.0	
	-	1	10.999		0.0	0.0	0.0	4100 AKRAM LIN MV11.000 4 1 -0.2 -0.1
2 10 1.000LK 6	2							41006 LV 0.4400 4 1 0.1 0.0

HRTC LARRENES

1 10						41007 BLOCK 2-A 11.000 4 1 0.1 0.0
41006 LV		4 0.9986	-0.2	0.0	0.1	0.0
1.0000 אוו		1 0.4394		0.0	0.0	0.0 41005 BLOCK 2 11.000 4 1 -0.1 -0.0
41007 BLOCK 2-A		4 0.9999	-0.0	0.0	0.0	0.0
1 10	ier fait den see	1 10.999		0.0	0.0	0.0 41005 BLOCK 2 11.000 4 1 -0.1 -0.0
0.988LK	6 2					41008 LV 0.4400 4 1 0.1 0.0
41008 LV	0.4400	4 1.0113	-0.2	0.0	0.1	0.0
1.000UN		1 0.4450		0.0	0.0	0.0 41007 BLOCK 2-A 11.000 4 1 -0.1 -0.0
41009 BLOCK 3		4 0.9999	-0.0	0.0	0.0	0.0
2 10		1 10.999		0.0	0.0	0.0 4100 AKRAM LIN MV11.000 4 1 -0.2 -0.1
	6 2					410010 LV 0.4400 4 1 0.1 0.0
	0 2					410011 BLOCK 3-A 11.000 4 1 0.1 0.0
	0.4400	4 0.9986	-0.2	0.0	0.1	0.0
1.000UN		1 0.4394		0.0	0.0	0.0 41009 BLOCK 3 11.000 4 1 -0.1 -0.0
410011 BLOCK 3-A	11.000	4 0.9999	-0.0	0.0	0.0	0.0
1 10		1 10.998		0.0	0.0	0.0 41009 BLOCK 3 11.000 4 1 -0.1 -0.0
	.					410012 LV 0.4400 4 1 0.1 0.0
410012 LV	0.4400	4 1.0117	-0.1	0.0	0.1	0.0
1.000UN	3 3	1 0.4451		0.0	0.0	0.0 410011 BLOCK 3-A 11.000 4 1 -0.1 -0.0

Annexure-C-2

With NAL PP and With Sanctioned Load

In Service

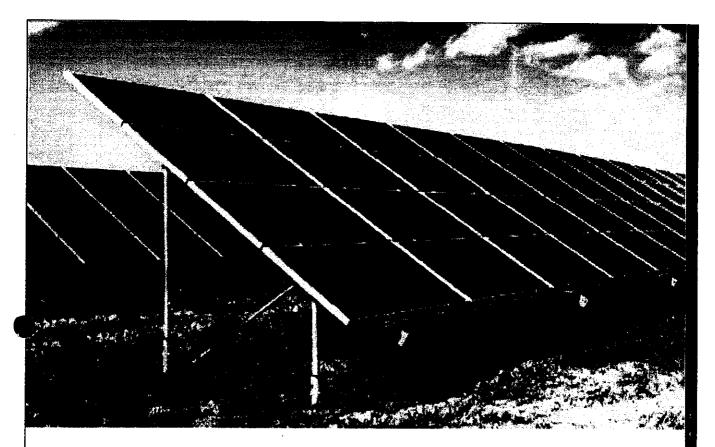
PTI INTERACTIVE POWER SYSTEM SIMULATOR--PSS(R)E SAT, FEB 15 2025 17:15 AKRAM LINE SOLAR PV SYSTEM **MVA FOR TRANSFORMERS** % I FOR NON-TRANSFORMER BRANCHES X----- FROM BUS ----- X AREA VOLT GEN LOAD SHUNT X----- TO BUS -----X TRANSFORMER RATING BUS# X-- NAME -- X BASKV ZONE PU/KV ANGLE MW/MVAR MW/MVAR MW/MVAR BUS# X-- NAME -- X BASKV AREA CKT MW MVAR RATIO ANGLE % SET A 4100 AKRAM LIN MV11.000 4 1.0000 0.0 0.1 0.0 0.0 ------0.1R 1 11.000 0.0 0.0 41001 BLOCK 1 11.000 4 1 0.2 0.1 2 10 41005 BLOCK 2 11.000 4 1 0.2 0.1 2 10 41009 BLOCK 3 11.000 4 1 0.2 0.0 2 10 410013 SOLAR MV 11,000 4 1 -0.4 -0.1 4 10 41001 BLOCK 1 11.000 4 1.0000 -0.0 0.0 0.0 ------1 11.000 0.0 0.0 0.0 4100 AKRAM LIN MV11.000 4 1 -0.2 -0.1 2 10 41002 LV 0.4400 4 1 0.1 0.0 6 2 1.000LK 41003 BLOCK 1-A 11.000 4 1 0.1 0.0 1 10 0.4400 4 0.9987 -0.2 41002 LV 0.0 0.1 0.0 -----1 0.4394 0.0 0.0 41001 BLOCK 1 11.000 4 1 -0.1 -0.0 0.0 1.000UN 62 41003 BLOCK 1-A 11.000 4 0.9999 -0.0 0.0 0.0 ----1 10.999 0.0 0.0 0.0 41001 BLOCK 1 11.000 4 1 -0.1 -0.0 1 10 41004 LV 0.4400 4 1 0.1 0.0 0.975LK 2 41004 LV 0.4400 4 1.0243 -0.1 0.0 0.1 0.0 -----1 0.4507 0.0 0.0 0.0 41003 BLOCK 1-A 11.000 4 1 -0.1 -0.0 62 1.000UN 41005 BLOCK 2 11.000 4 0.9999 -0.0 0.0 0.0

0.0

0.0 4100 AKRAM LIN MV11.000 4 1 -0.2 -0.1

2 LUNERGIERO

1 10.999


0.0

		-										
1.000LK	62					4	41006 LV	0.4400	4	1	0.1	0.0
1 10						4	41007 BLOCK 2-A	11.000	4	1	0.1	0.0
41006 LV	0.4400	4 0.9987	-0.2	0.0	0.1	0.0						
1.000UN	62	1 0.4394		0.0	0.0	0.0 4	41005 BLOCK 2	11.000	4	1	-0.1	-0.0
41007 BLOCK 2-		4 0.9999	-0.0	0.0	0.0	0.0						
1 10		1 10.999		0.0	0.0		41005 BLOCK 2	11.000	4	1	-0.1	-0.0
	62					4	41008 LV	0.4400	4	1	0.1	0.0
41008 LV	0.4400	4 1.0113	-0.2	0.0	0.1	0.0						
1.000UN	62	1 0.4450		0.0	0.0	0.0 4	41007 BLOCK 2-A	11.000	4	1	-0.1	-0.0
41009 BLOCK 3		4 0.9999	-0.0	0.0	0.0	0.0						
2 10		1 10.999		0.0	0.0		4100 AKRAM LIN M		-	1		-0.1
1.000LK	62					41	10010 LV	0.4400	4	1	0.1	0.0
1 10 410010 LV	0.4400	4 0.9986	-0.2	0.0	0.1		10011 BLOCK 3-A			1	• •	
1.000UN		1 0.4394		0.0	0.0	0.0 4	11009 BLOCK 3	11.000	4	1	-0.1	-0.0
410011 BLOCK 3-		4 0.9999	-0.0	0.0	0.0	0.0						
1 10		1 10.998		0.0	0.0	0.0 4	1009 BLOCK 3	11.000	4	1	-0.1	-0.0
0.988LK	3 3					41	10012 LV	0.4400	4	1	0.1	0.0
	0.4400	4 1.0117	-0.1	0.0	0.1	0.0						
1.000UN		1 0.4452		0.0	0.0	0.0 41	10011 BLOCK 3-A	11.000	4	1	-0.1	-0.0
410013 SOLAR MV		4 1.0001	0.0	0.0	0.0	0.0						
C LIFER 10		1 11.001		0.0	0.0	0.0	4100 AKRAM LIN M	W11.000	4	1	0.4	0.1

.

1.000LK 64 1 410014 SOLAR LV 0.8000	4 1.0015 0.5	0.4	0.0	410014 SOLAR LV	0.8000	4 1	-0.4	-0.1 . .
 1.000UN 64 1	1 0.8012	0.1R	0.0			4 1	0.4	0.1

THE NRIGHTS

SYSTEM STUDY ANALYSIS OF MIAN MIR LINE (MML) 500kW SOLAR PV SYSTEM

Report

ARCO Energy

PAKISTAN Tel: +92-300-8827101

CONTENTS

EXECUTIVE SUMMARY
1 INTRODUCTION
1.1 Project Description
1.2 Interconnection Arrangement
1.3 Objective of System Study Analysis
1.4 Study Components
2 STUDY METHODOLOGY
2.1 Study Criteria
2.2 Steady State Analysis
2.2.1 System Intact Analysis
2.2.2 Transmission Line Loading Analysis
2.2.3 Voltage Analysis
3 STEADY STATE ANALYSIS
3.1 Model Development
3.2 Power Flow Assessment Without MML PP and with Sanctioned Load In Service 8
3.2.1 Base Year 2025: Peak Loading Summer with Sanctioned Load in Service
3.3 Power Flow Assessment with MML PP
3.3.1 Base Year 2025: Peak Loading Summer with Sanctioned Load In Service
3.4 Conclusion
4 CONCLUSION
4.1 Steady State Assessment
LIST OF ANNEXURES

EXECUTIVE SUMMARY

This report provides the documentation of an assessment that has been performed for the interconnection of a 500kW Solar PV Power Generation project at Mian Mir Line (MML) distribution system at 11kV project of "Military Engineering Services" (MES). The project will be a Grid tied 500kW Solar PV based system connected with the power network of MML. The '500kW MML solar PV Power Generation project' is located at Ground of 17 NLI / HQ 106 Bde North Mian Mir Line, Shami Rd, Cantt, Lahore, Pakistan.

The integration of solar power generation at the MML premises necessitates a comprehensive system study analysis to ensure optimal operation of the electrical network. MML currently receives a single point supply from LESCO with a sanctioned load of 1.918MW. The introduction of solar power generation will influence the flow of electricity within the premises, impacting both consumption and injection dynamics.

The existing setup includes transformers, switchgear, and distribution panels to distribute electricity throughout the premises. The sanctioned load of 1.918MW is the maximum load that can be drawn from LESCO's grid.

The entire solar generation within the MML premises will be consumed internally without exporting any power to the grid. To ensure the safe and efficient integration of solar power, a load flow study is required to analyze the impact of this interconnection on the existing electrical network. This study will assist in obtaining solar generation concurrence and ensuring compliance with relevant technical and regulatory requirements.

The analyses have been carried out in following scenarios;

- Without 500kW MML solar PV with sanctioned load in service.
- With 500kW MML solar PV with sanctioned load in service.

Steady state power flow assessment has been performed using the network data of MML. Power flow study was conducted without Solar Project with sanctioned load in service to analyze the magnitude and phase angles of bus voltages, line loadings and power flows under steady-state conditions. Power flow analysis was also conducted with sanctioned load in service after the interconnection of the Solar project with the MML distribution system. The power flow results for the system intact shows that

the power flows on all the MML transmission and distribution line branches are within their normal line loading limit. There is no capacity constraint in terms of power flow or voltage ratings within the study area.

This systems study is a critical step in obtaining solar generation concurrence for MML. By ensuring the stability and reliability of the electrical system, the study facilitates seamless solar power integration while maintaining compliance with MML and regulatory requirements.

Based on the study results, it is concluded that proposed generation interconnection assessment for 500kW MML solar PV Power Generation project meets the NEPRA grid code planning criteria.

1 INTRODUCTION

1.1 Project Description

This report provides the documentation of an assessment that has been performed by ARCO Energy in response to a request made by Mian Mir Line (MML) ("Project Owner" or "PO") for the interconnection of a 500kWp Solar PV Power Generation project ("Project") to the MML power System at 11kV.

The '500kW MML solar PV Power Generation project' is located at Ground of 17 NLI / HQ 106 Bde North Mian Mir Line, Shami Rd, Cantt, Lahore, Pakistan. Figure 1.1 shows Google site map of the project.

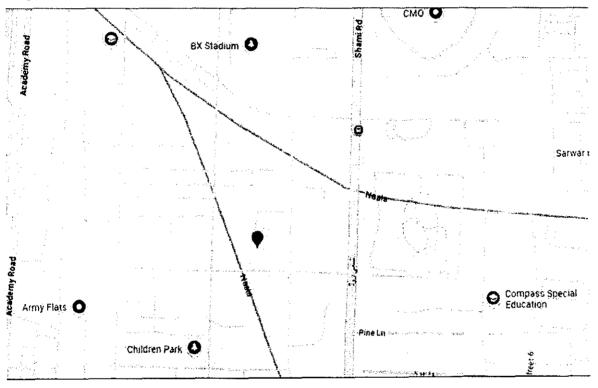


Figure 1.1: Google Site Map of the Solar PV Power Generation Project.

1.2 Interconnection Arrangement

MML aims to integrate solar power generation into its existing electrical infrastructure. MML currently receives a single-point power supply from LESCO with a sanctioned load of 1.918MW. The entire solar generation within the MML premises will be consumed internally without exporting any power to the grid. The objective of the analyses is to evaluate the impact of the solar power plant on the MML transmission and distribution system.

1.3 Objective of System Study Analysis

The primary objectives of the load flow study are:

- To evaluate the impact of solar power injection on the voltage levels and power distribution within MML premises.
- To determine the changes in power flow patterns resulting from the integration of solar generation.
- To ensure that the existing electrical infrastructure can support the additional solar power without causing instability or operational issues.
- To verify compliance with regulatory requirements for solar power interconnection and obtain concurrence for solar generation.

1.4 Study Components

500kW solar PV system is modelled into the MML distribution system by ARCO Energy. Technical analysis includes:

- i) Data gathering and modelling
- ii) Steady state analysis
- iii) Conclusion

The above scope of work involved in the technical analysis has been carried to demonstrate that connection assessment of this PV system meets the National Electric Power Regulatory Authority (NEPRA) distribution code.

The analyses have been carried out in following scenarios;

- Without 500kW MML solar PV with sanctioned load in service.
- With 500kW MML solar PV with sanctioned load in service.

This report documents the results of the steady state analyses. The principal objective of these analyses is to evaluate the impact of 500kW solar PV system to the distribution system of MML and vice versa.

2 STUDY METHODOLOGY

2.1 Study Criteria

The study has been carried out based on the National Electric Power Regulatory Authority (NEPRA) Grid Code planning criteria. Key parameters and their corresponding limits have been summarized in table below.

Para	ameter	Range			
Voltage Level	Normal Condition	±5 % p.u at 132kV and below +8%,-5% p.u at 220kVand above			
ĺ	Contingency	±10 % p.u			
T/Line Loading	Normal Condition	100%			
Capacity	Contingency	100%			
	Nominal	50 Hz			
Frequency	Normal Variation	49.8 Hz - 50.2 Hz			
	Contingency Band	49.4 Hz - 50.5 Hz			
Power Factor	Lagging	0.95			
rower ractor	Leading	0.95			

2.2 Steady State Analysis

The purpose of steady-state analysis is to analyse the impact of the proposed solar power plant on distribution system facilities under steady-state conditions. It involves two distinct analyses: line loading analysis and voltage analysis. Power flow solutions using the PSS/E® program (Version 33.4) has been performed.

A "study area" was defined to represent the areas of interest within MML.

2.2.1 System Intact Analysis

The incremental impact of the project on substations and transmission line loading under normal conditions was evaluated by comparing transmission and distribution system power flows through different scenarios for the project.

2.2.2 Transmission Line Loading Analysis

11kV and 0.4kV rated transmission and distribution facilities in the study area have been monitored for line loadings.

2.2.3 Voltage Analysis

Voltages at buses inside the study area have been monitored for possible for voltage violations in accordance with NEPRA Grid Code guidelines.

3 STEADY STATE ANALYSIS

3.1 Model Development

Project specific data was provided by the plant owner and it has been compiled and presented in **Annexure-A**. The steady state model of the power plant is presented in table below:

	Generator
No. of Collector Units	1
Generation size of each collector (kVA)	421
Active Power of each collector Pgen. (kW)	400
Power Factor	0.95 lagging, 0.95 leading
Qmin, Qmax (kVAR)	- 0.1315, 0.1315
Rated Frequency	50 Hz
Generation Voltage	0.8V
Xsource	00
	Generation Step Up Transformer
No of Transformer	1
kVA Capacity of each GSU	630
% Reactance (X)	5 %
	Mian Mir Line
Sanctioned Load (LESCO)	1918 kW

Steady state power flow assessment has been performed using the network data of MML.

3.2 Power Flow Assessment Without MML PP and with Sanctioned Load In Service

Power flow study without MML solar and with sanctioned load in service, was conducted to analyze the magnitude and phase angles of bus voltages, line loadings and power flows under steady-state conditions.

The result of this power flow analysis is in Annexure-B.

3.2.1 Base Year 2025: Peak Loading Summer with Sanctioned Load in Service

Power flow analysis has been performed on the peak loading summer (June) 2025 case of MML network. This base case included a detailed representation of the MML transmission and distribution system in the study area.

The steady state results, depicts that the power flows on all the MML distribution line branches are within their normal loading limits. There is no capacity constraint in terms of load flow or voltage ratings around the study area. Result of the power flow analysis is attached in **Figure B-1**.

3.3 Power Flow Assessment with MML PP

Power flow study of MML solar project was conducted with sanctioned load (in service and out of service) to determine the reliability impact of the 500kW MML solar project on the MML distribution system. This includes the performance of load flow analysis to identify any facility overload or voltage condition that violates the NEPRA planning criteria. Any such violation that is either directly attributable to this project or for which it will have a shared responsibility is included in this report.

The results of the project power flow analysis are plotted in Annexure-B.

3.3.1 Base Year 2025: Peak Loading Summer with Sanctioned Load In Service

A base case has been developed with sanctioned load in service at MML solar for peak loading summer (June) 2025 that allow us to judge the impact of MML solar project on the MML network. Project power flow analysis has been performed after the connection of the project with the MML distribution system. This includes the detailed representation of the power plant.

The steady state result, with sanctioned load in service at MML solar depicts that the power flows on all the transmission line branches are within their normal loading limits. There is no capacity constraint in terms of load flow or voltage ratings around the study area. Result of the power flow analysis is attached in **Figure B-2**.

The results of the project bus voltages analysis are attached in Annexure-C.

3.4 Conclusion

Steady state power flow assessment has been performed. Power flow study was conducted without solar Project with sanctioned load in service to analyze the magnitude and phase angles of bus voltages, line loadings and power flows under steady-state conditions. Power flow analysis was also conducted

with sanctioned load in service after the interconnection of the Solar project with the MML distribution system. The power flow results for the system intact shows that the power flows on all the MML distribution line branches are within their normal line loading limit. There is no capacity constraint in terms of power flow or voltage ratings within the study area.

4 CONCLUSION

4.1 Steady State Assessment

Steady state power flow assessment has been performed. Power flow study was conducted without MML solar with sanctioned load in service, to analyze the magnitude and phase angles of bus voltages, line loadings, and power flows under steady-state conditions. Power flow analysis was also conducted with MML solar and with sanctioned load in service with MML distribution system. Power flow results showed that the power flows on all the MML distribution branches are within their normal loading limit. There is no capacity constraint in terms of power flow or voltage ratings within the study area.

The steady state results found no capacity constraint in terms of power flow and voltage ranges.

Hence, it is concluded that based on the study results the Interconnection Assessment for 500kW Mian Mir Line solar PV system with MML Transmission and Distribution Network, meets the NEPRA grid code planning criteria.

MIAN MIR LINE

LIST OF ANNEXURES

Annex A: Project Specific Data.

Annex A-1: Project Site Map.

Annex A-2: Power Plant Data.

Annex B: Power Flow Steady State Analysis Result

Figure B-1: Base Year 2025 - Peak loading summer without MML solar and Sanctioned load in service.

Figure B-2: Base Year 2025 - Peak loading summer with MML solar and Sanctioned load in service.

Annex C: Assessment of Bus Voltages.

Annex C-1: Without MML solar and with Sanctioned Load In Service.

Annex C-2: With MML solar and with Sanctioned Load In Service.

Annexure-A

Sec. Product

Project Specific Data

Annexure-A-1

:0

· · · · · ·

Project Site Map

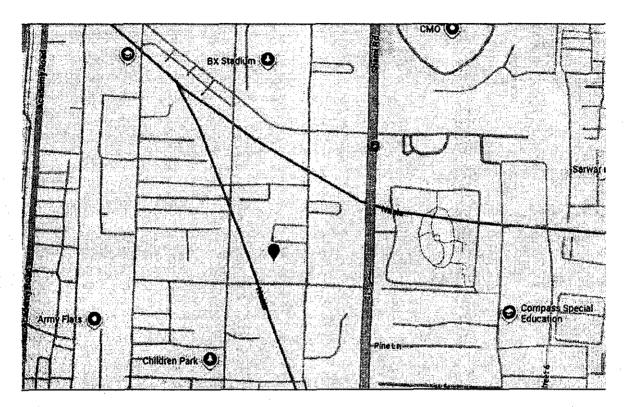
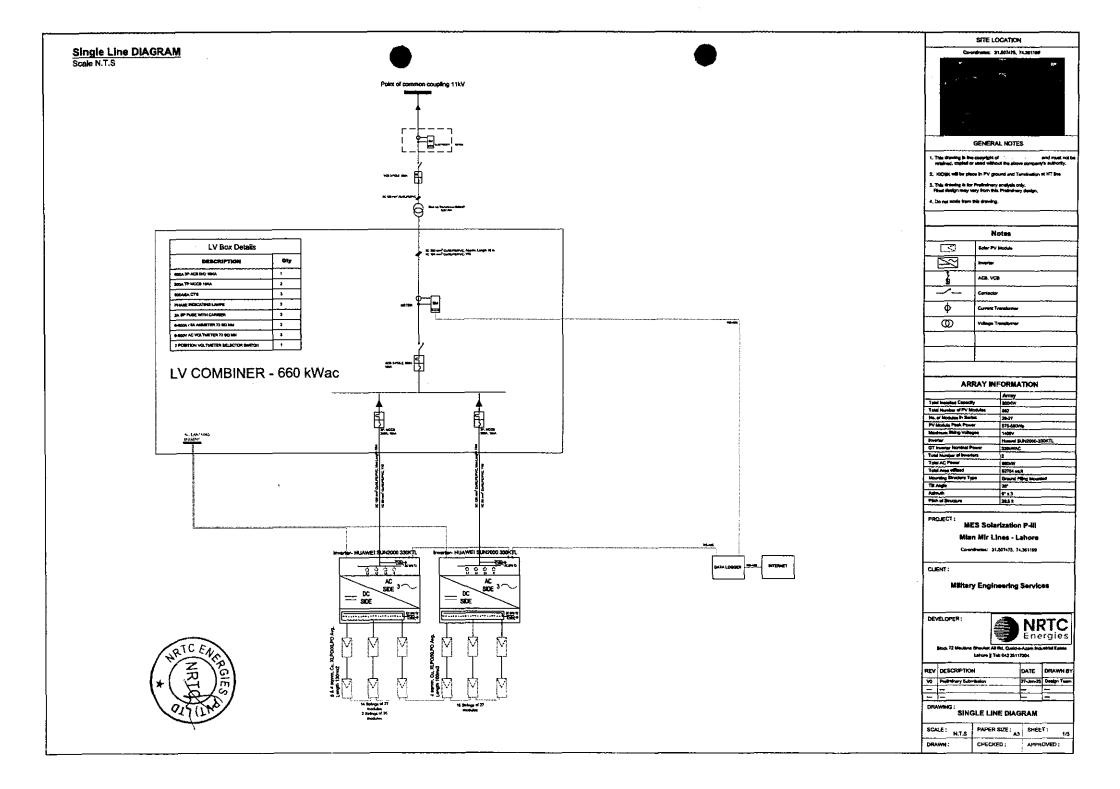
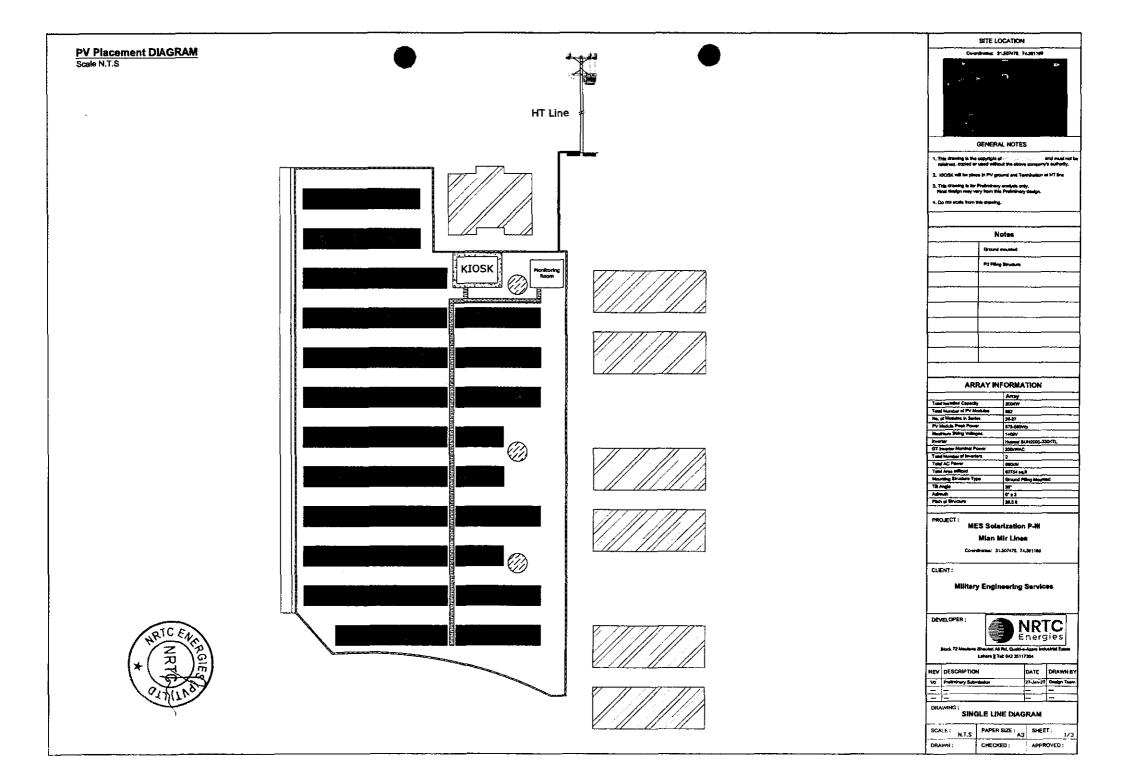
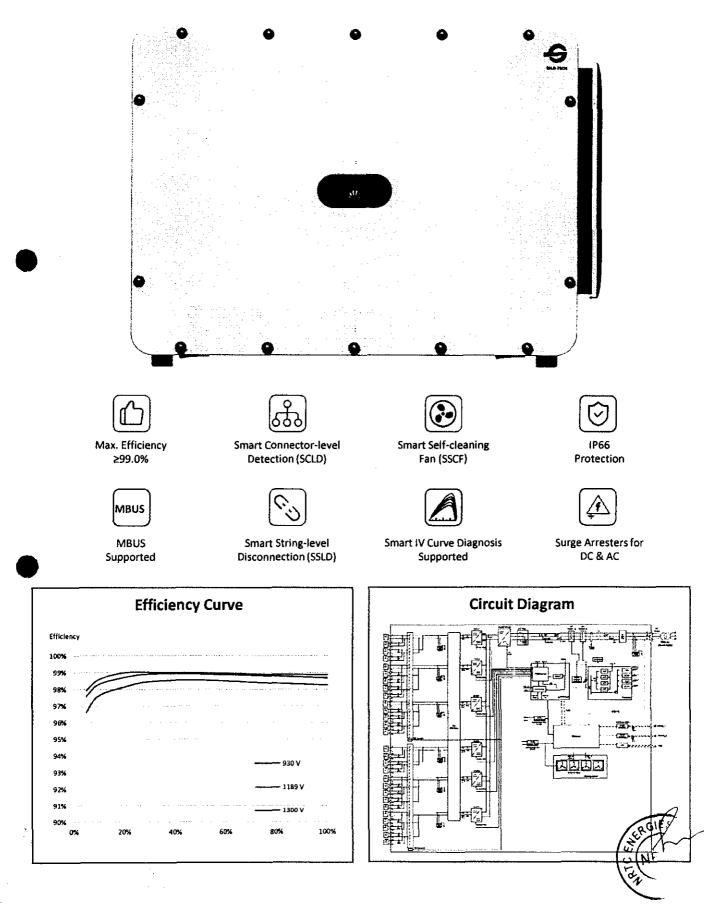


Figure 1.1: Google Site Map of the Solar PV Power Generation Project.


Annexure-A-2


i e serve

.


Power Plant Data

SUN2000-330KTL-H1 Smart String Inverter

SOLAR.HUAWEI.COM

sun2000-330ктL-н1 Technical Specifications

Max. Efficiency	≥99.0%
European Efficiency	≥98.8%
	Input
Max. Input Voltage	1,500 V
Number of MPP Trackers	6
Max. Current per MPPT	65 A
Max. Short Circuit Current per MPPT	115A
Max. PV Inputs per MPPT	4/5/5/4/5/5
Start Voltage	550 V
MPPT Operating Voltage Range	500 V ~ 1,500 V
Nominal Input Voltage	1,080 V
	Output
Nominal AC Active Power	300,000 W
Max. AC Apparent Power	
Max. AC Active Power (cos ϕ =1)	330,000 VA
Nominal Output Voltage	330,000 W
	800 V, 3W + PE
Rated AC Grid Frequency	50 Hz / 60 Hz
Nominal Output Current	216.6 A
Max. Output Current	238.2 A
Adjustable Power Factor Range	0.8 LG 0.8 LD
Total Harmonic Distortion	1%
	Protection
Smart String-Level Disconnector(SSLD)	Yes
Anti-Islanding Protection	Yes
AC Overcurrent Protection	Yes
DC Reverse-polarity Protection	Yes
PV-array String Fault Monitoring	Yes
DC Surge Arrester	Type II
AC Surge Arrester	Type II
DC Insulation Resistance Detection	Yes
AC Grounding Fault Protection	Yes
Residual Current Monitoring Unit	Yes
	Communication
Display	LED Indicators, WLAN + APP
USB	Yes
MBUS	Yes
R\$485	Yes
	General
Dimensions (W x H x D)	1,048 x 732 x 395 mm
Weight (with mounting plate)	≤112 kg
Operating Temperature Range	-25 ℃ ~ 60 ℃
Cooling Method	Smart Air Cooling
e waa Taa ila ah	new reaction of the second
Max. Operating Altitude without Derating	4,000 m (13,123 ft.)
Zelative Humiditu	0~100%
Relative Humidity	
Relative Humidity AC Connector Protection Degree	0 ~ 100% Waterproof Connector + OT/DT Terminal

UNRTCHILL DIENTY +

LR5-72HTH 560~575M

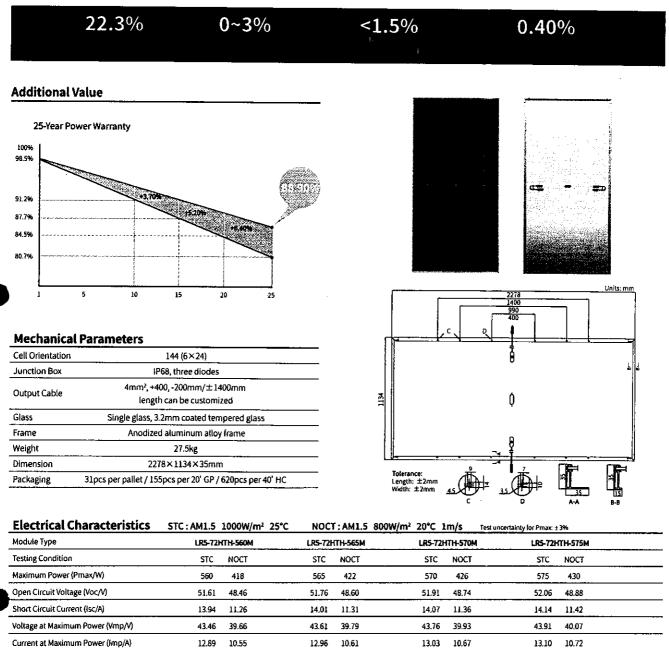
- Suitable for distributed projects
- Excellent outdoor power generation performance
- High module quality ensures long-term reliability

15-year Warranty for Materials and Processing

25

25-year Warranty for Extra Linear Power Output

Complete System and Product Certifications


IEC 61215, IEC 61730, UL 61730 ISO9001:2015: ISO Quality Management System ISO14001: 2015: ISO Environment Management System ISO45001: 2018: Occupational Health and Safety IEC62941: Guideline for module design qualification and type approval

Hi-MO

LR5-72HTH 560~575M

21.9

Operating Parameters

Module Efficiency(%)

Operational Temperature	-40*C ~ +85*C	
Power Output Tolerance	0 ~ 3%	
Voc and Isc Tolerance	±3%	
Maximum System Voltage	DC1500V (IEC/UL)	
Maximum Series Fuse Rating	25A	
Nominal Operating Cell Temperature	45±2°C	
Protection Class	Class 1	
Size Desting	UL type 1 or 2	
Fire Rating	IEC Class C	

21.7

Mechanical Loading

Hailstone Test	25mm Hailstone at the speed of 23m/s
Rear Side Maximum Static Loading	2400Pa
Front Side Maximum Static Loading	5400Pa

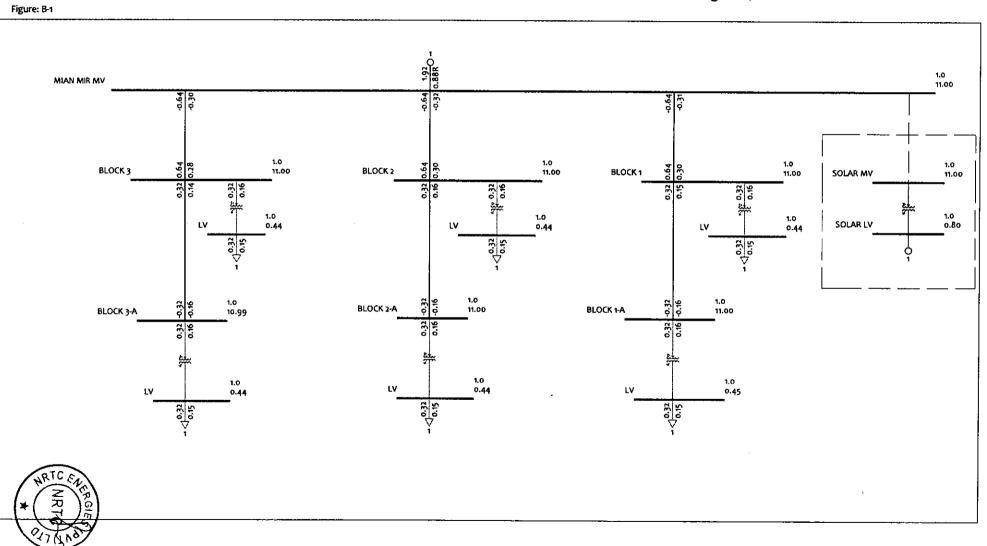
22.3

Temperature Ratings (STC)

22.1

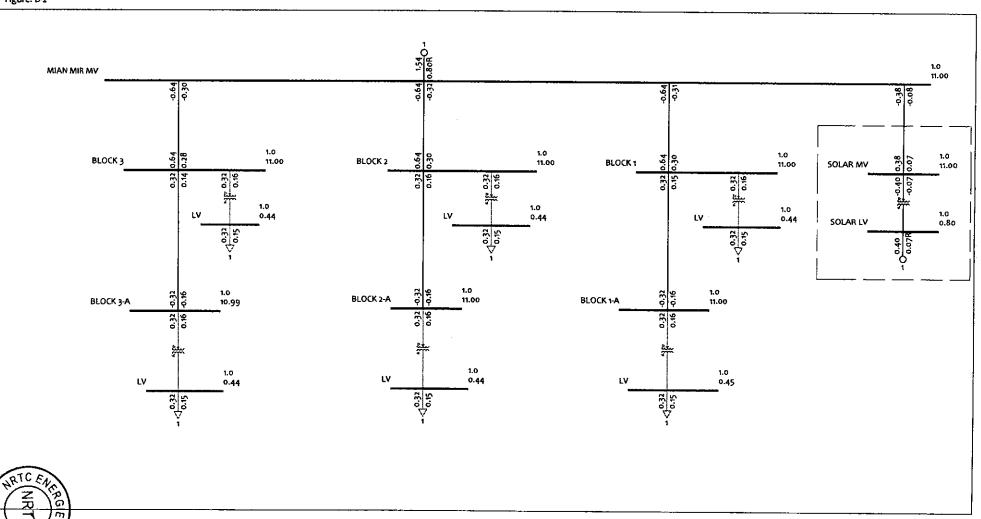
Temperature Coefficient of Isc	+0.050%/°C
Temperature Coefficient of Voc	-0.230%/°C
Temperature Coefficient of Pmax	0.290%/°C
	CROICS A

No.8369 Shangyuan Road, Xi'an Economic And Technological Development Zone, Xi'an, Shaanxi, China. **Web:** www.longi.com Specificat An Brinz Lucied To this datasheet are unret to change without notice. LONG Reserves the right of final interpretation. 120221920DraftV03) DG


Annexure-B

and the second second

Steady State Analysis Results



Load Flow Analysis of 500kW Solar PV System at Mian Mir (MM)

Pre Project Steady State Analysis Results: Base Year 2025 / Peak Loading 2025

Load Flow Analysis of 500kW Solar PV System at Mian Mir (MM)

Post Project Steady State Analysis Results: Base Year 2025 / Peak Loading 2025

Figure: B-2

Annexure-C

Se 👌 🗤 🖓

Assessment of bus voltages

Annexure-C-1

E Market I

Sale

. 14.

Without MML PP and With Sanctioned Load

In Service

X FROM BUS X AF	EA VOLT		GEN	LOAD	SHUNT	X	TO B	us	x			
TRANSFORMER RATING BUS# X NAMEX BASKV ZC RATIO ANGLE % SET A	NE PU/KV	ANGLE	MW/MVAR	MW/MVAR	MW/MVAR	BUS#	X NAME	X BASKV	AREA	СКТ	MW	MVAF
4100 MIAN MEER MV11.000	4 1.0000	0.0	1.9	0.0	0.0							
7 10	1 11.000		0.9R	0.0	0.0	41001	BLOCK 1	11.000	4	1	0.6	0.
7 10						41005	BLOCK 2	11.000	4	1	0.6	0.
						41009	BLOCK 3	11.000	4	1	0.6	ο.
7 10 41001 BLOCK 1 11.000	4 0.9999	~0.0	0.0	0.0	0.0							·
7 10	1 10.998		0.0	0.0	0.0	4100	MIAN MEER	MV11.000	4	1	-0.6	-0.
						41002	LV	0.4400	4	1	0.3	0.
1.000LK 22 2						41003	BLOCK 1-A	11.000	4	1	0.3	0.
4 10 41002 LV 0.4400	4 0.9949	-0.6	0.0	0.3	0.0							
1.000UN 22 2	1 0.4378		0.0	0.2	0.0	41001	BLOCK 1	11.000	4	1	-0.3	-0
41003 BLOCK 1-A 11.000	4 0.9998	-0.0	0.0	0.0	0.0		*					
4 10	1 10.998		0.0	0.0	0.0	41001	BLOCK 1	11.000	4	1	-0.3	-0,
						41004	LV	0.4400	4	1	0.3	0.
0.975LK 22 2 41004 LV 0.4400	4 1.0206	-0.6	0.0	0.3	0.0							
1.000UN 22 2	1 0.4491		0.0	0.2	0.0	41003	BLOCK 1-A	11.000	4	1	-0.3	-0.
41005 BLOCK 2 11.000	4 0.9997	-0.0	0.0	0.0	0.0			و میں مرد اندر اندر میں جون مزن مرد مرد	+			
EN.	1 10.997		0.0	0.0	0.0	4100	MIAN MEER	MV11.000	4	1	-0.6	-0.
10						41006	LV	0.4400	4	1	03	0.

4 10			-			4	1007 BLOCK 2-A	11,000	4	1	0.3	0.2
41006 LV	0.4400	4 0.9948	-0.6	0.0	0.3	0.0						
	22 2	1 0.4377		0.0	0.2	0.0 4	1005 BLOCK 2	11.000	4	1	-0.3	-0.2
41007 BLOCK 2-A	11.000	4 0.9997	-0.0	0.0	0.0	0.0					*	
10		1 10.997		0.0	0.0	0.0 43	1005 BLOCK 2	11.000	4	1	-0.3	-0.2
).988LK 41008 LV	22 2	4 1.0075	-0.6	0.0	0.3		1008 LV					0.2
1.000UN		1 0.4433	•••	0.0	0.2		LOO7 BLOCK 2-A					
41009 BLOCK 3	11.000	4 0.9996	-0.0	0.0	0.0	0.0						
10	- gin gin gin an	1 10.996		0.0	0.0	0.0	100 MIAN MEER	MV11.000	4	1	-0.6	-0.3
1.000LK	22 2						0010 LV	••			0.3	0.2
3 10 410010 LV	0.4400	4 0.9946	-0.6	0.0	0.3		0011 BLOCK 3-A		_	_		0.1
1.000UN		1 0.4376		0.0	0.2	0.0 4:	1009 BLOCK 3	11.000	4	1	-0.3	-0.2
410011 BLOCK 3-A	11.000	4 0.9994	-0.0	0.0	0.0	0.0						
4 10		1 10.993		0.0	0.0	0.0 41	1009 BLOCK 3	11.000	4	1	-0.3	-0.2
	12 3	4 1.0089	-0.4	0.0	0.3)012 LV			-		0.2
410012 LV		4 1.0089		0.0	0.3		011 BLOCK 3-A					

Annexure-C-2

With MML PP and With Sanctioned Load In Service

	1	MIAN M	PTI EER SOLA		CTIVE PO STEM	WER SYSTI	EM SIMUL	ATORPS	SS (R) E	SAT, FEB %MVA FC % I FC	DR TRA	ANSFO		BRANCHES
	DM BUS	AREA	VOLT		GEN	LOAD	SHUNT	x	TO E	us	x			
TRANSFORMER BUS#XN RATIO ANGLE	RATING NAMEX BASKN S % SET A	7 ZONE	PU/KV	ANGLE	MW/MVAR	MW/MVAR	MW/MVAR	BUS#	X NAME	X BASKV	AREA	СКТ	MW	MVAR
4100 MIAN	MEER MV11.000) 4	1.0000	0.0	1.5	0.0	0.0							
		1	11.000		0.8R	0.0	0.0	41001	BLOCK 1	11.000	4	1	0.6	0.3
10								41005	BLOCK 2	11.000	4	1	0.6	0.3
10								41009	BLOCK 3	11.000	4	1	0.6	0.3
10								410013	SOLAR MV	11.000	4	1	-0.4	-0.1
10 41001 BLOCH	< 1 11.00) 4	0.9999	-0.0	0.0	0.0	0.0							
		1	10.998		0.0	0.0	0.0	4100	MIAN MEER	MV11.000	4	1	-0.6	-0.3
10										0.4400			0.3	0.2
.000LK	22 2									11.000				
10 41002 LV	0.440) 4	0.9949	-0.6	0.0	0.3	0.0					_		
			0.4378		0.0	0.2				11.000				-0.2
.000UN	22 2	_	0.1010			0.2	0.0	41001	BLOCK I	11.000	-	1	-0.5	-0.2
41003 BLOCH	K 1-A 11.00) 4	0.9998	-0.0	0.0	0.0	0.0						*	
		1	10.998		0.0	0.0	0.0	41001	BLOCK 1	11.000	4	1	-0.3	-0.2
10								41004	Γ Λ	0.4400	4	1	0.3	0.2
41004 LV	22 2 0.440) 4	1.0206	-0.6	0.0	0.3	0.0							
. 000UN	22 2		0.4491		0.0	0.2	0.0	41003	BLOCK 1-A	11.000	4	1	-0.3	-0.2
41005 BLOCH	K 2 11.00) 4	0.9997	-0.0	0.0	0.0	0.0							
10	****	1	10.997		0.0	0.0	0.0	4100	MIAN MEER	MV11.000	4	1	-0.6	-0.3

TC ENCROLES *

1.000LK	22	2					41006 LV 0.4400 4 1 0.3 41007 BLOCK 2-A 11.000 4 1 0.3
4 10 41006 LV		0.4400	4 0.9948	-0.6	0.0	0.3	41007 BLOCK 2-A 11.000 4 1 0.3
1.000UN			1 0.4377		0.0	0.2	0.0 41005 BLOCK 2 11.000 4 1 -0.3 -
41007 BLOCK 2			4 0.9997	-0.0	0.0	0.0	0.0
4 10			1 10.997		0.0	0.0	0.0 41005 BLOCK 2 11.000 4 1 -0.3 -
0.988LK 41008 LV		0.4400	4 1.0075	-0.6	0.0	0.3	41008 LV 0.4400 4 1 0.3
1.000UN			1 0.4433		0.0	0.2	0.0 41007 BLOCK 2-A 11.000 4 1 -0.3 -
41009 BLOCK 3			4 0.9996	-0.0	0.0	0.0	0.0
7 10			1 10.996		0.0	0.0	0.0 4100 MIAN MEER MV11.000 4 1 -0.6 -
1.000LK	22	2					410010 LV 0.4400 4 1 0.3
3 10							410011 BLOCK 3-A 11.000 4 1 0.3
410010 LV		0.4400	4 0.9946	-0.6	0.0	0.3	0.0
1.000UN	22	2	1 0.4376		0.0	0.2	0.0 41009 BLOCK 3 11.000 4 1 -0.3 -
410011 BLOCK 3			4 0.9994	-0.0	0.0	0.0	0.0
4 10			1 10.993		0.0	0.0	0.0 41009 BLOCK 3 11.000 4 1 -0.3 -
0.988LK	12	3					410012 LV 0.4400 4 1 0.3
410012 LV		0.4400	4 1.0089	-0.4	0.0	0.3	0.0
1.000UN			1 0.4439		0.0	0.2	0.0 410011 BLOCK 3-A 11.000 4 1 -0.3 -6
410013 SOLAR M			4 1.0001	0.0	0.0	0.0	0.0
λ			1 11.001		0.0	0.0	0.0 4100 MIAN MEER MV11.000 4 1 0.4 (

410014 SOLAR LV 0.8000 4 1 -0.4 -0.1 1.000LK 64 1 410014 SOLAR LV 0.8000 4 1.0015 0.4 0.5 0.0 0.0 6 36 <u>2</u> 6 2 1 0.8012 0.1R 0.0 0.0 410013 SOLAR MV 11.000 0.1 1.000UN 0.4 64 4 1

Sec. 20

SYSTEM STUDY ANALYSIS OF MEHFOOZ SHAHEED GARRISON (MSG) 500kW SOLAR PV SYSTEM

Report

ARCO Energy

PAKISTAN Tel: +92-300-8827101

CONTENTS

	VE SUMMARY 1
1 INTRO	ODUCTION
1.1 Pr	oject Description
1.2 In	terconnection Arrangement
1.3 O	bjective of System Study Analysis
1.4 Sta	udy Components
2 STUD	Y METHODOLOGY
2.1 Stu	udy Criteria 6
2.2 Ste	eady State Analysis
2.2.1	System Intact Analysis
2.2.2	Transmission Line Loading Analysis 6
2.2.3	Voltage Analysis
3 STEAL	DY STATE ANALYSIS
3.1 Mo	odel Development
3.2 Po	wer Flow Assessment Without MSG PP and with Sanctioned Load In Service
3.2.1	Base Year 2025: Peak Loading Summer with Sanctioned Load in Service
3.3 Po	wer Flow Assessment with MSG PP9
3.3.1	Base Year 2025: Peak Loading Summer with Sanctioned Load In Service
3.4 Co	onclusion9
4 CONC	LUSION
4.1 Ste	eady State Assessment
LIST OF AI	NNEXURES

EXECUTIVE SUMMARY

This report provides the documentation of an assessment that has been performed for the interconnection of a 500kW Solar PV Power Generation project at Mehfooz Shaheed Garrison (MSG) distribution system at 11kV project of "Military Engineering Services" (MES). The project will be a Grid tied 500kW Solar PV based system connected with the power network of MSG. The '500kW MSG solar PV Power Generation project' is located at GCWM+2G5, Aziz Bhatti Town, Lahore, Pakistan.

The integration of solar power generation at the MSG premises necessitates a comprehensive system study analysis to ensure optimal operation of the electrical network. MSG currently receives a single point supply from LESCO with a sanctioned load of 2.690MW. The introduction of solar power generation will influence the flow of electricity within the premises, impacting both consumption and injection dynamics.

The existing setup includes transformers, switchgear, and distribution panels to distribute electricity throughout the premises. The sanctioned load of 2.690MW is the maximum load that can be drawn from LESCO's grid.

The entire solar generation within the MSG premises will be consumed internally without exporting any power to the grid. To ensure the safe and efficient integration of solar power, a load flow study is required to analyze the impact of this interconnection on the existing electrical network. This study will assist in obtaining solar generation concurrence and ensuring compliance with relevant technical and regulatory requirements.

The analyses have been carried out in following scenarios;

- Without 500kW MSG solar PV with sanctioned load in service.
- With 500kW MSG solar PV with sanctioned load in service.

Steady state power flow assessment has been performed using the network data of MSG. Power flow study was conducted without Solar Project with sanctioned load in service to analyze the magnitude and phase angles of bus voltages, line loadings and power flows under steady-state conditions. Power flow analysis was also conducted with sanctioned load in service after the interconnection of the Solar project with the MSG distribution system. The power flow results for the system intact shows that

the power flows on all the MSG transmission and distribution line branches are within their normal line loading limit. There is no capacity constraint in terms of power flow or voltage ratings within the study area.

This systems study is a critical step in obtaining solar generation concurrence for MSG. By ensuring the stability and reliability of the electrical system, the study facilitates seamless solar power integration while maintaining compliance with MSG and regulatory requirements.

Based on the study results, it is concluded that proposed generation interconnection assessment for 500kW MSG solar PV Power Generation project meets the NEPRA grid code planning criteria.

1 INTRODUCTION

1.1 Project Description

This report provides the documentation of an assessment that has been performed by ARCO Energy in response to a request made by Mehfooz Shaheed Garrison (MSG) ("Project Owner" or "PO") for the interconnection of a 500kWp Solar PV Power Generation project ("Project") to the MSG power System at 11kV.

The '500kW MSG solar PV Power Generation project' is located at GCWM+2G5, Aziz Bhatti Town, Lahore, Pakistan. Figure 1.1 shows Google site map of the project.

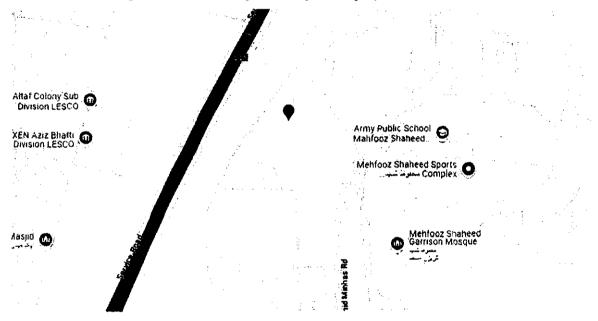


Figure 1.1: Google Site Map of the Solar PV Power Generation Project.

1.2 Interconnection Arrangement

MSG aims to integrate solar power generation into its existing electrical infrastructure. MSG currently receives a single-point power supply from LESCO with a sanctioned load of 2.690MW. The entire solar generation within the MSG premises will be consumed internally without exporting any power to the grid. The objective of the analyses is to evaluate the impact of the solar power plant on the MSG transmission and distribution system.

1.3 Objective of System Study Analysis

The primary objectives of the load flow study are:

- To evaluate the impact of solar power injection on the voltage levels and power distribution within MSG premises.
- To determine the changes in power flow patterns resulting from the integration of solar generation.
- To ensure that the existing electrical infrastructure can support the additional solar power without causing instability or operational issues.
- To verify compliance with regulatory requirements for solar power interconnection and obtain concurrence for solar generation.

1.4 Study Components

500kW solar PV system is modelled into the MSG distribution system by ARCO Energy. Technical analysis includes:

- i) Data gathering and modelling
- ii) Steady state analysis
- iii) Conclusion

The above scope of work involved in the technical analysis has been carried to demonstrate that connection assessment of this PV system meets the National Electric Power Regulatory Authority (NEPRA) distribution code.

The analyses have been carried out in following scenarios;

- Without 500kW MSG solar PV with sanctioned load in service.
- With 500kW MSG solar PV with sanctioned load in service.

This report documents the results of the steady state analyses. The principal objective of these analyses is to evaluate the impact of 500kW solar PV system to the distribution system of MSG and vice versa.

2 STUDY METHODOLOGY

2.1 Study Criteria

The study has been carried out based on the National Electric Power Regulatory Authority (NEPRA) Grid Code planning criteria. Key parameters and their corresponding limits have been summarized in table below.

Para	ameter	Range
Voltage Level	Normal Condition	±5 % p.u at 132kV and below +8%,-5% p.u at 220kVand above
	Contingency	±10 % p.u
T/Line Loading	Normal Condition	100%
Capacity	Contingency	100%
	Nominal	50 Hz
Frequency	Normal Variation	49.8 Hz - 50.2 Hz
	Contingency Band	49.4 Hz - 50.5 Hz
Power Factor	Lagging	0.95
FUWER FACIOF	Leading	0.95

2.2 Steady State Analysis

The purpose of steady-state analysis is to analyse the impact of the proposed solar power plant on distribution system facilities under steady-state conditions. It involves two distinct analyses: line loading analysis and voltage analysis. Power flow solutions using the PSS/E® program (Version 33.4) has been performed.

A "study area" was defined to represent the areas of interest within MSG.

2.2.1 System Intact Analysis

The incremental impact of the project on substations and transmission line loading under normal conditions was evaluated by comparing transmission and distribution system power flows through different scenarios for the project.

2.2.2 Transmission Line Loading Analysis

11kV and 0.4kV rated transmission and distribution facilities in the study area have been monitored for line loadings.

2.2.3 Voltage Analysis

Voltages at buses inside the study area have been monitored for possible for voltage violations in accordance with NEPRA Grid Code guidelines.

3 STEADY STATE ANALYSIS

3.1 Model Development

Project specific data was provided by the plant owner and it has been compiled and presented in **Annexure-A**. The steady state model of the power plant is presented in table below:

	Generator	
No. of Collector Units	1	
Generation size of each collector (kVA)	421	
Active Power of each collector Pgen. (kW)	400	
Power Factor	0.95 lagging, 0.95 leading	
Qmin, Qmax (kVAR)	- 0.1315, 0.1315	
Rated Frequency	50 Hz	
Generation Voltage	0.8V	
Xsource	00	
	Generation Step Up Transformer	
No of Transformer	1	
kVA Capacity of each GSU	630	
% Reactance (X)	5 %	
,	Mehfooz Shaheed Garrison	
Sanctioned Load (LESCO)	2690 kW	

Steady state power flow assessment has been performed using the network data of MSG.

3.2 Power Flow Assessment Without MSG PP and with Sanctioned Load In Service

Power flow study without MSG solar and with sanctioned load in service, was conducted to analyze the magnitude and phase angles of bus voltages, line loadings and power flows under steady-state conditions.

The result of this power flow analysis is in Annexure-B.

3.2.1 Base Year 2025: Peak Loading Summer with Sanctioned Load in Service

Power flow analysis has been performed on the peak loading summer (June) 2025 case of MSG network. This base case included a detailed representation of the MSG transmission and distribution system in the study area.

The steady state results, depicts that the power flows on all the MSG distribution line branches are within their normal loading limits. There is no capacity constraint in terms of load flow or voltage ratings around the study area. Result of the power flow analysis is attached in **Figure B-1**.

3.3 Power Flow Assessment with MSG PP

Power flow study of MSG solar project was conducted with sanctioned load (in service and out of service) to determine the reliability impact of the 500kW MSG solar project on the MSG distribution system. This includes the performance of load flow analysis to identify any facility overload or voltage condition that violates the NEPRA planning criteria. Any such violation that is either directly attributable to this project or for which it will have a shared responsibility is included in this report.

The results of the project power flow analysis are plotted in Annexure-B.

3.3.1 Base Year 2025: Peak Loading Summer with Sanctioned Load In Service

A base case has been developed with sanctioned load in service at MSG solar for peak loading summer (June) 2025 that allow us to judge the impact of MSG solar project on the MSG network. Project power flow analysis has been performed after the connection of the project with the MSG distribution system. This includes the detailed representation of the power plant.

The steady state result, with sanctioned load in service at MSG solar depicts that the power flows on all the transmission line branches are within their normal loading limits. There is no capacity constraint in terms of load flow or voltage ratings around the study area. Result of the power flow analysis is attached in Figure B-2.

The results of the project bus voltages analysis are attached in Annexure-C.

3.4 Conclusion

Steady state power flow assessment has been performed. Power flow study was conducted without solar Project with sanctioned load in service to analyze the magnitude and phase angles of bus voltages, line loadings and power flows under steady-state conditions. Power flow analysis was also conducted

with sanctioned load in service after the interconnection of the Solar project with the MSG distribution system. The power flow results for the system intact shows that the power flows on all the MSG distribution line branches are within their normal line loading limit. There is no capacity constraint in terms of power flow or voltage ratings within the study area.

4 CONCLUSION

4.1 Steady State Assessment

Steady state power flow assessment has been performed. Power flow study was conducted without MSG solar with sanctioned load in service, to analyze the magnitude and phase angles of bus voltages, line loadings, and power flows under steady-state conditions. Power flow analysis was also conducted with MSG solar and with sanctioned load in service with MSG distribution system. Power flow results showed that the power flows on all the MSG distribution branches are within their normal loading limit. There is no capacity constraint in terms of power flow or voltage ratings within the study area.

The steady state results found no capacity constraint in terms of power flow and voltage ranges.

Hence, it is concluded that based on the study results the Interconnection Assessment for 500kW Mehfooz Shaheed Garrison solar PV system with MSG Transmission and Distribution Network, meets the NEPRA grid code planning criteria.

LIST OF ANNEXURES

Annex A: Project Specific Data.

Annex A-1: Project Site Map.

Annex A-2: Power Plant Data.

Annex B: Power Flow Steady State Analysis Result

Figure B-1: Base Year 2025 - Peak loading summer without MSG solar and Sanctioned load in service.

Figure B-2: Base Year 2025 - Peak loading summer with MSG solar and Sanctioned load in service.

Annex C: Assessment of Bus Voltages.

Annex C-1: Without MSG solar and with Sanctioned Load In Service.

Annex C-2: With MSG solar and with Sanctioned Load In Service.

Annexure-A

get in

11

Project Specific Data

Annexure-A-1

Project Site Map

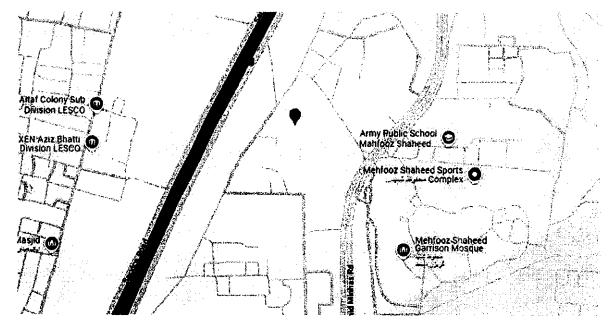
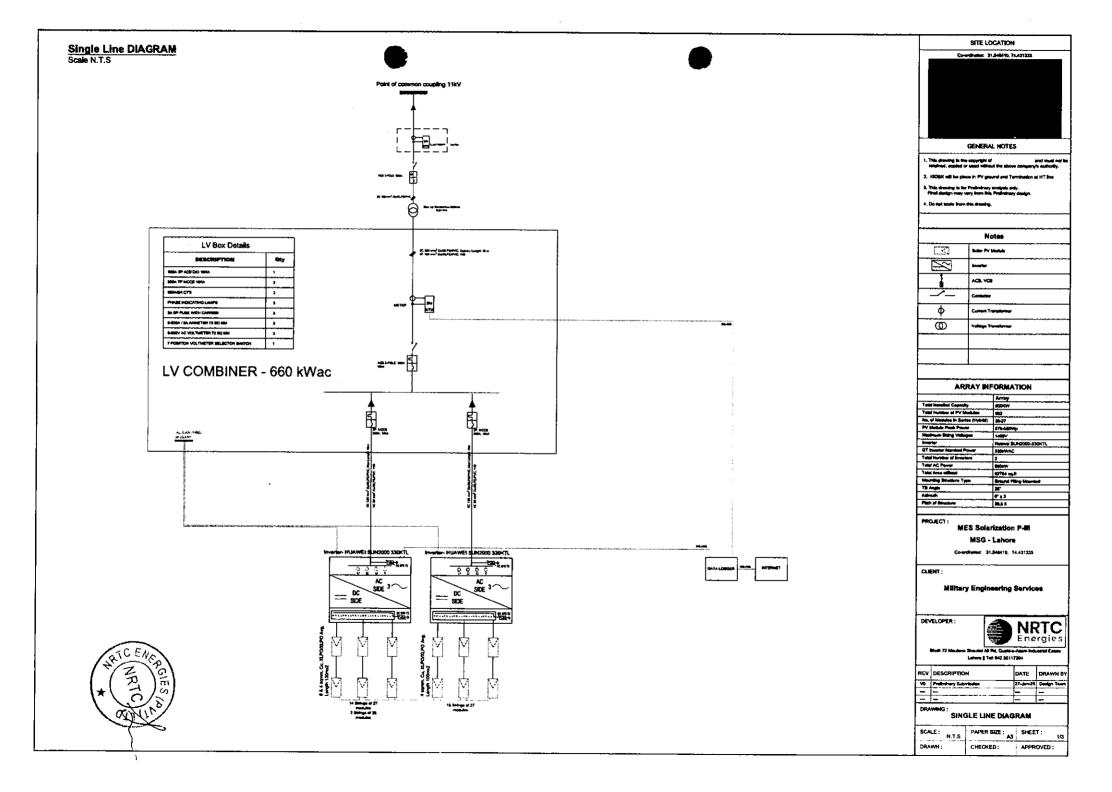
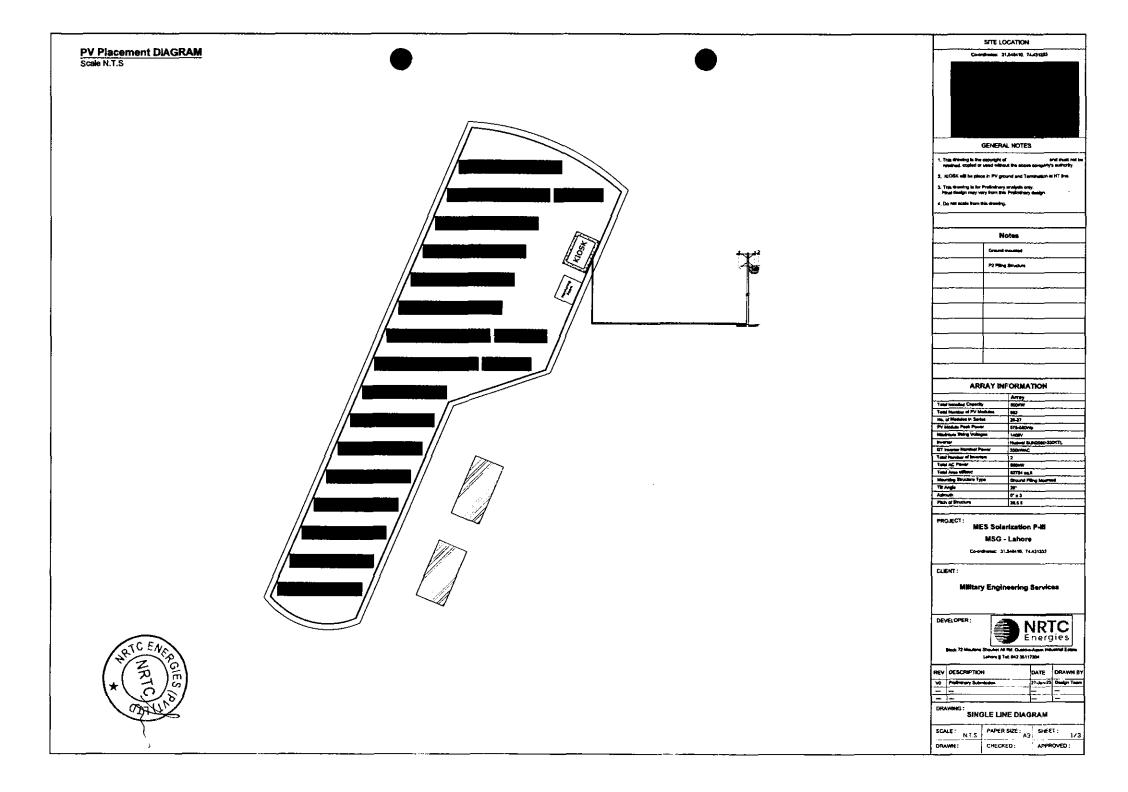
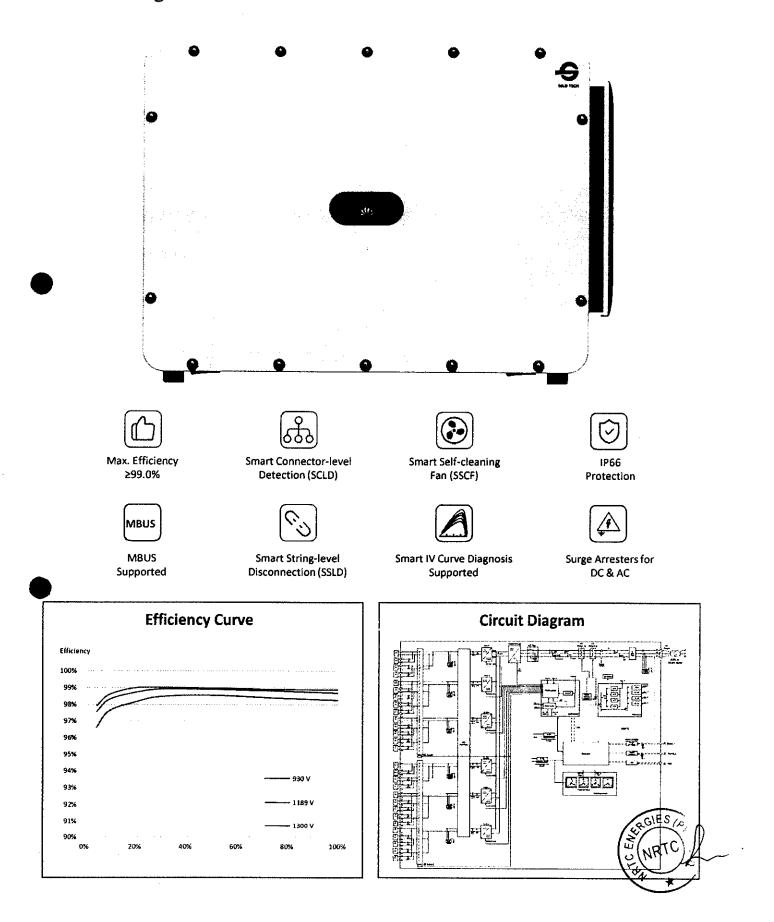


Figure 1.1: Google Site Map of the Solar PV Power Generation Project.




Annexure-A-2

1


Power Plant Data

SUN2000-330KTL-H1 Smart String Inverter

sun2000-330ктL-н1 Technical Specifications

Annanin i mara ana ang ang ang ang ang ang ang ang an	Efficiency
Max. Efficiency	≥99.0%
European Efficiency	≥98.8%
	Input . The later of the second se
Max. Input Voltage	1,500 V
Number of MPP Trackers	6
Max. Current per MPPT	65 A
Max. Short Circuit Current per MPPT	115A
Max. PV Inputs per MPPT	4/5/5/4/5/5
Start Voltage	550 V
e a contra de la contra de	· · · · · · · · · · · · · · · · · · ·
MPPT Operating Voltage Range	500 V ~ 1,500 V
Nominal Input Voltage	1,080 V
et en Alterniterio en antico tato en anternet en en en en alterniterio en antico menore en antico en en antico en en a	Output
Nominal AC Active Power	300,000 W
Max. AC Apparent Power	330,000 VA
Max. AC Active Power (cosφ=1)	330,000 W
Nominal Output Voltage	800 V, 3W + PE
Rated AC Grid Frequency	50 Hz / 60 Hz
Nominal Output Current	216.6 A
Max. Output Current	238.2 A
Adjustable Power Factor Range	0.8 LG 0.8 LD
Total Harmonic Distortion	<1%
	and the second
	Protection was the second structure of a sec
Smart String-Level Disconnector(SSLD)	Yes
Anti-islanding Protection	Yes
AC Overcurrent Protection	Yes
DC Reverse-polarity Protection	Yes
PV-array String Fault Monitoring	Yes
DC Surge Arrester	Type II
AC Surge Arrester	Туре II
DC Insulation Resistance Detection	Yes
AC Grounding Fault Protection	Yes
Residual Current Monitoring Unit	Yes
weeks a manager of the state of	Communication
และผู้หนึ่ง และการจึงใหญ่ และ รางการ เพราะการการการการที่ไปต้องการรางแป้ง กล้ายและการการการผู้สารราช ประชาวิตต 	LED Indicators, WLAN + APP
Display	
USB	Yes
MBUS	Yes
RS485	Yes
	General
Dimensions (W x H x D)	1,048 x 732 x 395 mm
Weight (with mounting plate)	≤112 kg
Operating Temperature Range	-25 °C ~ 60 °C
Cooling Method	Smart Air Cooling
Max. Operating Altitude without Derating	4,000 m (13,123 ft.)
Relative Humidity	4,000 m (13,123 ft.) 0 ~ 100% Waterproof Connector + 0T/DT Terminal
AC Connector	Waterproof Connector + OT/DT Terminal
Protection Degree	IP 66

LR5-72HTH 560~575M

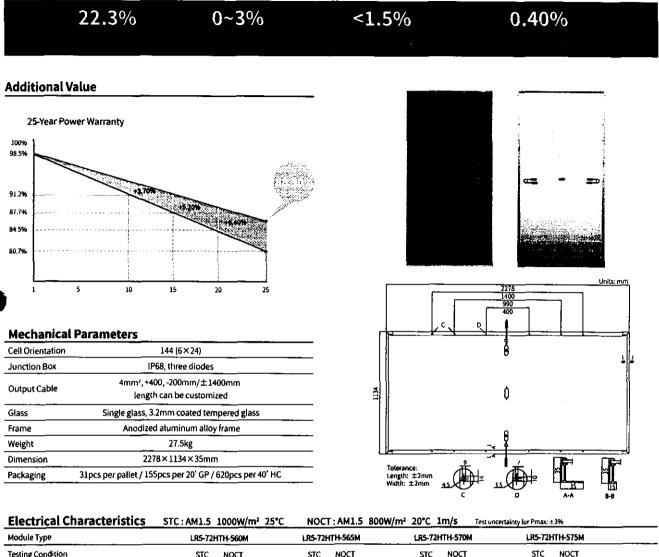
- Suitable for distributed projects
- Excellent outdoor power generation performance
- High module quality ensures long-term reliability

15-year Warranty for Materials and Processing

25-year Warranty for Extra Linear Power Output

Complete System and Product Certifications

IEC 61215, IEC 61730, UL 61730 ISO9001:2015: ISO Quality Management System ISO14001: 2015: ISO Environment Management System ISO45001: 2018: Occupational Health and Safety IEC62941: Guideline for module design qualification and type approval



2

Hi-MO 🗗

LR5-72HTH 560~575M

Testing Condition	STC	NOCT	STC	NOCT	STC	NOCT	STC	NOCT	
Maximum Power (Pmax/W)	560	418	565	422	570	426	575	430	
Open Circuit Voltage (Voc/V)	51,61	48.46	51.76	48.60	51.91	48.74	52.06	48.88	
Short Circuit Current (Isc/A)	13.94	11.26	14.01	11.31	14.07	11.36	14.14	11.42	
Voltage at Maximum Power (Vmp/V)	43.46	39.66	43.61	39.79	43.76	39.93	43.91	40.07	
Current at Maximum Power (Imp/A)	12.89	10.55	12.96	10.61	13.03	10.67	13.10	10.72	
Module Efficiency(%)	2	1.7	2	1.9	2	2.1	22	2.3	

Operating Parameters

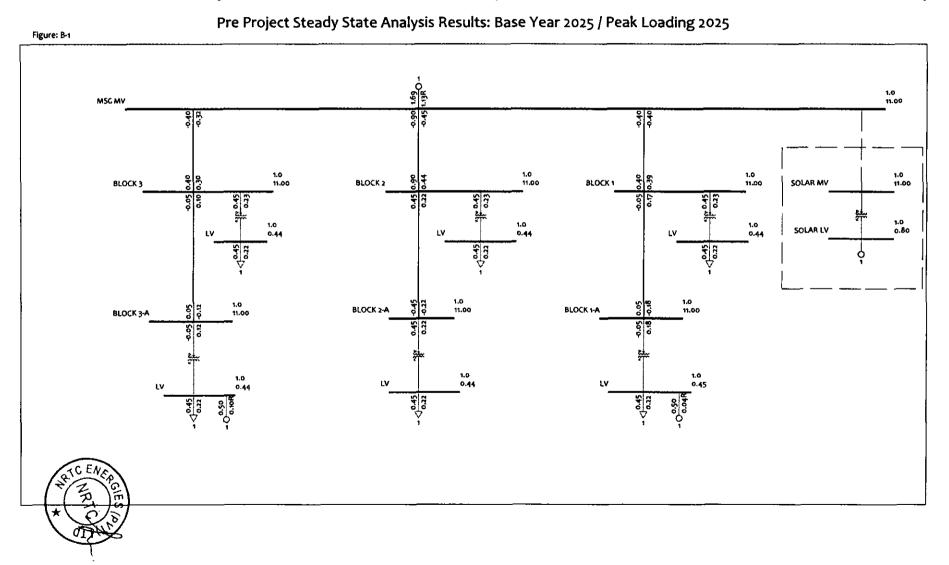
Operational Temperature	-40°C - +85°C	
Power Output Tolerance	0~3%	
Voc and isc Tolerance	±3%	
Maximum System Voltage	DC1500V (IEC/UL)	
Maximum Series Fuse Rating	25A	
Nominal Operating Cell Temperature	45±2*C	
Protection Class	Class II	
	UL type 1 or 2	
Fire Rating	IEC Class C	

Mechanical Loading

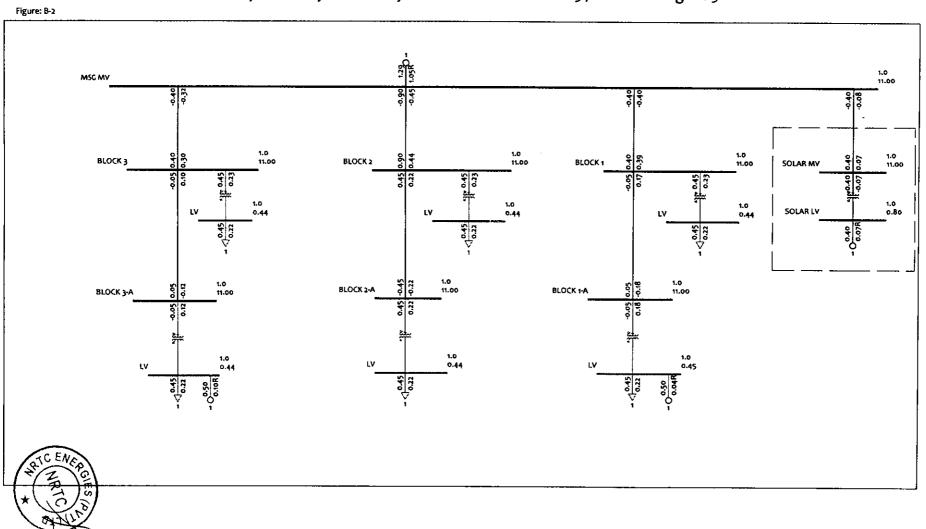
Hailstone Test	25mm Hailstone at the speed of 23m/s
Rear Side Maximum Static Loading	2400Pa
Front Side Maximum Static Loading	5400Pa

Temperature Ratings (STC)

Temperature Coefficient of Isc	+0.050%/°C
Temperature Coefficient of Voc	-0.230%/°C
Temperature Coefficient of Pmax	-0.290%/*C


No.8369 Shangyuan Road, Xi'an Economic And Technological Development Zone, Xi'an, Shaanxi, China. Web: www.longi.com Specifications includent in Mispatashee are subjective change without inter-LONGi reserves the Water Hinal interpretation. (22210208) (inters) DG

Annexure-B


Steady State Analysis Results

Load Flow Analysis of 500kW Solar PV System at Mehfooz Shaheed Garrison (MSG)

Load Flow Analysis of 500kW Solar PV System at Mehfooz Shaheed Garison (MSG)

Post Project Steady State Analysis Results: Base Year 2025 / Peak Loading 2025

Annexure-C

ian. Zen

Assessment of bus voltages

Annexure-C-1

Without MSG PP and With Sanctioned Load

In Service

	X F			AREA	VOLT		GEN	LOAD	SHUNT	Х ТО В	us	x			
	TRANSFORMER BUS# X RATIO ANG	NAME	ATING X BASKV SET A	ZONE	PU/KV	ANGLE	MW/MVAR	MW/MVAR	MW/MVAR	BUS# X NAME	X BASKV	AREA	СКТ	MW	MVAF
	4100 MSG		11.000	4	1.0000	0.0	1.7	0.0	0.0		*				
	6 10			1	11.000		1.1R	0.0	0.0	41001 BLOCK 1	11.000	4	1	0.4	0.
	10 10									41005 BLOCK 2	11.000	4	1	0.9	0.
	5 10									41009 BLOCK 3	11.000	4	1	0.4	0.
	41001 BLO	СК 1	11.000	4	0.9999	-0.0	0.0	0.0	0.0						
	6 10			1	10.998		0.0	0.0	0.0	4100 MSG MV	11.000	4	1	-0.4	-0.
			31 2							41002 LV	0.4400	4	1	0.4	0.
	2 10		51 2							41003 BLOCK 1-A	11.000	4	1	-0.1	0.
	41002 LV		0.4400	4	0.9929	-0.8	0.0	0.4	0.0						
	1.000UN	:::::::::::::::::::::::::::::::::::::::	 31 2	1	0.4369		0.0	0.2	0.0	41001 BLOCK 1	11.000	4	1	-0.4	-0.
	41003 BLO			4	0.9998	~0.0	0.0	0.0	0.0						
				1	10.998		0.0	0.0	0.0	41001 BLOCK 1	11.000	4	1	0.1	-0.
	2 10	-								41004 LV	0.4400	4	1	-0.1	0.
	0.975LK 41004 LV	-	12 2 0.4400	4	1.0199	0.1	0.5	0.4	0.0						
	1.000UN			1	0.4488		0.0R	0.2	0.0	41003 BLOCK 1-A	11.000	4	1	0.1	-0.
	41005 BLO	СК 2	11.000	4	0.9996	-0.0	0.0	0.0	0.0						
ATC EN	VER			1	10.996		0.0	0.0	0.0	4100 MSG MV	11.000	4	1	-0.9	-0.
1×12	10									41006 LV	0.4400		1	0.4	0.3

5 10							41007 BLOCK 2-A	11.000	4	1	0.4	0.2
41006 LV		4 0.9926	-0.8	0.0	0.4	0.0						
1.000UN		1 0.4367		0.0	0.2	0.0	41005 BLOCK 2	11.000	4	1	-0.4	-0.2
41007 BLOCK 2-4		4 0.9996	-0.0	0.0	0.0	0.0						
5 10		1 10.996		0.0	0.0	0.0	41005 BLOCK 2	11.000	4	1	-0.4	-0.2
	~ ~						41008 LV	0.4400	4	1	0.4	0.2
41008 LV	31 2 0.4400	4 1.0053	-0.8	0.0	0.4	0.0						
1.000UN		1 0.4424		0.0	0.2	0.0	41007 BLOCK 2-A	11.000	4	1	-0.4	-0.2
41009 BLOCK 3		4 0.9996	-0.0	0.0	0.0	0.0						
5 10		1 10.996		0.0	0.0	0.0	4100 MSG MV	11.000	4	1	-0.4	-0.3
1.000LK	31 2						410010 LV	0.4400	4	1	0.4	0.2
	JI 2						10011 BLOCK 3-A	11.000	4	1	-0.1	0.1
	0.4400	4 0.9927	-0.8	0.0	0.4	0.0 -						
1.000UN	31 2	1 0.4368		0.0	0.2	0.0	41009 BLOCK 3	11.000	4	1	-0.4	-0.2
410011 BLOCK 3-2		4 0.9996	-0.0	0.0	0.0	0.0 -						
1 10		1 10.995		0.0	0.0	0.0	41009 BLOCK 3	11.000	4	1	0.1	-0.1
0.988LK	4 3					4	10012 LV	0.4400	4	1	-0.1	0.1
	0.4400	4 1.0099	0.1	0.5	0.4	0.0 -						
1.000UN	4 3	1 0.4444		0.1R	0.2	0.0 4	10011 BLOCK 3-A	11.000	4	1	0.1	-0.1

.

•

Annexure-C-2

المريد والمعروفة

With MSG PP and With Sanctioned Load In Service

	MSG SC	LAR PV S	SYSTEM							R TRANSFO R NON-TRA		BRANCHE
X FROM BUS TRANSFORMER RATING	-X AREA	VOLT		GEN	LOAD	SHUNT	X	то	BUS	X		
BUS# X NAMEX BASI RATIO ANGLE % SET A		PU/KV	ANGLE	MW/MVAR	MW/MVAR	MW/MVAR	BUS#	X NAME	X BASKV	AREA CKT	MW	MVAR
4100 MSG MV 11.00	00 4	1.0000	0.0	1.3	0.0	0.0						
6 10	1	11.000		1.1R	0.0	0.0	41001	BLOCK 1	11.000	4 1	0.4	0.4
10 10							41005	BLOCK 2	11.000	4 1	0.9	0.4
5 10							41009	BLOCK 3	11.000	4 1	0.4	0.3
4 10									11.000			
41001 BLOCK 1 11.00				0.0	0.0	0.0	**					
6 10	1	10.998		0.0	0.0	0.0	4100	MSG MV	11.000	4 1	-0.4	-0.4
1.000LK 31 2	2					9.	41002	LV	0.4400	4 1	0.4	0.2
2 10							41003	BLOCK 1-	A 11.000	4 1	-0.1	0.2
41002 LV 0.440	00 4	0.9929	-0.8	0.0	0.4	0.0						
1.000un 31 2	_	0.4369		0.0	0.2	0.0	41001	BLOCK 1	11.000	4 1	-0.4	-0.2
41003 BLOCK 1-A 11.00	00 4	0.9998	-0.0	0.0	0.0	0.0						
2 10	1	10.998		0.0	0.0	0.0	41001	BLOCK 1	11.000	4 1	0.1	-0.2
0.975LK 12 2	,						41004	ΓΛ	0.4400	4 1	-0.1	0.2
41004 LV 0.440		1.0199	0.1	0.5	0.4	0.0						
1.000UN 12 2		0.4488		0.0R	0.2	0.0	41003	BLOCK 1-3	A 11.000	4 1	0.1	-0.2
41005 BLOCK 2 11.00	00 4	0.9996	-0.0	0.0	0.0	0.0						
10 10	1	10.996		0.0	0.0	0.0	4100 1	MSG MV	11.000	4 1	-0.9	-0.5

.

ATC ENER


16

1.000LK 31 2				41006 LV	0.4400	4 1	0.4	(
5 10				41007 BLOCK 2-A	11.000	4 1	0.4	C
41006 LV 0.4400	4 0.9926	-0.8 0.0	0.4	0.0				
1.000UN 31 2	1 0.4367	0.0	0.2	0.0 41005 BLOCK 2	11.000	4 1	-0.4	-0
41007 BLOCK 2-A 11.000	4 0.9996	-0.0 0.0	0.0	0.0				
5 10	1 10.996	0.0	0.0	0.0 41005 BLOCK 2	11.000	4 1	-0.4	-0
0.988LK 31 2				41008 LV	0.4400	4 1	0.4	0
41008 LV 0.4400	4 1.0053 -	-0.8 0.0	0.4	0.0				
1.000UN 31 2	1 0.4424	0.0	0.2	0.0 41007 BLOCK 2-A	11.000	4 1	-0.4	-0
41009 BLOCK 3 11.000	4 0.9996 -	-0.0 0.0	0.0	0.0				
	1 10.996	0.0	0.0	0.0 4100 MSG MV	11.000	4 1	-0.4	-0
5 10				410010 LV	0.4400	4 1	0.4	0
1.000LK 31 2				410011 BLOCK 3-A	11.000	4 1	-0.1	0
1 10 410010 LV 0.4400	4 0.9927 -	-0.8 0.0	0.4	0.0				-
1.000UN 31 2	1 0.4368	0.0	0.2	0.0 41009 BLOCK 3	11.000	4 1	-0.4	-0
410011 BLOCK 3-A 11.000	4 0.9996 -	-0.0 0.0	0.0	0.0				
1 10	1 10.995	0.0	0.0	0.0 41009 BLOCK 3	11.000	41	0.1	-0.
0.988LK 4 3				410012 LV	0.4400	41	-0.1	0
410012 LV 0.4400	4 1.0099	0.1 0.5	0.4	0.0				
1.000UN 4 3	1 0.4444	0.1R	0.2	0.0 410011 BLOCK 3-A	11.000	4 1	0.1	-0
410013 SOLAR MV 11.000	4 1.0001	0.0 0.0	0.0	0.0				
4 10	1 11.001	0.0	0.0	0.0 4100 MSG MV	11.000	41	0.4	0.

410014 SOLAR LV 0.8000 1 -0.4 -0.1 1.000LK 410014 SOLAR LV 1 6 0.8000 4 1.0015 0.4 0.5 0.0 1 0.8012 0.1R 0.0 0.0 410013 SOLAR MV 11.000 0.4 0.1 4 1 1.000UN 64 1

. .

TC ENERGY CONTROL OF

NRT

SYSTEM STUDY ANALYSIS OF OKARA CANTT (OC) 999kW SOLAR PV SYSTEM

Report

ARCO Energy

PAKISTAN Tel: +92-300-8827101

CONTENTS

EXECUTIVE SUMMARY
1 INTRODUCTION
1.1 Project Description
1.2 Interconnection Arrangement
1.3 Objective of System Study Analysis
1.4 Study Components
2 STUDY METHODOLOGY
2.1 Study Criteria
2.2 Steady State Analysis
2.2.1 System Intact Analysis
2.2.2 Transmission Line Loading Analysis
2.2.3 Voltage Analysis
3 STEADY STATE ANALYSIS
3.1 Model Development
3.2 Power Flow Assessment Without Okara Cantt PP and with Sanctioned Load In Service8
3.2.1 Base Year 2025: Peak Loading Summer with Sanctioned Load in Service
3.3 Power Flow Assessment with Okara Cantt PP
3.3.1 Base Year 2025: Peak Loading Summer with Sanctioned Load In Service
3.4 Conclusion
4 CONCLUSION
4.1 Steady State Assessment
LIST OF ANNEXURES 12

EXECUTIVE SUMMARY

This report provides the documentation of an assessment that has been performed for the interconnection of a 999kW Solar PV Power Generation project at Okara Cantt (OC) distribution system at 11kV project of "Military Engineering Services" (MES). The project will be a Grid tied 999kW Solar PV based system connected with the power network of OC. The '999kW OC solar PV Power Generation project' is located at Q943+J56, Okara Cantonment, Okara, Pakistan.

The integration of solar power generation at the Okara Cantt premises necessitates a comprehensive system study analysis to ensure optimal operation of the electrical network. Okara Cantt currently receives a single point supply from LESCO with a sanctioned load of 4.5MW. The introduction of solar power generation will influence the flow of electricity within the premises, impacting both consumption and injection dynamics.

The existing setup includes transformers, switchgear, and distribution panels to distribute electricity throughout the premises. The sanctioned load of 4.5MW is the maximum load that can be drawn from LESCO's grid.

The entire solar generation within the Okara Cantt premises will be consumed internally without exporting any power to the grid. To ensure the safe and efficient integration of solar power, a load flow study is required to analyze the impact of this interconnection on the existing electrical network. This study will assist in obtaining solar generation concurrence and ensuring compliance with relevant technical and regulatory requirements.

The analyses have been carried out in following scenarios;

- Without 999kW Okara Cantt solar PV with sanctioned load in service.
- With 999kW Okara Cantt solar PV with sanctioned load in service.

Steady state power flow assessment has been performed using the network data of Okara Cantt. Power flow study was conducted without Solar Project with sanctioned load in service to analyze the magnitude and phase angles of bus voltages, line loadings and power flows under steady-state conditions. Power flow analysis was also conducted with sanctioned load in service after the interconnection of the Solar project with the Okara Cantt distribution system. The power flow results for the system intact shows that the power flows on all the Okara Cantt transmission and distribution

line branches are within their normal line loading limit. There is no capacity constraint in terms of power flow or voltage ratings within the study area.

This systems study is a critical step in obtaining solar generation concurrence for Okara Cantt. By ensuring the stability and reliability of the electrical system, the study facilitates seamless solar power integration while maintaining compliance with Okara Cantt and regulatory requirements.

Based on the study results, it is concluded that proposed generation interconnection assessment for 999kW Okara Cantt solar PV Power Generation project meets the NEPRA grid code planning criteria.

1 INTRODUCTION

1.1 Project Description

This report provides the documentation of an assessment that has been performed by ARCO Energy in response to a request made by Okara Cantt (OC) ("Project Owner" or "PO") for the interconnection of a 999kWp Solar PV Power Generation project ("Project") to the OC power System at 11kV.

The '999kW Okara Cantt solar PV Power Generation project' is located at Q943+J56, Okara Cantonment, Okara, Pakistan. Figure 1.1 shows Google site map of the project.

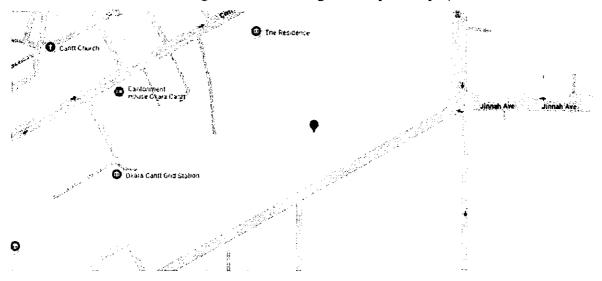


Figure 1.1: Google Site Map of the Solar PV Power Generation Project.

1.2 Interconnection Arrangement

Okara Cantt aims to integrate solar power generation into its existing electrical infrastructure. Okara Cantt currently receives a single-point power supply from LESCO with a sanctioned load of 4.5MW. The entire solar generation within the Okara Cantt premises will be consumed internally without exporting any power to the grid. The objective of the analyses is to evaluate the impact of the solar power plant on the Okara Cantt transmission and distribution system.

1.3 Objective of System Study Analysis

The primary objectives of the load flow study are:

- To evaluate the impact of solar power injection on the voltage levels and power distribution within Okara Cantt premises.
- To determine the changes in power flow patterns resulting from the integration of solar generation.
- To ensure that the existing electrical infrastructure can support the additional solar power without causing instability or operational issues.
- To verify compliance with regulatory requirements for solar power interconnection and obtain concurrence for solar generation.

1.4 Study Components

999kW solar PV system is modelled into the Okara Cantt distribution system by ARCO Energy. Technical analysis includes:

- i) Data gathering and modelling
- ii) Steady state analysis
- iii) Conclusion

The above scope of work involved in the technical analysis has been carried to demonstrate that connection assessment of this PV system meets the National Electric Power Regulatory Authority (NEPRA) distribution code.

The analyses have been carried out in following scenarios;

- Without 999kW Okara Cantt solar PV with sanctioned load in service.
- With 999kW Okara Cantt solar PV with sanctioned load in service.

This report documents the results of the steady state analyses. The principal objective of these analyses is to evaluate the impact of 999kW solar PV system to the distribution system of Okara Cantt and vice versa.

2 STUDY METHODOLOGY

2.1 Study Criteria

The study has been carried out based on the National Electric Power Regulatory Authority (NEPRA) Grid Code planning criteria. Key parameters and their corresponding limits have been summarized in table below.

Para	ameter	Range
Voltage Level	Normal Condition	±5 % p.u at 132kV and below +8%,-5% p.u at 220kVand above
	Contingency	±10 % p.u
T/Line Loading	Normal Condition	100%
Capacity	Contingency	100%
	Nominal	50 Hz
Frequency	Normal Variation	49.8 Hz - 50.2 Hz
	Contingency Band	49.4 Hz - 50.5 Hz
Power Factor	Lagging	0.95
rower ractor	Leading	0.95

2.2 Steady State Analysis

The purpose of steady-state analysis is to analyse the impact of the proposed solar power plant on distribution system facilities under steady-state conditions. It involves two distinct analyses: line loading analysis and voltage analysis. Power flow solutions using the PSS/E® program (Version 33.4) has been performed.

A "study area" was defined to represent the areas of interest within Okara Cantt.

2.2.1 System Intact Analysis

The incremental impact of the project on substations and transmission line loading under normal conditions was evaluated by comparing transmission and distribution system power flows through different scenarios for the project.

2.2.2 Transmission Line Loading Analysis

11kV and 0.4kV rated transmission and distribution facilities in the study area have been monitored for line loadings.

2.2.3 Voltage Analysis

Voltages at buses inside the study area have been monitored for possible for voltage violations in accordance with NEPRA Grid Code guidelines.

3 STEADY STATE ANALYSIS

3.1 Model Development

Project specific data was provided by the plant owner and it has been compiled and presented in **Annexure-A**. The steady state model of the power plant is presented in table below:

	Generator
No. of Collector Units	1
Generation size of each	841
collector (kVA)	
Active Power of each	799
collector Pgen. (kW)	199
Power Factor	0.95 lagging, 0.95 leading
Qmin, Qmax (kVAR)	- 0.2626, 0.2626
Rated Frequency	50 Hz
Generation Voltage	0.8V
Xsource	00
	Generation Step Up Transformer
No of Transformer	1
kVA Capacity of each	1250
GSU	
% Reactance (X)	5 %
	Okara Cantt
Sanctioned Load (LESCO)	4500 kW

Steady state power flow assessment has been performed using the network data of OC.

3.2 Power Flow Assessment Without Okara Cantt PP and with Sanctioned Load In Service

Power flow study without Okara Cantt solar and with sanctioned load in service, was conducted to analyze the magnitude and phase angles of bus voltages, line loadings and power flows under steadystate conditions.

The result of this power flow analysis is in Annexure-B.

3.2.1 Base Year 2025: Peak Loading Summer with Sanctioned Load in Service

Power flow analysis has been performed on the peak loading summer (June) 2025 case of Okara Cantt network. This base case included a detailed representation of the Okara Cantt transmission and distribution system in the study area.

The steady state results, depicts that the power flows on all the Okara Cantt distribution line branches are within their normal loading limits. There is no capacity constraint in terms of load flow or voltage ratings around the study area. Result of the power flow analysis is attached in **Figure B-1**.

3.3 Power Flow Assessment with Okara Cantt PP

Power flow study of Okara Cantt solar project was conducted with sanctioned load (in service and out of service) to determine the reliability impact of the 999kW Okara Cantt solar project on the Okara Cantt distribution system. This includes the performance of load flow analysis to identify any facility overload or voltage condition that violates the NEPRA planning criteria. Any such violation that is either directly attributable to this project or for which it will have a shared responsibility is included in this report.

The results of the project power flow analysis are plotted in Annexure-B.

3.3.1 Base Year 2025: Peak Loading Summer with Sanctioned Load In Service

A base case has been developed with sanctioned load in service at Okara Cantt solar for peak loading summer (June) 2025 that allow us to judge the impact of Okara Cantt solar project on the Okara Cantt network.

Project power flow analysis has been performed after the connection of the project with the Okara Cantt distribution system. This includes the detailed representation of the power plant.

The steady state result, with sanctioned load in service at Okara Cantt solar depicts that the power flows on all the transmission line branches are within their normal loading limits. There is no capacity constraint in terms of load flow or voltage ratings around the study area.

Result of the power flow analysis is attached in Figure B-2.

The results of the project bus voltages analysis are attached in Annexure-C.

3.4 Conclusion

Steady state power flow assessment has been performed. Power flow study was conducted without solar Project with sanctioned load in service to analyze the magnitude and phase angles of bus voltages, line loadings and power flows under steady-state conditions. Power flow analysis was also conducted with sanctioned load in service after the interconnection of the Solar project with the Okara Cantt distribution system. The power flow results for the system intact shows that the power flows on all the Okara Cantt distribution line branches are within their normal line loading limit. There is no capacity constraint in terms of power flow or voltage ratings within the study area.

4 CONCLUSION

4.1 Steady State Assessment

Steady state power flow assessment has been performed. Power flow study was conducted without Okara Cantt solar with sanctioned load in service, to analyze the magnitude and phase angles of bus voltages, line loadings, and power flows under steady-state conditions. Power flow analysis was also conducted with Okara Cantt solar and with sanctioned load in service with Okara Cantt distribution system. Power flow results showed that the power flows on all the Okara Cantt distribution branches are within their normal loading limit. There is no capacity constraint in terms of power flow or voltage ratings within the study area.

The steady state results found no capacity constraint in terms of power flow and voltage ranges.

Hence, it is concluded that based on the study results the Interconnection Assessment for 999kW Okara Cantt solar PV system with Okara Cantt Transmission and Distribution Network, meets the NEPRA grid code planning criteria.

LIST OF ANNEXURES

Annex A: Project Specific Data.

Annex A-1: Project Site Map.

Annex A-2: Power Plant Data.

Annex B: Power Flow Steady State Analysis Result

Figure B-1: Base Year 2025 - Peak loading summer without Okara Cantt solar and Sanctioned load in service.

Figure B-2: Base Year 2025 - Peak loading summer with Okara Cantt solar and Sanctioned load in service.

Annex C: Assessment of Bus Voltages.

Annex C-1: Without Okara Cantt solar and with Sanctioned Load In Service. Annex C-2: With Okara Cantt solar and with Sanctioned Load In Service.

Annexure-A

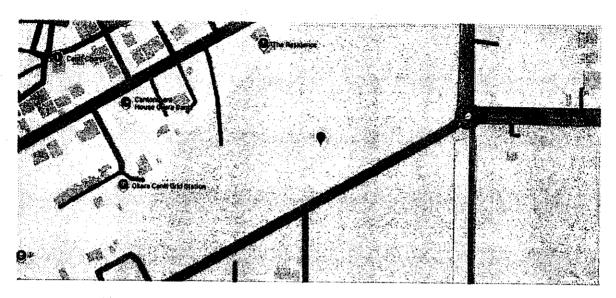
I.S. main

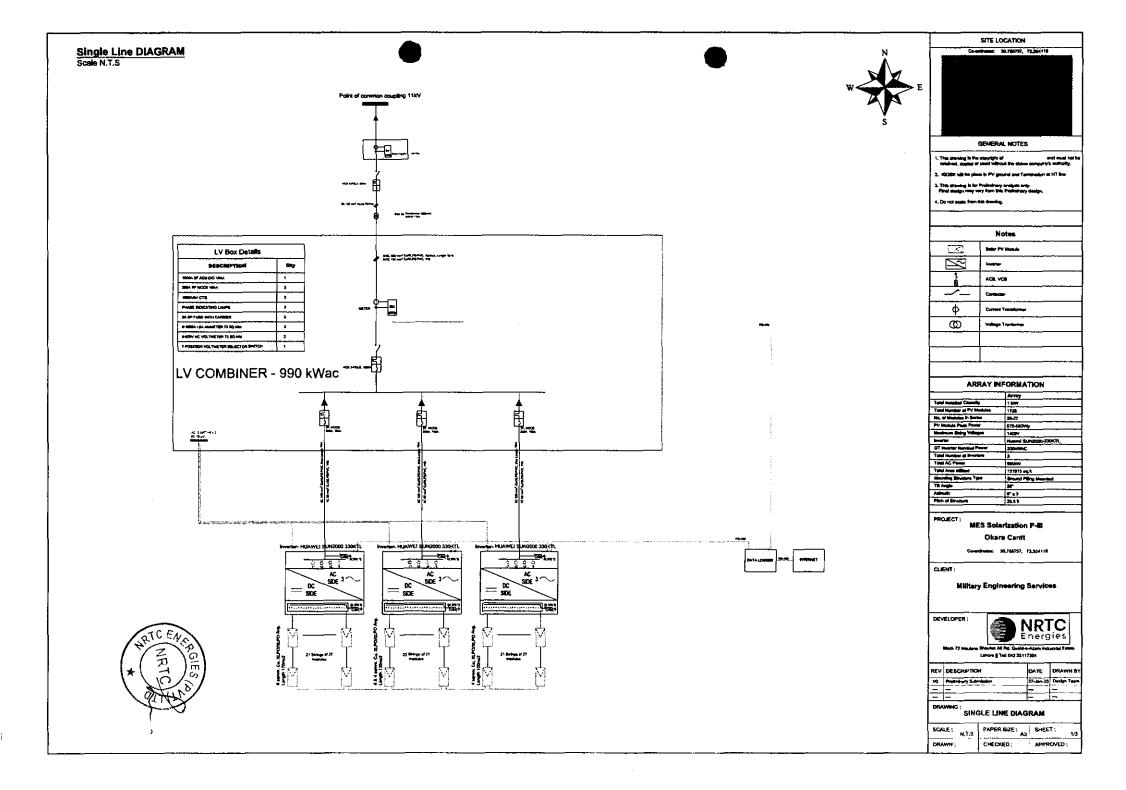
Project Specific Data

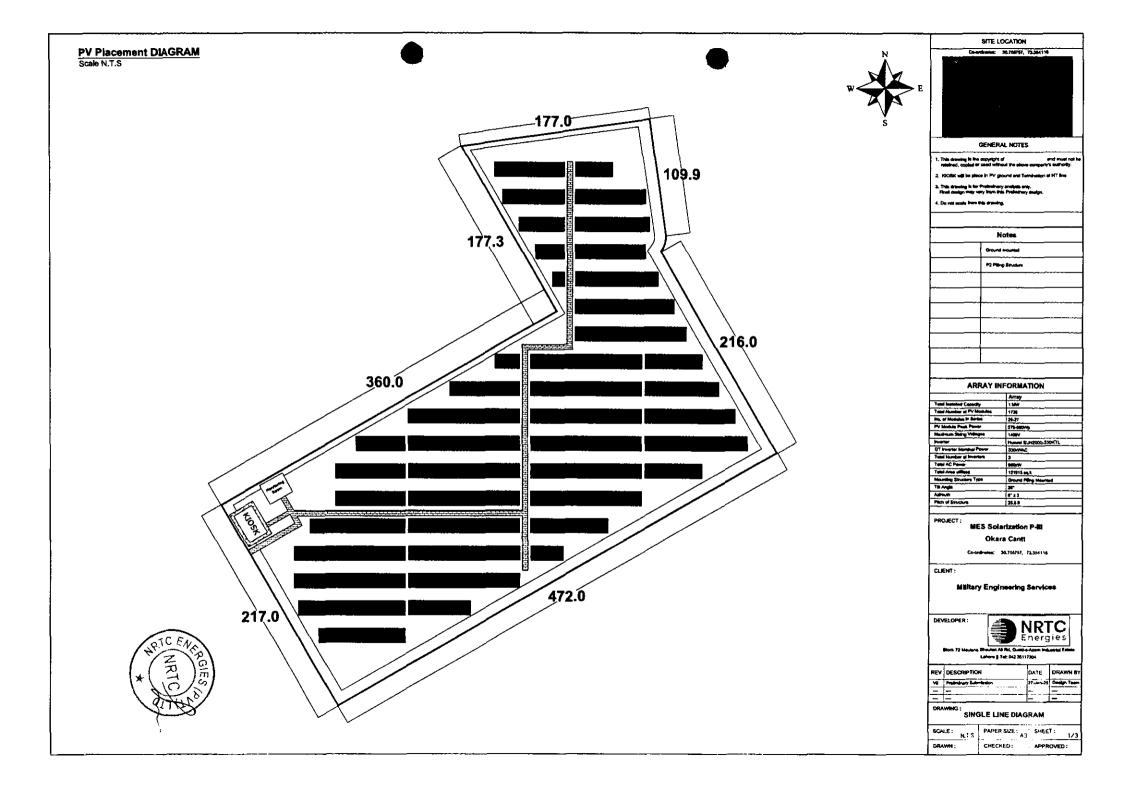
Annexure-A-1

i.

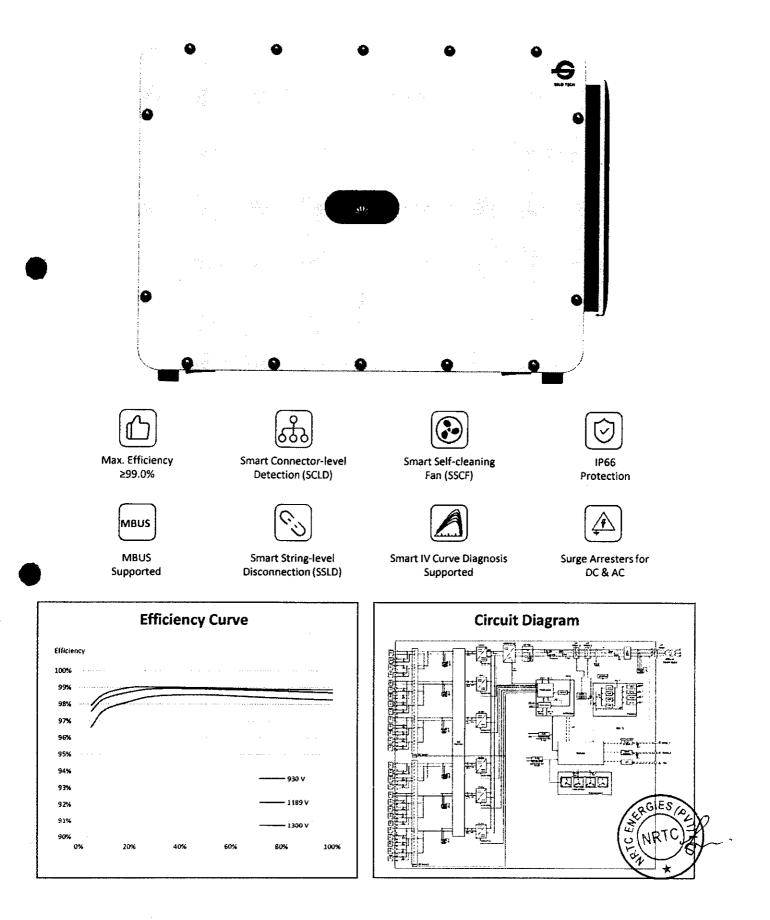
Project Site Map




Figure 1.1: Google Site Map of the Solar PV Power Generation Project.



Annexure-A-2


Power Plant Data

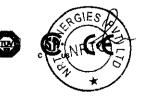
SUN2000-330KTL-H1 Smart String Inverter

SUN2000-330KTL-H1 Technical Specifications

Max. Efficiency	≥99.0%
European Efficiency	≥98.8%
Input	
Max. Input Voltage	1,500 V
Number of MPP Trackers	6
Max. Current per MPPT	65 A
Max. Short Circuit Current per MPPT	115 A
Max. PV Inputs per MPPT	4/5/5/4/5/5
	· ·
Start Voltage	550 V
MPPT Operating Voltage Range	500 V ~ 1,500 V
Nominal Input Voltage	1,080 V
Outpu	t <u>e se se</u>
Nominal AC Active Power	300,000 W
Max. AC Apparent Power	330,000 VA
Max. AC Active Power (coso=1)	330,000 W
Nominal Output Voltage	800 V, 3W + PE
Rated AC Grid Frequency	50 Hz / 60 Hz
Nominal Output Current	216.6 A
Max. Output Current	238.2 A
Adjustable Power Factor Range	0.8 LG 0.8 LD
Total Harmonic Distortion	< 1%
Protecti	
an a	станая на волька с столода с на на сторите са ставо добава ставит сантора, ба санае обла базат с на кайто стар По на вола с област с стара с на става на ставо добава ставит сантора, ба става обла базат с на кайто стара, с
imart String-Level Disconnector(SSLD)	Yes
Anti-Islanding Protection	Yes
AC Overcurrent Protection	Yes
DC Reverse-polarity Protection	Yes
PV-array String Fault Monitoring	Yes
DC Surge Arrester	Type II
AC Surge Arrester	Type II
DC insulation Resistance Detection	Yes
AC Grounding Fault Protection	Yes
Residual Current Monitoring Unit	Yes
Communic	ation
tariainen oli internationalen eritti tule entre etteralen erittiinen erittiinen erittiinen erittiinen erittiine Display	LED Indicators, WLAN + APP
JSB	Yes
ABUS	Yes
к саставить в Сменяния в составляется воду с составляется в водимальность в на образование составляется составляется составляется в со	Yes
Genera	and the main the construction of the second
Dimensions (W x H x D)	1,048 x 732 x 395 mm
Veight (with mounting plate)	≤112 kg
Operating Temperature Range	-25 °C ~ 60 °C
Cooling Method	Smart Air Cooling
Max. Operating Altitude without Derating	4,000 m (13,123 ft.) 0~100% Waterproof Connector + OI/DI Terminal
Relative Humidity	0~100%
	Waterproof Connector + OT/DT Terminal
AC Connector	

LR5-72HTH 560~575M

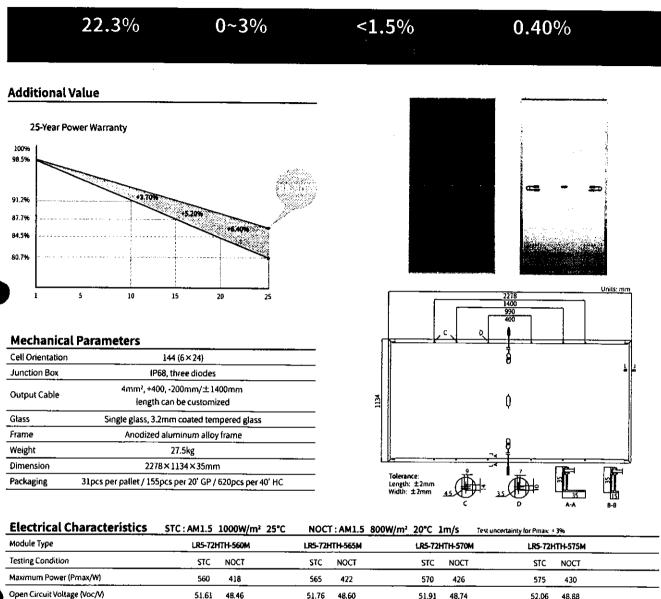
- Suitable for distributed projects
- Excellent outdoor power generation performance
- High module quality ensures long-term reliability


15-year Warranty for Materials and Processing

25-year Warranty for Extra Linear Power Output

Complete System and Product Certifications

IEC 61215, IEC 61730, UL 61730 ISO9001:2015: ISO Quality Management System ISO14001: 2015: ISO Environment Management System ISO45001: 2018: Occupational Health and Safety IEC62941: Guideline for module design qualification and type approval



Mind Comment

Hi-MO 🗗

LR5-72HTH 560~575M

		51:10 10100	51.91 40.14	52.00 40.00	
Short Circuit Current (Isc/A)	13.94 11.26	14.01 11.31	14.07 11.36	14.14 11.42	
Voltage at Maximum Power (Vmp/V)	43.46 39.66	43,61 39.79	43.76 39.93	43.91 40.07	
Current at Maximum Power (Imp/A)	12.89 10.55	12.96 10.61	13.03 10.67	13.10 10.72	
Module Efficiency(%)	21.7	21.9	22.1	22.3	

Operating Parameters

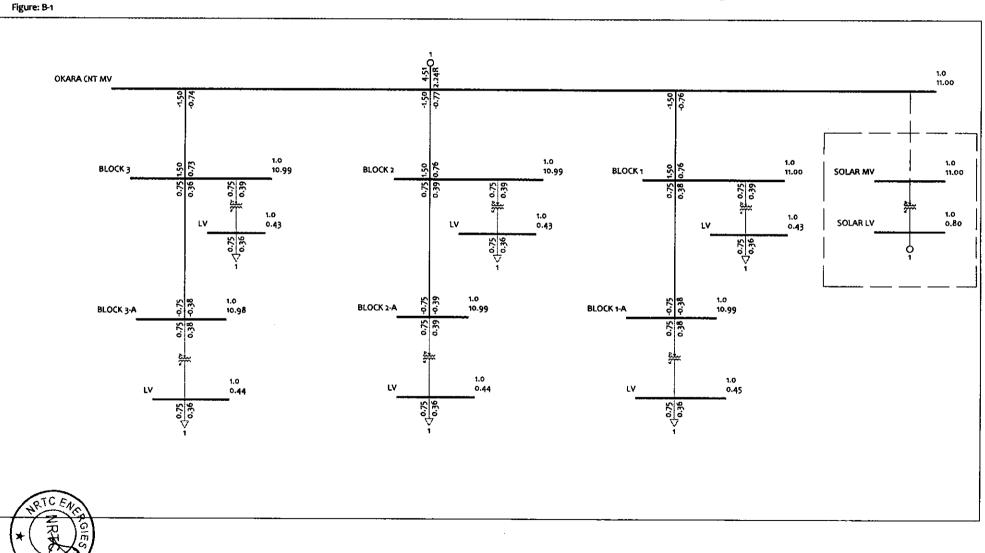
Operational Temperature	-40°C ~ +85°C	
Power Output Tolerance	0~3%	
Voc and Isc Tolerance	±3%	
Maximum System Voltage	DC1500V (IEC/UL)	
Maximum Series Fuse Rating	25A	
Nominal Operating Cell Temperature	45±2°C	
Protection Class	Class II	
Fire Paties	UL type 1 or 2	
Fire Rating	IEC Class C	

Mechanical Loading

Front Side Maximum Static Loading	5400Pa
Rear Side Maximum Static Loading	2400Pa
Hailstone Test	25mm Hailstone at the speed of 23m/s

Temperature Ratings (STC)

Temperature Coefficient of Isc	+0.050%/°C
Temperature Coefficient of Voc	-0.230%/*C
Temperature Coefficient of Pmax	-0.290%/°C


No.8369 Shangyuan Road, Xi'an Economic And Technological Development Zone, Xi'an, Shaanxi, China. Web: www.longi.com Specifications included in this patients are subject to change without notice. LONGI reserves the rights final interpretation. (202210200 aftv03006

Annexure-B

Steady State Analysis Results

Load Flow Analysis of 999kW Solar PV System at Okara Cantt (OC)

Pre Project Steady State Analysis Results: Base Year 2025 / Peak Loading 2025

Load Flow Analysis of 999kW Solar PV System at Okara Cantt (OC)

Figure: B-2 1.0 OKARA CNT MV 11.00 1.50 ŝ -1.50 0.80 1.0 1.0 1.0 1.0 BLOCK 3 2 양 BLOCK 2 10.99 10.99 BLOCK 1 11.00 SOLAR MV 11.00 0.75 0.75 0.39 0.75 0.75 0.75 0.39 3<u>5 0.75</u> <u>**</u>** 1.0 1.0 1.0 1.0 SOLAR LV LV 0.80 0.43 LV 0.43 ιv 0.43 <0.75 0.36 0.75 0.80 1.0 1.0 10.99 1.0 5 0.38 BLOCK 2-A 515 10.99 BLOCK 1-A BLOCK 3-A 10.98 0.75 1.0 1.0 1.0 0.44 LV 0.44 ιv 0.45 LV 0.75 0.36 0.36 0.75

Post Project Steady State Analysis Results: Base Year 2025 / Peak Loading 2025

Annexure-C

Assessment of bus voltages

Annexure-C-1

Without Okara Cantt PP and With Sanctioned Load In Service

PTI INTERACTIVE POWER SYSTEM SIMULATOR--PSS(R)E SAT, FEB 15 2025 17:25 OKARA CANTT SOLAR PV SYSTEM **%MVA FOR TRANSFORMERS** % I FOR NON-TRANSFORMER BRANCHES X----- FROM BUS ----X AREA VOLT GEN LOAD SHUNT X----- TO BUS -----X TRANSFORMER RATING BUS# X-- NAME --- X BASKV ZONE PU/KV ANGLE MW/MVAR MW/MVAR MW/MVAR BUS# X-- NAME -- X BASKV AREA CKT MW MVAR RATIO ANGLE % SET A

4100 OKARA CNT MV11.000	4 1.0000	0.0	4.5	0.0	0.0
17 10	1 11.000		2.2R	0.0	0.0 41001 BLOCK 1 11.000 4 1 1.5 0.8
17 10					41005 BLOCK 2 11.000 4 1 1.5 0.8
17 10					41009 BLOCK 3 11.000 4 1 1.5 0.7
41001 BLOCK 1 11.000	4 0.9997	-0.0	0.0	0.0	0.0
17 10	1 10.996		0.0	0.0	0.0 4100 OKARA CNT MV11.000 4 1 -1.5 -0.8
					41002 LV 0.4400 4 1 0.7 0.4
1.000LK 53 2					41003 BLOCK 1-A 11.000 4 1 0.7 0.4
8 10 41002 LV 0.4400	4 0.9878	-1.4	0.0	0.8	0.0
1.000UN 52 2	1 0.4346		0.0	0.4	0.0 41001 BLOCK 1 11.000 4 1 -0.7 -0.4
41003 BLOCK 1-A 11.000	4 0.9995	-0.0	0.0	0.0	0.0
	1 10.994		0.0	0.0	0.0 41001 BLOCK 1 11.000 4 1 -0.7 -0.4
8 10					41004 LV 0.4400 4 1 0.7 0.4
0.975LK 53 2 41004 LV 0.4400	4 1.0136	-1.3	0.0	0.8	0.0
1.000UN 52 2	1 0.4460		0.0	0.4	0.0 41003 BLOCK 1-A 11.000 4 1 -0.7 -0.4
41005 BLOCK 2 11.000	4 0.9993	-0.0	0.0	0.0	0.0
	1 10.992		0.0	0.0	0.0 4100 OKARA CNT MV11.000 4 1 -1.5 -0.8
17 10 1.000LK 53 2					41006 LV 0.4400 4 1 0.7 0.4

1

					41007 BLOCK 2-A 11.000 4 1 0.8	0.4
8 10 41006 LV 0.44	00 4 0.9874	-1.4	0.0	0.8	0.0	
1.000UN 52	1 0.4345		0.0	0.4	0.0 41005 BLOCK 2 11.000 4 1 -0.7	-0.4
41007 BLOCK 2-A 11.0	00 4 0.9993	-0.0	0.0	0.0	0.0	
10	1 10.992		0.0	0.0	0.0 41005 BLOCK 2 11.000 4 1 -0.8	-0.4
					41008 LV 0.4400 4 1 0.7	0.4
0.988LK 53 41008 LV 0.44		-1.4	0.0	0.8	0.0	
	1 0.4401		0.0	0.4	0.0 41007 BLOCK 2-A 11.000 4 1 -0.7	-0.4
41009 BLOCK 3 11.0	0 4 0.9990	-0.1	0.0	0.0	0.0	
17 10	1 10.989		0.0	0.0	0.0 4100 OKARA CNT MV11.000 4 1 -1.5	-0.7
1.000LK 53	2				410010 LV 0.4400 4 1 0.7	0.4
	<u>-</u>				410011 BLOCK 3-A 11.000 4 1 0.7	0.4
B 10 410010 LV 0.44	0 4 0.9871	-1.4	0.0	0.8	0.0	
1.000UN 52	1 0.4343		0.0	0.4	0.0 41009 BLOCK 3 11.000 4 1 -0.7	-0.4
410011 BLOCK 3-A 11.0	0 4 0.9985	-0.1	0.0	0.0	0.0	
3 10	1 10.983		0.0	0.0	0.0 41009 BLOCK 3 11.000 4 1 -0.7	-0.4
).988LK 28	3				410012 LV 0.4400 4 1 0.8	0.4
410012 LV 0.44	, 0 4 1.0038	-0.9	0.0	0.8	0.0	
1.000UN 28	1 0.4417		0.0	0.4	0.0 410011 BLOCK 3-A 11.000 4 1 -0.8	-0.4

Annexure-C-2

With Okara Cantt PP and With Sanctioned Load In Service

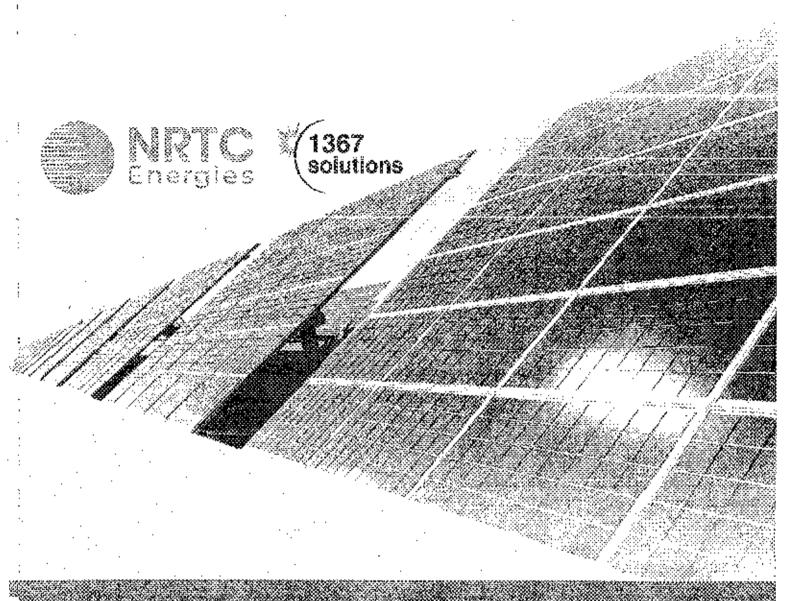
OKA	ARAR C			CTIVE POU SYSTEM	ER SYSTI	em simulj	ATORP:	SS (R) E		A FO	R TRANSFO	ORMERS	BRANCHES
X FROM BUSX A	REA	VOLT		GEN	LOAD	SHUNT	x	T	0 BUS		x		
IRANSFORMER RATING BUS# X-~ NAMEX BASKV Z RATIO ANGLE % SET A	ONE	PU/KV	ANGLE	MW/MVAR	MW/MVAR	MW/MVAR	BUS#	X NA	MEX BA	SKV I	AREA CKT	MW	MVAR
4100 OKARA CNT MV11.000	4 1	.0000	0.0	3.7	0.0	0.0							
	1 1	1.000		2.OR	0.0	0.0	41001	BLOCK	1 11.	000	41	1.5	0.8
7 10							41005	BLOCK	2 11.	000	41	1.5	0.8
7 10							41009	BLOCK	3 11.	000	41	1.5	0.7
7 10							410013	SOLAR	MV 11.	000	4 1	-0.8	-0.3
10 41001 BLOCK 1 11.000	40	.9997	-0.0	0.0	0.0	0.0	-						
	11	0.996		0.0	0.0	0.0	4100	okara	CNT MV11.	000	4 1	-1.5	-0.8
7 10					· .		41002	LV	0.4	400	4 1	0.7	0.4
.000LK 53 2							41003	BLOCK	1-a 11.	000	4 1	0.7	0.4
10 41002 LV 0.4400	40	.9878	-1.4	0.0	0.8	0.0							
.000UN 52 2	10	.4346		0.0	0.4	0.0	41001	BLOCK	1 11.	000	41	-0.7	-0.4
41003 BLOCK 1-A 11.000	40	. 9995	-0.0	0.0	0.0	0.0							
	11	0.994		0.0	0.0	0.0	41001	BLOCK	1 11.	000	41	-0.7	-0.4
10							41004	ΓN	0.4	400	4 1	0.7	0.4
.975LK 53 2 41004 LV 0.4400	41	.0136	-1.3	0.0	0.8	0.0							
.000UN 52 2	10	.4460		0.0	0.4	0.0	41003	BLOCK	1-A 11.	000	4 1	-0.7	-0.4
41005 BLOCK 2 11.000	40	. 9993	-0.0	0.0	0.0	0.0							
7 10	1 1	0.992		0.0	0.0	0.0	4100	OKARA (CNT MV11.	000	4 1	-1.5	-0.8

TC ENERGIES

1.000LK 53 2					41006 LV 0.4400 4 1 0.7 0.4
8 10					41007 BLOCK 2-A 11.000 4 1 0.8 0.4
	4 0.9874	~1.4	0.0	0.8	0.0
1.000 un 52 2	1 0.4345		0.0	0.4	0.0 41005 BLOCK 2 11.000 4 1 -0.7 -0.4
41007 BLOCK 2-A 11.000	4 0.9993	-0.0	0.0	0.0	0.0
8 10	1 10.992		0.0	0.0	0.0 41005 BLOCK 2 11.000 4 1 -0.8 -0.4
0.988LK 53 2 41008 LV 0.4400	4 1.0002	-1.4	0.0	0.8	41008 LV 0.4400 4 1 0.7 0.4 0.0
1.000UN 52 2	1 0.4401		0.0	0.4	0.0 41007 BLOCK 2-A 11.000 4 1 -0.7 -0.4
41009 BLOCK 3 11.000	4 0.9990	-0.1	0.0	0.0	0.0
17 10	1 10.989		0.0	0.0	0.0 4100 OKARA CNT MV11.000 4 1 -1.5 -0.7
1.000LK 53 2					410010 LV 0.4400 4 1 0.7 0.4
8 10 410010 LV 0.4400	4 0.9871	-1.4	0.0	0.8	410011 BLOCK 3-A 11.000 4 1 0.7 0.4
1.000UN 52 2	1 0.4343		0.0	0.4	0.0 41009 BLOCK 3 11.000 4 1 -0.7 -0.4
410011 BLOCK 3-A 11.000	4 0.9985	-0.1	0.0	0.0	0.0
8 10	1 10.983		0.0	0.0	0.0 41009 BLOCK 3 11.000 4 1 -0.7 -0.4
0.988LK 28 3 410012 LV 0.4400	4 1.0038	-0.9	0.0	0.8	410012 LV 0.4400 4 1 0.8 0.4 0.0
1.000UN 28 3	1 0.4417		0.0	0.4	0.0 410011 BLOCK 3-A 11.000 4 1 -0.8 -0.4
410013 SOLAR MV 11.000	4 1.0003	0.0	0.0	0.0	0.0
10	1 11.003		0.0	0.0	0.0 4100 OKARA CNT MV11.000 4 1 0.8 0.2

ATC EAK POILES

.



	· · · · · · ·			- 1 -		410014 SOLAR LV	0.8000	4	1	-0.8	-0.2	
1.000LK	67 1					· · · · · · · · · · · · · · · · · · ·			-			
410014 SOLA	R LV 0.8000	4 1.0053	0.9	0.8	0.0	0.0						
*********	والوحف عفيه خزوا حزل ويواجون مراد				•	and a second	· .					
	<i>(</i>)	1 0.8042		0.3R	0.0	0.0 410013 SOLAR MV	11.000	4	1	0.8	0.3	
1.000UN	67 1											

η.

Feasibility Study 5.5 MWp

Head Office:

72 Block, PECO Road, Lahore - Pakistan

Regional Offices:

Islamabad i Karachi | Peshawar | Quetta | Multan

FEASIBILITY STUDY 3.5 MWp SOLAR PLANT INSTALLATION

AT

MILITARY ENGINEERING SERVICES (MES) PAKISTAN

By 👘

NRTC Energies (Pvt.) Ltd.

1. Executive Summary

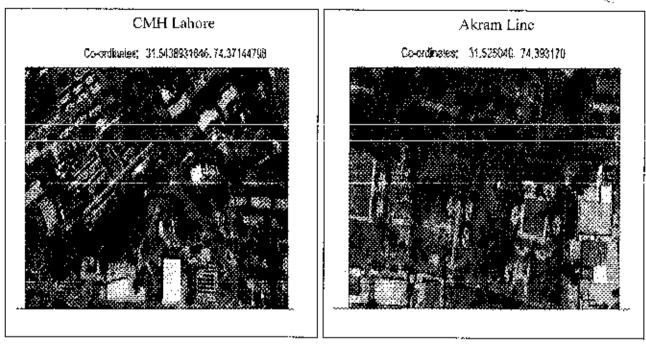
The feasibility examines the costs, practicality, and likely outcome of a Solar Photovoltaic (PV) installation at MES Pakistan sites.

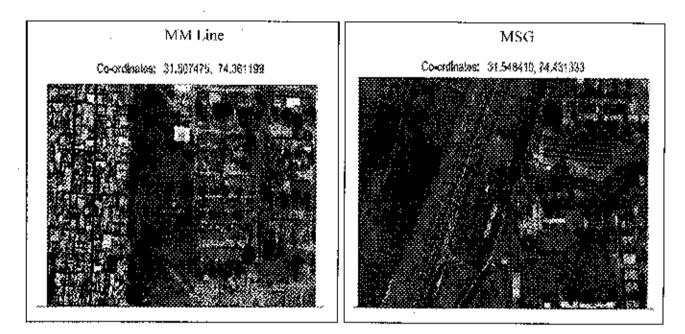
The main outcomes of the feasibility report are given below;

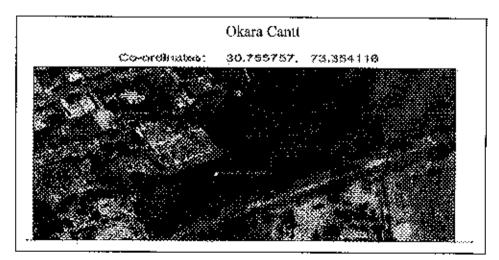
Technical Site Analysis: The project site (s) is suitable for a solar PV energy system. For the purpose of estimation of power generation potential, solar insolation is assumed to be "good" (1,705 kWh/ square meter/ year). Panel azimuths (0 degrees), panel tilt (26 degrees) and satisfactory ground and roof condition and structure are also assumed.

Anticipated System information: The project will accommodate a 3.5 MWp solar PV system with a projected annual production of 5,110 MWh/ year. Use of a JA Solar JAM72D40-580/G B (580 Watt) n-type bifacial double glass high efficiency mono PV module, the system will offset approximately 2,366 tons of carbon dioxide annually.

Financial Analysis: The total estimated project cost is USD 1,796,164. The sponsors of NRTC Energies (Private) Limited have agreed to finance the project on 80:20% equity. Based on the technical and financial analysis, the installation of a 3.5 MWp Solar PV System at MES Pakistan sites is deemed to be feasible.


2. Introduction


A 3.5 MWp Solar PV system will be installed at five (05) site of MES, Pakistan including four (04) nos. sites in Lahore and One (01) no in Okara.


Sr. No.	Site	Capacity (MW)
1	CMH (Lahore)	1
2	MM Lines (Lahore)	0.5
3	Akram Lines (Lahore)	0.5
4	MSG (Lahore)	0.5
5	Okara Canit (Okara)	. I
	Total	3.5

÷.,

3. Technical Details

3.1 Site Conditions:

The following tasks were carried out;

- Global Horizontal Irradiation, annual and inter-annual variation was assessed.
- Near shading objects were taken into account for placement of PV modules.
- Area required for selected module technology was calculated. Keeping in view available area and minimum inter row shading, tilt angle and appropriate spacing was calculated from near shading objects.

3.2 Technology Review and Selection:

3:2.1 Technology Selection

Type of Technology			Photovoltaic (PV) C	ell						
System Type	Op-Grid									
Site	MM LINE	MSG	CMII Labore	Akram Line	Ökara Cantt					
Installed Capacity (MW)	0.5	0.5	···	0.5	L					
Modules (No.)	864	864	.726	864	1726					
PV Array (No.)]	÷	2	1	2					
Strings (No.)	32 X 27 in series	32 X 27 in series	31 Strings x 28 in series 33 Strings x 26 in series	27 Strings x 32 in series	31 Serings x 28 in series 33 Strings x 26 in series					
Invertees (kW Ac)	300	300	300	300	300					
Quantity (Nos.)	2	2	3	2	3					
Make			Iluawei Technologie		J					
Module area (m [‡])	2,445	2,445	4,885	2,445	4,885					

3.2.2 Technical Details of Equipment

	Solar Panels - PV Modules			
1	Type of Module	JAM72D40-580/GB		
2	Type of Cell	Monocrystalline N-Type (16BB)		
3	Dimensions of each Module	2278 x 1134 x 30		
4	Weight	31.8 kg		
7	Module frame anodized	Anodized Aluminum Alloy		
8	Nominal Max. Power (P Max)	580 W		
9	Opt. Operating Voltage (Vmp)	43.03 V		

5		
10	Opt. Operating Current (Imp)	13,48 A
11	Open Circuit Voltage (Voc)	51.30 V
12	Short Circuit Current (ISC)	15.51 A
13	Module Efficiency	22.5 %
14	Operating Temperature	-40 °C ~ + 85 °C
15	Max. System Voltage	1500 V DC
16	Module Fire Performance	UL Type 29
	PV	Capacity
17	Total Site	3.5 MWp
18	Net Capacity Factor	3.5 MW
	b	overters
1	Manufactures	Huawei Technologies
2	Capacity of each unit	300 kW Ac
3	No. of inverters	12
4	MPPT Operating Voltage Range	500 V ~ 1,500 V
5	Start Voltage	550 V
6	Max Input Voltage	
7	Total Power	330 kW
8	Max input current for each MPPT	65 A
9	Max Output Current	238.2 A
10	Adjustable P.F Range	0.8 LG 0.8 LD
1 I.	Nominal Input Voltage	1,080 V
12	Rated Power Frequency	50 Hz / 60 Hz
13	Efficiency	≥99.0%
14	Relative Humidity (Non- Condensing)	0 100%
15	Weight	≤112 kg
16	Degree of Protection	IP 66
	St	rueture
17	Structure	Concrete Pile Structure 150km/hr
18	Tilt / Azimuth	
	Data Col	lection System
19	System Data	Huawei smart logger
20	Weather Station	Seven Sensors Solutions
	<u></u>	er Details
	Othe	er Detains
21	COD of Project (tentative)	30 th June 2025

1367 solutions

3.3 Energy Yield Estimation and Simulations

The aim of yield estimation is to predict the average annual energy output of the site. PvSyst software is used for simulation and near shading analysis. The energy yield prediction provides the basis for calculating project revenues. The aim is to predict the average annual energy output for the lifetime of the proposed power plant. To estimate accurately the energy produced from a PV power plant information is needed on the solar resource and temperature conditions of the site. Also required are the layout and technical specifications of the plant components. A number of solar energy yield prediction software packages are available in the market. These packages use time step simulation to model the performance of a project over the course of a year.

PVSyst software has been used for energy yield prediction for each site of MES Pakistan and results are in Annexure A to E.

3.4 Working Conditions

The solar system will have export control device to make sure that PV power generated by the inverters is on par with power consumption of the site load. A device will measure load at injection point and the limit power of inverters by changing register values. AC output is implemented in reference to energy flow at grid connection point which will reduce inverter AC output of the Inverter if site load will be less than the solar production.

3.5 Plant Characteristics

Generation Voltage	800 V three phase four wire system
Power Factor at rated power	1
Frequency	50 IIz
Generation characteristic:	Inverter has built-in features of controllable active power ramp following grid disturbance or normal connection, voltage regulation and frequency response. There are no additional control metering and instrumentations.

The seamless integration of Solar PV generation has been confirmed by detailed system studies conducted for each site of MES Pakistan (attached as Annex F-J)

3.6 Design Parameters

The following tasks were carried out for PV layout and shading.

Assessment of shading (horizon and nearby building)

- Outline layout of area suitable for PV development
- Designing row spacing to reduce inter-row shading and associated shading losses
- Designing the layout to minimize cable runs and associated electrical losses
- Creating access routes and sufficient space to allow movement for maintenance purposes
- Choosing a tilt angle that optimizes the annual energy yield according to the latitude of the site and the annual distribution of solar resource
- Module clearing strategy
- Simulating annual energy losses associated with various configurations of tilt angle, orientation – d row spacing
- PV layouts of the site in 3D and 2D view

3.7 Layout

The detailed layout (2D and 3D) of the solar panels is given in PySyst simulations attached as Annexure A to E. PV layout may change depending upon site constraints before or during installation.

3.8 Electrical Design

The electrical system comprises the following components:

- Array(s) of PV modules
- DC/AC cabling (module, string and main cable)
- DC connectors (plugs and sockets)
- Disconnects / switches
- Protection devices e.g., VCBs, fuses, surge protective devices, beakers
- Energy Meters
- Smart Loggers for Monitoring
- Harthing

3.9 Control, Metering, Instrumentation and Protection:

3.9.1 Reverse Feed in Protection:

In PV Plants with 100 % self-consumption all the generated power has to be consumed by the connected site / load. In case the load is less and more PV Power is being generated, the excess power will go to the grid. In order to avoid feed-in to the grid, a special control system is needed to be installed.

The feedback control loop to limit the active power feed-in to grid is implemented by using Huawei's smart loggers. They will actively sense the electrical parameters at interconnection points and curtail invertor's output to restrict feed-in to the grid.

3.9.2 Metering and Protection:

The distance of interconnection point to the PV plant is approximately 120 - 150 meters in case of each site. The metering of PV plant will be performed at the main MV busbar. Sensitivity class for meters will be at least 1 with bidirectional 4 quadrant calculations algorithm. Metering parameters, including total import and export units TOD Calculations, MDl, active and reactive power calculations etc. can be extracted over the period, Solar power plant is designed to have the following protections for the line and load side;

- Over and under voltage/frequency protections
- Phase Failure, Unbalance and Phase reversal protection
- Short Circuit protections
- Earth Fault detection
- Over current protection
- Surge Protection
- Transformer Protections

4. Financial Analysis

The Capital cost shall include the cost borne by the Applicant Company on completion of feasibility, planning, designing, material, construction and installation of the Generation Facilities. The cost of switchgear protection and interconnection with distribution system of utility is included in this case.

The expected cost of the installations under has been estimated to be US\$ 0.513/Wp. This cost does not include the cost of land as facilities shall be installed at the premises of the Buyer.

Sr. No.	Description	US\$/Wp
1	Civil Work	0.095
2	EPC	0,413
3	Others (including approvals costs)	0.005
	Total	0.513

Item wise break up of project cost is attached as Annexurc- K

5. Safety and Emergency Plan

Detailed safety and emergency plan is attached as Annexure- L.

6. Training & Capacity Development

Trained and qualified personnel will be available at site (s) 24/7 with proper safety and firefighting training. Training program will focus on - but not limited to - Solar Resource Assessment; Site Survey, Technology, Engineering Design, Regulation, Policy, Metering & Billing, and Project Management of Roofhop Solar System.

7. Environmental Aspects

Detailed report on environmental aspects is attached as Annexure- M.

8. Socio-Economic Aspects

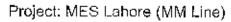
In regard to the socio-economic viewpoint, the benefits of exploitation of solar PV system comprise of:

- Increase of the regional / national energy independency.
- Provision of significant work opportunities
- Diversification and security of energy supply.
- Support of the deregulation of energy markets

9. Conclusion

The techno-commercial feasibility for installation of 3.5 MWp Solar PV Systems at various site of MES Pakistan across Punjab study confirms that the proposed project is both technically viable and commercially attractive. From a technical perspective, the required infrastructure, technology, and resources are readily available and align with industry standards, ensuring reliable and efficient operations. Commercially, project is financially viable with manageable risks and favorable market conditions supporting long-term profitability. Key regulatory, environmental, and logistical considerations have also been adequately considered. Based on these findings, the project is deemed feasible and recommended for further development and implementation.

* * * * *



PVsyst - Simulation report

Grid-Connected System

Project: MES Lahore (MM Line)

Variant: New simulation variant No 3D scene defined, no shadings System power: 501 kWp Lahore MES (MM Line) - Pakistan

Variant: New simulation variant

_ _

PVsyst V7.3.1 VC0, Simulation date: 08/01/24 10:48 with v7.3.1

:

:

		Project s	ummary —		
Geographical Site Lahore MES (MM Lir Pakistan		Situation Latitude Longitude Altitude Time zone	31.51 °N 74.35 °E 207 m UTC+5	Project settings Albado	0.20
Meteo data Lahors MES (MM Lin: Meteonorm 8.1 (1996	ə) -2015), Sat=100% - Syr	nthetic			
		——————————————————————————————————————	summary —		
Grid-Connected Sj Simulation for year no		No 3D scene defin	ied, no shadings		
PV Field Orientatic Fixed plane Tilt/Azimuth	26 / 0 ^	Near Shadings No Shadings		User's needs Unlimited load (grid)	
System Informatio	'n				
PV Array Nb. of modules		D Ø /	Inverters Nb. of units		
Prom total		864 units 501 kWp	Pnom total Pnom retio		2 units 600 kWac 0.835
<u>-</u> . <u>1</u> /			ummary		
Produced Energy	593959 kWh/year	Specific production	1185 kWh/kWp/year	Perf. Ratio PR	72.74 %
		Table of d	contents		- uz.
Project and results su	mmary				2
General parameters, f	PV Array Characteristic:	s, System lassas			3
Mein results Loss discrem	·····				5
Predef, graphs			~~~~~		Б

.

ł

:

PVsyst V7.3.1 VC6, Simulation date: 09/01/24 10:48 with v7.3.1

Project: MES Lahore (MM Line)

Variant: New simulation variant

		— General p	arameters —	· -		
Grid-Connected Syst	em	No 3D scene defi	ned, no shadings			
PV Field Orientation						
Orientation		Sheds configuration	•	Models used		
Fixed plane		No 3D scene defined			D	
Tilt/Azimuth	26/0°	NO DO SCENE GENNIQU		Transposition	Perez	
The second second	20,0			Diffuse Perez, Met		
				Circumsolar s	eparat e	
Horizon		Near Shadings		User's needs		
Free Harizon		No Shadings		· Unlimited load (grld)		
	•	<u> </u>	·			
	·	- PV Array Ch	aracteristics –			
PV modulo		_	Inverter			
Manufacturer		CSI Solar	Manufecturer	Linner i 1	Fechnologies	
Model	CS7L-5	80MB-AG 1500V	Model		-	
(Original PVsyst data					I-330KTL-H2	
Unit Nom, Power		580 Wp	(Custom parameta			
Number of PV modules			Unit Nom, Power) kWac	
		864 units	Number of invertors	2	2 units	
Nominal (STC)		501 kWp	Total power	600) kWac	
Madules		x 27 ln series	Operating voltage	500-1500) V	
At operating cond. (50°)	3)		Max. power (≂>30°C)	330) kWac	
Pmpp		460 kWp	Phom ratio (DC:AC)	0.84	Ļ	
U трр		823 V	Power sharing within t			
Гтөр		559 A	-			
Total PV power			Total inverter powe	er		
Nominal (STC)		501 kWp	Total power		kWac	
Total		864 modules Number of inverters		2 units		
Module area		2445 m²	Phom retio	0.84		
			·	·	<u></u>	
		Array I			, <u>.</u>	
Array Solling Losses		Thermal Loss factor		DC wiring losses		
Loss Fraction	4.0 %		ecording to irradiance	Global away res.	24 mΩ	
		Uc (const)	29.0 W/m²K	Loss Fraction	1.5 % at STC	
		Uv (wind)	0.0 W/m²K/m/s			
Serie Diode Loss		LID - Light Induced Degradation		Modula Occ-libert		
Voltage drop	0.7 V	Loss Fraction	2.0 %	Module Quality Loss Loss Fraction	0.4.94	
Loss Fraction 0.1 % at STC			r.U /6	LOSS HERCHON	-0.4 %	
Module mismatch los		Strings Mismatch		Module average degra	dation	
Loss Fraction 2.0 % at MPP		Loss Fraction	0.1 %	Year no	10	
				Loss factor	0.4 %/year	
				Mismatch due to degrada	-	
				Imp RMS dispersion	0.4 %/year	
				Vmp RMS dispersion	0.4 %/year	
AM loss factor				•	or anyour	
noldence effect (IAM): Us	er defined profile					
		408 50	· · · · · · - · · · -	<u> </u>		
10° 20°						
10° 20° 0.998 0.998		40° 50 0.992 0.98		70° 80° 0.817 0.763	904	

Project: MES Lahore (MM Line)

Variant: New simulation variant

PVsyst V7.3.1 VC0. Simulation dato. 08/01/24 10:48 with v7.3.1

		System los	35es
Unavaifability of the s Time fraction	9 ystam 3.4 % 12.4 days,	Auxiliaries loss Proportionnal to Power 0.0 kW from Power threst	5.0 W/kW
	3 periods	Night aux. cons.	500 W
		AC wiring lo	0\$503
Inv. output line up to	MV transfo	-	
Inverter voltago		800 Vac (ri	
Loss Fraction		0.10 % at STC	
Inverter: SUN2000-330K	TL-H2		
Wire section (2 Inv.)		x 240 mm²	entre al estarte estarte
Average wirds length	110220	20 m	and the second
MV line up to injection	п		
MV Voltage		11 kV	
Wires	Alu 3	3 X 95 mm²	
Length		100 m	
Loss Fraction		0.01 % at STC	
· ·		AC losses in tran	nsformers
MV transfo			
Medium voltage		11 kV	
Transformer from Datasi	heets		
Nominal power		630 KVA	
Iron Loss (24/24 Connexi	or}	1.00 kVA	
Iron loss fraction	-	0.16 % of PNom	
Copper loss	:	20.00 kVA	
Copper loss fraction		3.17 % at PNom	
Colls equivalent resistance	e 3.x:	32,25 mΩ	

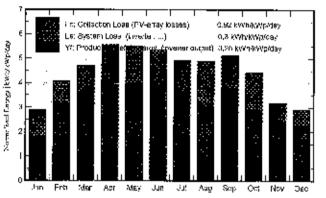
:

Project: MES Lahore (MM Line)

Variant: New simulation variant

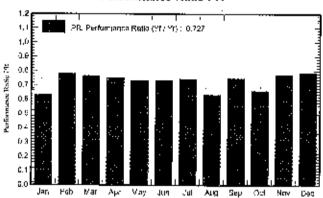
PVsyst V7.3.1 VC0, Simulation date: 08/01/24 10:48 with v7.3,1

Main results


System Production

Produced Energy (P50) 593959 kWh/year Produced Energy (P90) 556330 kWh/year Produced Energy (P99) 525662 kWh/year

Specific production (P50) Produced Energy (P90) Produced Energy (P99)


1185 kWh/kWp/yeer Performance Ratio PR 72.74 % 1110 kWh/kWp/yeer 1049 kWh/kWp/year

Normalized productions (per installed kWp)

1517.1

887.0

GlobHar DiffHor T_Amb Globine GlobEff EAmay E_Grid kWh/m² kWh/m² ۴C kWh/m² kWh/m² kWh k₩h January 6**9.8** 43.7 11.88 89.2 84.1 37531 28331 February 92.3 46.7 16.09 114.D 107.7 46962 44484 March 131.6 77.3 22.10 146.B 138.3 59265 56348 April 161.D 87,3 27.05 166,6 157.0 65711 82574 May 176.7 96,9 32.91 170.8 160.7 65704 62568 June 189.5 100.5 32.80 160.2 150.8 61926 58856 July 160.5 102.3 31.45 152.3 143.1 59594 56715 August 151.5 96.0 30.72 151.7 142.B 59496 48077 September 141.8 76.6 29.06 154.1 145.1 60591 57635 October 116.4 68.0 25.94 136.8 129.1 54502 45208 November 77.A 49.9 19.09 **96**.0 90.539361 37144 December 68.6 41.9 13.95 90.9 85.7 38037 35830

24.46

Year	1517.1 887.0 24.46	1629.4	1535.0 648681 593959 0.727
Lananda			· · · · · · · · · · · · · · · · · · ·
Legends			
GlobHar	Global horizontal irradiation	EArray	Effective energy at the output of the array
DI'll-Ior	Horizontel diffuse irradiation	E_Grld	Energy injected into orig
T_Amb	Ambient Temperature	PR	Performance Ratio
Glabine	Global incident in colf. plane		
GlabEf(Effective Global, corr. for IAM and shadings		

1629.4

Balances and main results

Year

PR

ratio

0.634

0.779

0.766

0.749

0.731

0.735

0.743

0.633

0.748

0.661

0.772

0.786

Performance Ratio PR

5

:

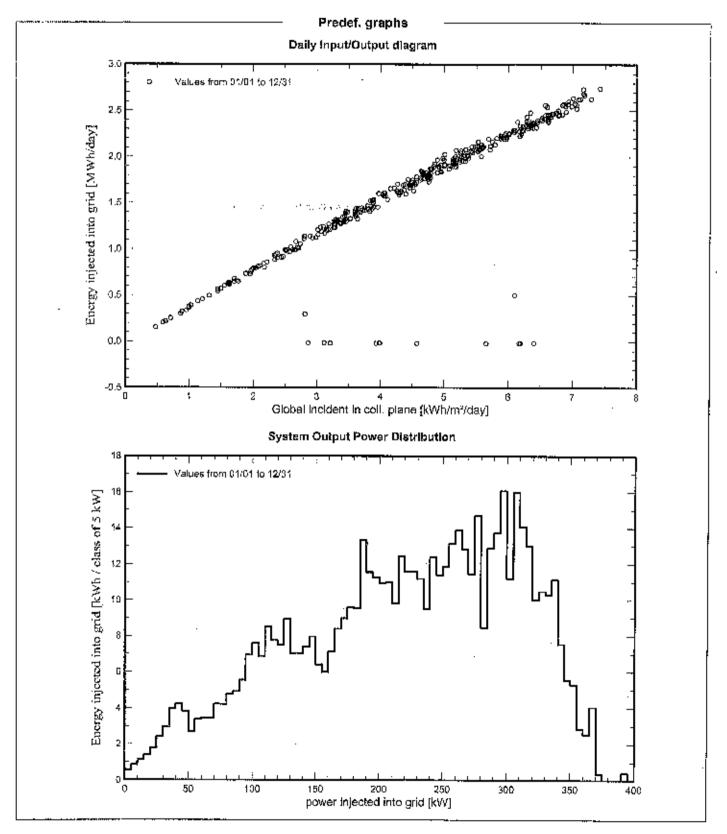
Project: MES Lahore (MM Line)

Variant: New simulation variant

PVsyst V7.3.1 VC0, Simulation date; 08/01/24 10:48 with v7.3.1

1517 kWh/m²	Global horizontal Irradiation
+7.4%	Global incident in coll, plane
S) -1.87%	IAM factor on global
-4.00%	Solling loss factor
1535 kWh/m² * 2445 m² coll.	Effective irradiation on collectors
efficiency at STC = 20.58%	PV conversion
* 772688 kWh	Array nominal energy (at STC effic.)
3.80%	Module Degradation Loss (for year #10)
9-0.21%	PV loss due lo irradiance lovel
N-6.47%	PV loss due to temperature
	Module quality loss
-2.00%	LID - Light Induced degradation
N-4.00%	
4.00%	Mismatch loss, modules and strings (including 1.9% for degradation dispersion
	Ohmic wiring loss
648681 kWh	Array virtual energy at MPP
-1.89%	Inverter Loss during operation (efficiency)
90.00%	Inverter Loss over nominal inv. power
40.00%	Inverter Loss due to max, input current
¥ 0.00%	Inverter Loss over nominal inv. voltage
¥ 0.00%	Inverter Loss due to power threshold
9 0.00%	Inverter Loss due to voltage threshold
9 -0.01%	Night consumption
637660 kWh	Available Energy at Inverter Output
9-0.84%	Auxiliaries (fans, other)
+ -0.04%	AC ohmis lass
9-2.48%	Međium voltage transfo loss
N+-0.01%	MV line chimic loss
3-3.64%	
593959 kWh	System unavallability Energy injected into grid

08/01/24


1.1

Project: MES Lahore (MM Line)

Variant: New simulation variant

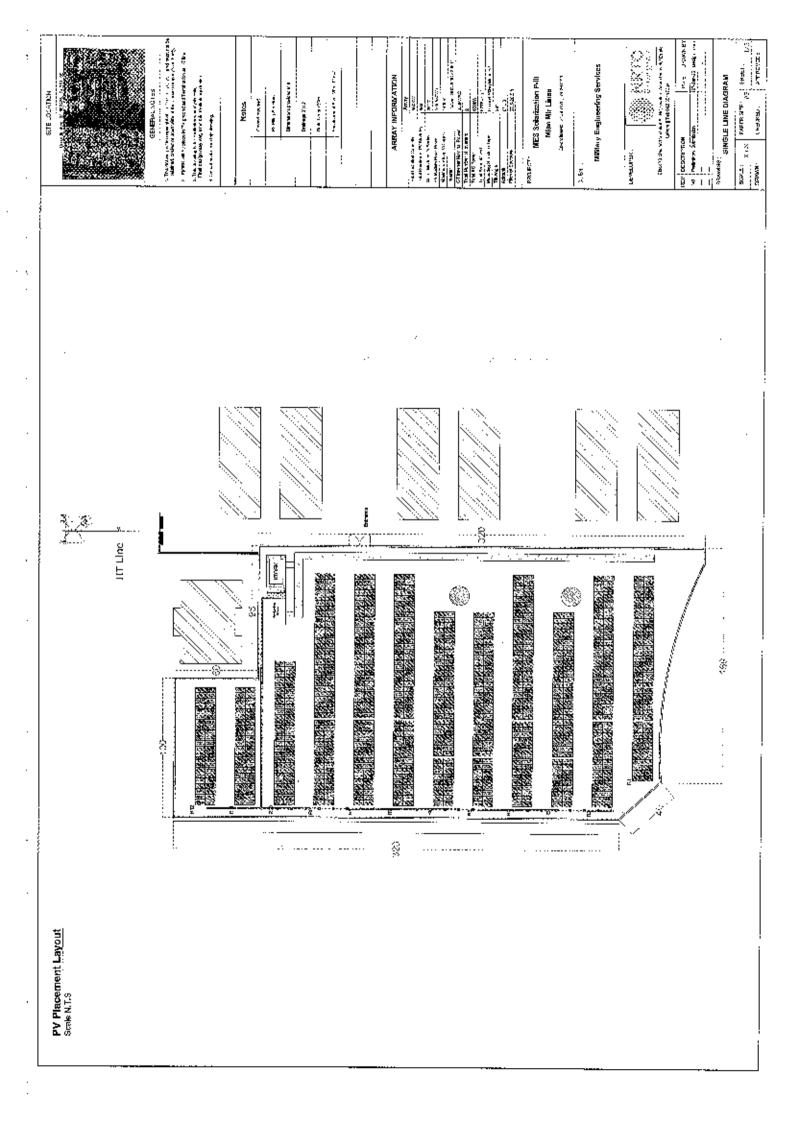
PVsyst V7.3.1 VC0, Simulation date: 08/01/24 10:48 with v7.3.1

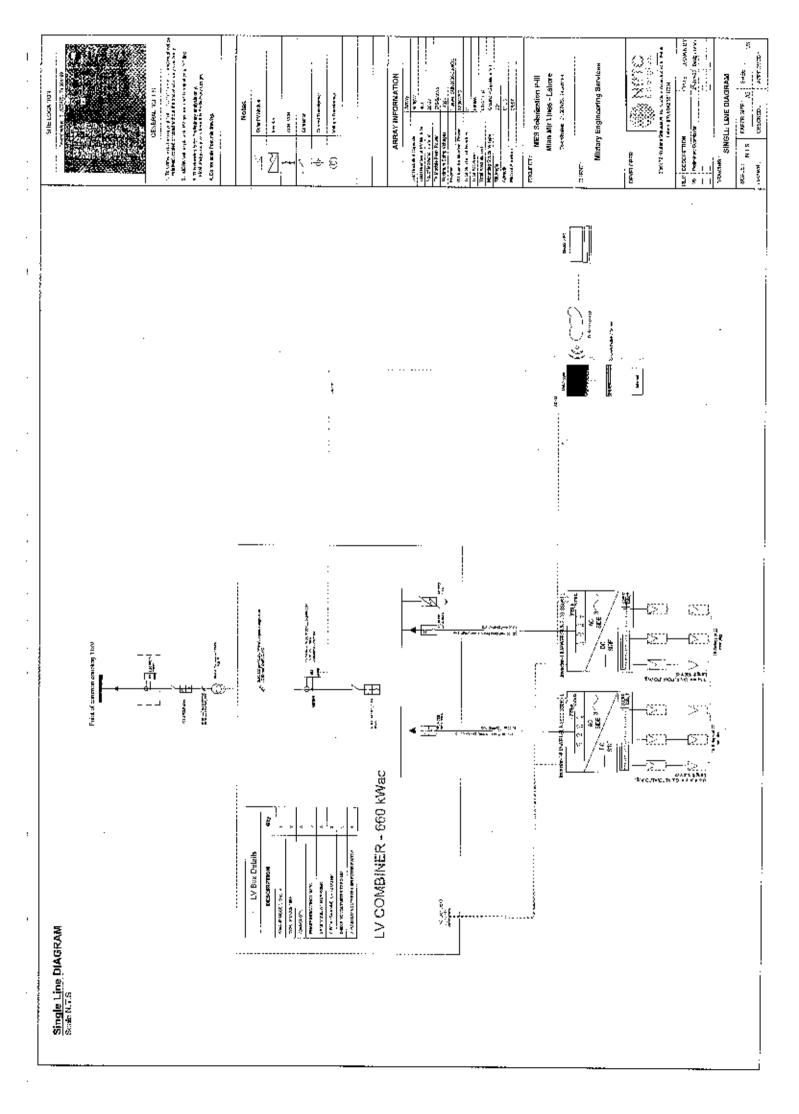
:

•

., ¹

Project: MES Labore (MM Line)


Variant: New simulation variant


PVsyst V7.3.1 VC0, Simulation dato: 08/01/24 \$0:48 with v7.3.1

	P50 - P90 evaluation
Neteo data	Simulation and parameters uncertainties
Source Meteonorm 8,1 (1996-2015), Sat=100%	PV module modelling/parameters 1.0 %
(Ind Monthly averages	Invertor officioney uncertainty 0.5 %
Synthetic - Multi-year average	Solling and mismatch uncertainties 1.0 %
fear-to-year veriebility(Variance) 4.6 %	Degradation uncertainty 1.0 %
Specified Deviation	
Climate change 0.0 %	'n
Global variability (meteo + system)	Annual production probability
/adability (Quadratic sum) 4.9 %	Variability 28,3 MWh
	P50 584,0 MWh
	P90 558,3 MWh
	P99 525,7 MWh
	Probability distribution
0.50	
0.45	:
	3
0.40	P50 = 594.0 %Wh
0.40	P50 = 594.0 kg/wh $P50 = 594.0 kg/wh$ $P50 = 594.0 kg/wh$
0.40 D.35	
D.35 D.30	
D.35 D.30	
D.35 D.30	
D.35	
D.35 D.30	5 (Ord person - 284 (* Miss);
D.35 D.30 0.25 0.20	
D.35	5 (Ord person - 284 (* Miss);
D.30 0.30 0.25 0.25 0.25	5 (Ord person - 284 (* Miss);
D.35 D.30 0.25 0.20	5 (Ord person - 284 (* Miss);
D.30 0.30 0.25 0.25 0.25	5 (Ord person - 284 (* Miss);
D.30 0.30 0.25 0.25 0.25	5 (Ord person - 284 (* Miss);
D.35 D.30 0.25 0.20 0.15 0.10	P90 = 568.3 MWh
D.36 D.30 0.25 0.25 0.15 0.10	P90 = 568.3 MWh

;

.

PVsyst - Simulation report

Grid-Connected System

Project: Lahore MES (MSG)

Variant: New simulation variant No 3D scene defined, no shadings System power: 501 kWp Lahore MES (MSG) - Pakistan

t

Project: Lahore MES (MSG)

Variant: New simulation variant

PVsyst V7.3.1 VC0. Sintulation date: 08/01/24 10:33 with v7.3.1

	.	Project s	ummary —		
Geographical Site Lahore MES (MSG) Pakistan		Situation Latitude Longitude Altitude Time zon a	31.65 "N 74.43 °E 210 m UTC−5	Project settings Albedo	0,20
Meteo data Lahore MES (MSG) Meteonorm 8.1 (2016-2	2021), Sat=100% - Sy	nthetic			
		System s	ummary —	·	<u>.</u> <u></u>
Grid-Connected Sy: Simulation for year no 1		No 3D scene defin	ed, no shadings		
PV Field Orientation Fixed plane Tilt/Azimuth	n 26/0°	Near Shadings No Shadirgs		User's needs Unlimited load (grid))
System Information PV Array Nb. of modules Pnom total		864 units 561 kWp	Invertors Nb. of units Pnom tatal		2 unita 600 kWac
			Phon- retio		0.835
			ummary —		··
Produced Energy	589756 kWh/yoar	Specific production	1177 kWh/kWp/year	Perf. Ratio PR	72.50 %
		Table of c	contents	·	
Project and results sum	mary				2
General parameters, M	Array Characteristics	s, System losses			
Loss diagram				~~~~~	β

:

ł

:

Project: Lahore MES (MSG)

Variant: New simulation variant

PVsyst V7.3.1 VC0, Simulation date: 08/01/24 10:33 with v7.3.1

Horizon

Free Horizon

General parameters

No 3D scene defined, no shadings

PV Array Characteristics

PV Field Orientation Orientation Fixed plane Til%AzImuth

Grid-Connected System

28/0 *

Sheds configuration No 3D scene dofined

Near Shadings No Shadings

Models used Transposition Perez Diffuse Perez, Meteonorm Circumsolar separate

User's needs Unlimited load (grid)

.....

V module			Inverter		
lanufacturer		CSI Solar	Manufacturer		Technologies
lode]		80MB-AG 1500V	Model		0-330KTL-H2
(Original PVsyst databa	ase)		(Custom paramete		
nit Nom. Power		580 Wp	Unit Nom, Power		0 kWac
umber of PV modulas		864 units	Number of inverters		2 unite
ominal (STC)		561 kWp	Total power		D kWac
lodulos	*	x 27 In series	Operating voltage	500-150	DΥ
t operating cond. (50°C)	ļ	1 1	Max. power (=>30°C)		0 kWac
mpp		460 kWp	Pnom relia (DC:AC)	8,0	1
mpp		823 V	Power sharing within I	his invertør	
mpp		559 A			
otal PV power			Total inverter pow	er .	
ominal (STC)		501 kWp	Total power		0 kWac
otal		864 modules	Number of inverters		2 unlis
loculo area		2445 n [.] *	Phorn ratio	0.8	
rray Solling Losses		Thermal Loss fa		DC wiring losses	
oss Fracilion	4.0 %		e according to irradiance	Global array res.	24 mΩ
		Uc (const)	29.0 W/m²K	Loss Fraction	1.5 % at ST
		Uv (wind)	0.0 W/m²K/m/s		
erle Diode Loss		LID - Light Indu	ced Degradation	Module Quality Loss	
oltage drop	0.7 V	Loss Fraction	2.0 %	Loss Fraction	-0.4 %
oss Fraction	0.1 % at STC				
lodule mismatch loss	es	Strings Mismate	th loss	Module average degr	adation
ess Fraction	2.0 % at MPP	Loss Fraction	0.1 %	Yéár ng	10
				Loss factor	0.4 %/year
				Mismatch due to degrad	
				Imp RMS dispersion	0.4 %/year
					-
				Vmp RMS disporsion	0.4 %/year
	r defined profile			Vmp RMS disporsion	0.4 %/year
cidence effect (IAM): Usa			50° ente		
AM loss factor cidence effect (IAM): Use 10° 20° 0.998 0.998	r defined profile 30° 0.995	 	50° <u>60</u> ^ 1.966 0 .970	Vmp RMS disporsion 70° 80° 0.917 0.763	0.4 %/year 90°

Project: Lahore MES (MSG)

Variant: Now simulation variant

PVsyst V7.3.1 VC0, Simulation date: 08/01/24 10:33 with v7.3.1

		System lo:	sses	······································
Unavailability of the	system	Auxiliaries loss		
Time fraction	3.4 %	Proportionnal to Power	5.0 W/kW	
	12.4 days.	0.0 kW from Power thres	h.	
	3 periods	Night aux, cons.	500 W	
	·	AC wiring k		
Inv. output line up to	W)/ travata	/ W Hanigh		
invester voltago		800 Vac tri		
Loss Fraction		0.10 % at STC		
Inverter: SUN2000-330k	TI U2	0.10 % #1510		
Wire section (2 Inv.)		x 240 mm²		
Average wiros length	Alta 2 X 3 1	20 m		
werbige wirds iblight:		20 In		
MV line up to Injectio	n			
MV Voltage		11 kV		
Wires	Copper 3	3 x 95 :mm²		
Length		100 m		
Loss Fraction		0.01 % at STC		
		AC losses in tra	nsformers	
MV transfo				
Medium voltage		11 kV		
Transformer from Dates	heets			
Nominal power		630 KVA		
Iron Loss (24/24 Connex	ion)	1.00 KVA		
Iron loss fraction	•	0.16 % of PNom		
Copper loss		20.00 kVA		
Copper loss fraction		3.17 % at PNom		
Colls equivalent resistand		12.25 mQ		

. . .

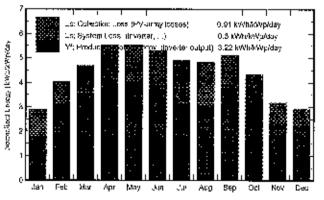
÷

÷

Project: Lahore MES (MSG)

Variant: New simulation variant

PVsyst V7.3.1 VC0, Simulation date: 08/01/24 10:33 with v7.3.1

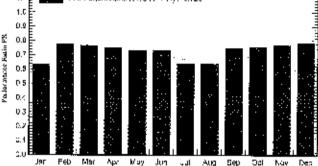

Main results

System Production

Produced Energy (P50) 589756 kWh/year Produced Energy (P90) 541653 kWh/year Produced Energy (P99) 502448 kWh/year

Specific production (P50) Produced Energy (P90) Produced Energy (P99)

Normalized productions (per Installed kWp)


Effective Global, corr. for IAM and shadings

1003 kWh/kWp/year Performance Ratio PR 1.3 1.5 PX: Performance Retio (11/14): 0.726 1.0 0.2

72.60 %

1177 kWh/kWp/yeer Performance Ratio PR

1081 kWh/kWp/year

GlobHor DiffHor Globinc T_Amb GlobEff EArray E_Grid PR kWh/m² kWh/m² kWh/m² °C kWh/m^z λWh kWh ratio January 69.6 42.4 11,54 89.6 84.5 37686 28419 0.63346.6 February 91.8 15.88 107.0 113.2 46619 44159 0.77B March 130.8 79.4 21.92 145.3 137.0 58713 65820 **0.767** 87.8 April 160.4 26.96 166.0 156.3 65390 62279 0.748 May 176.0 100.0 33.05 171.4 161.3 66009 62869 0.732 June 168.2 101.7 32.90 158.7 149.9 61304 58365 0.734 160.4 100.6 July 31.45 143.9 152.9 59650 48865 0.638 97.5 August 150.4 30,68 150.0 141.2 58865 47968 0.638 Septembor 141.1 79.3 28.86 153.3 144.5 60336 57400 0.747 Octobor 115.5 72.9 25.81134.3 126.7 53619 50928 0.757 76.7 49.6 November 18.79 95.6 90.1 39211 37010 0.772 68.8 Docember 42.1 13.61 90.6 85.5 37888 35679 0.786 1509.6 Year 900.0 24.33 1620.9 1527.1 645291 589756 0.726 Legends GlobHor Global horizontal irradiation EArray Effective energy at the output of the array Horizontal diffuse irradiation DiffHor E_Grid Energy injected into grid T_Amb Ambient Temperature PR Performance Ratio Globinc Global Incident in coll. plane

Balances and main results

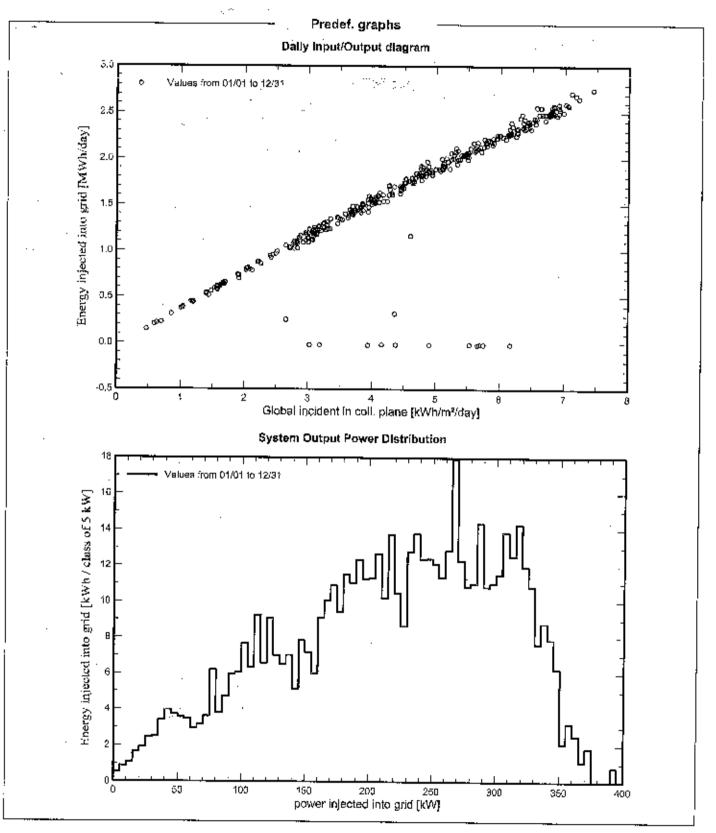
GlobEff

. . . .

Project: Lahore MES (MSG)

Variant: New simulation variant

- - -


PVsyst V7.3.1 VC0, Simulation date: 08/01/24 10:33 with v7.3.1

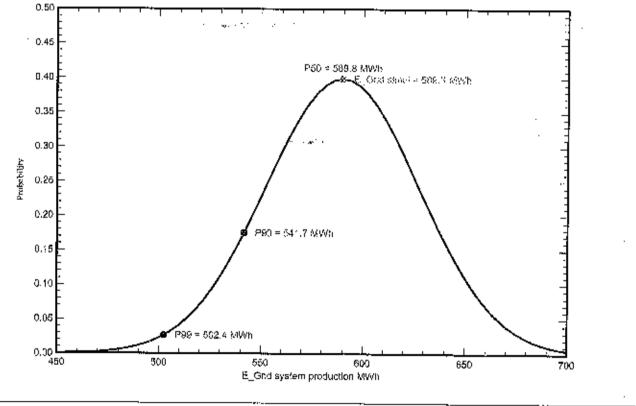
			_
	1510 kWh/m²	<u>j</u>	Global horizontal irradiation
		لام +7.4% ا	Global incident in coll. plane
		4-1.86%	IAM factor on global
		-4.00%	Soiling loss factor
	1527 kWh/m² * 2445 m	° doll.	Effective irradiation on collectors
	efficiency at STC = 20.	58%	PV conversion
et gevole	∵ * · · · 768642 kWh		Array nominal energy (at STC effic.)
		×3.80%	Module Dogradation Lose (for year #10)
		9-0.26%	PV loss due to irradiance level
		-6.39%	PV loss due to temperature
		< +0.43%	Module quality loss
		9-2.00%	LID - Light induced degradation
		9-4.10%	Mismetch loss, modulos and strings (including 2% for degradation dispension
		-0.97%	Ohmic wiring loss
	645291 kWh		Array virtual enorgy at MPP
		-1.69%	Inverter Loss during operation (efficiency)
		H 0.00%	Inverter Loss over nominal lov, power
		40.00%	Inverter Loss due to max, input current
		4 0.00%	Invertor Loss over nominal Inv. voltage
		4 0.00%	Inverter Loss due to power threshold
		9 0.00%	Inverter Loss due to voltage threshold
		9-0.01%	Night consumption
	634331 kWh		Available Energy at Inverter Output
		9-0.84%	Auxillaries (fans, other)
		7-0.04%	AC ohmic loss
		9-2.46%	Medium voltage transfo loss
		10.00%	MV fine of mic loss
		3.83%	System unavailability
	589756 kWh		Energy injected into grid

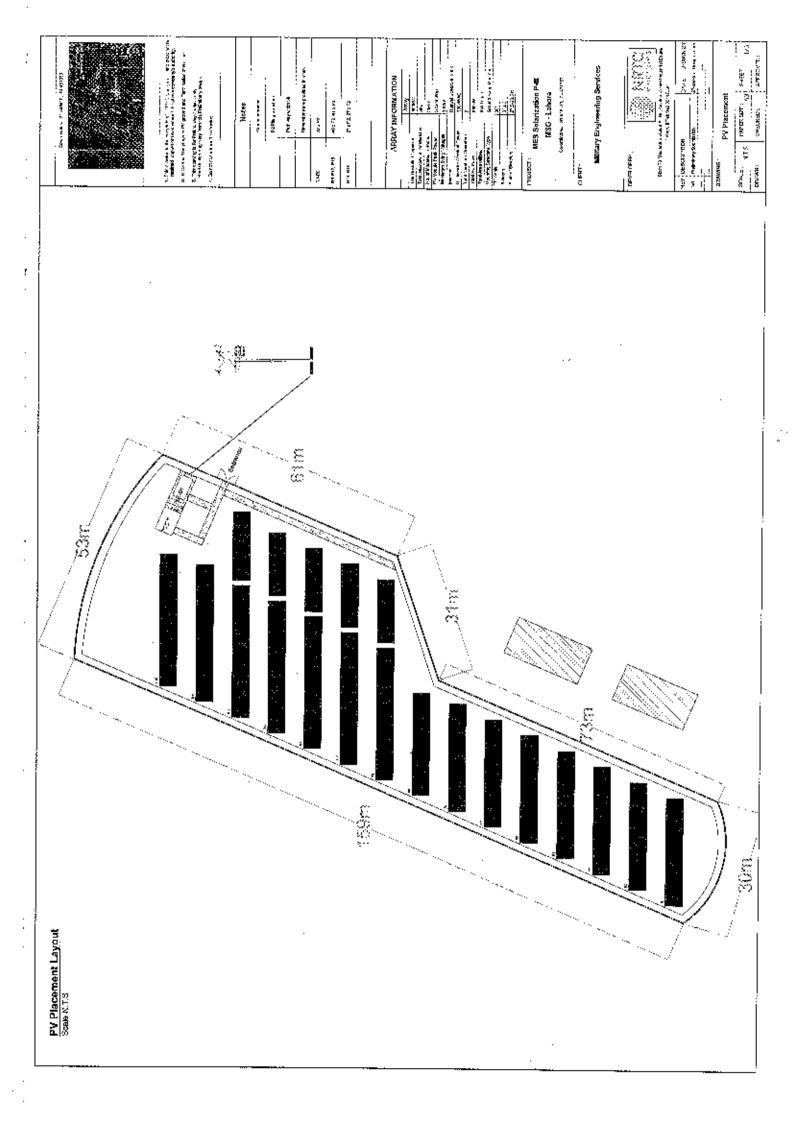
Project: Lahore MES (MSG)

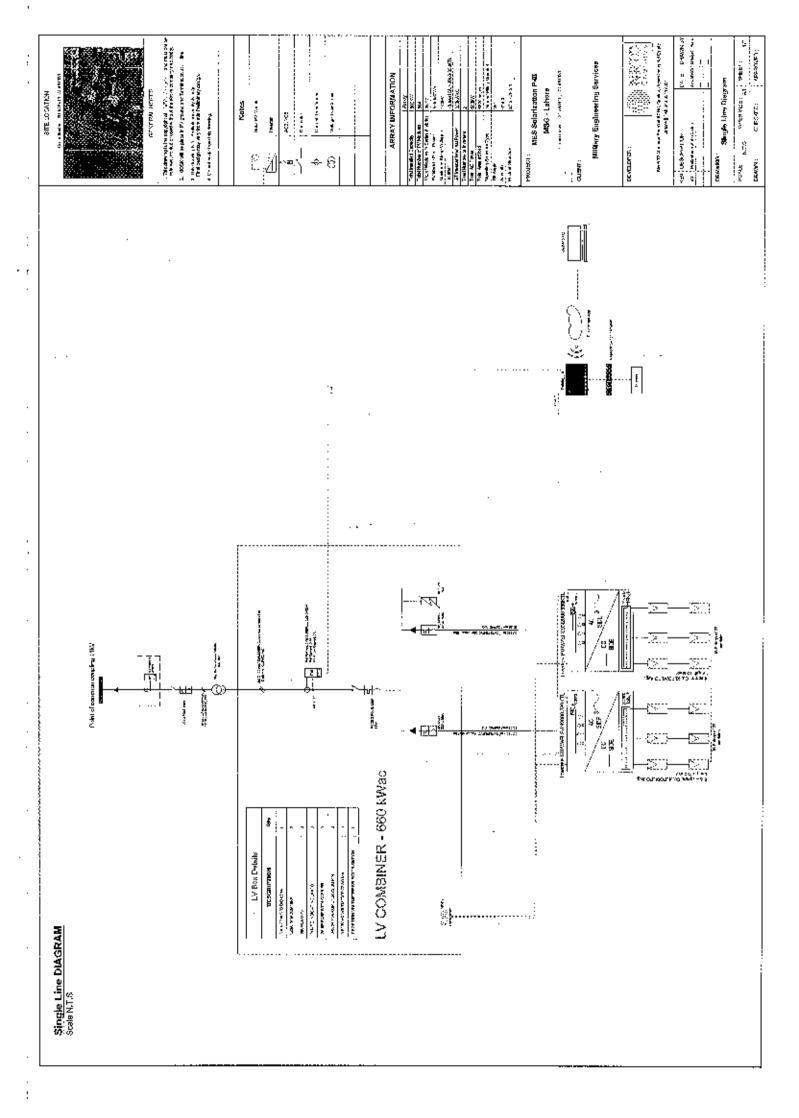
Variant: New simulation variant

Project: Lahore MES (MSG)

Variant: New simulation variant


PVsyst V7.3.1 VC0, Simulation date: 08/01/24 10:33 with v7.3.1


a Meleonorm 8,1 (2016-2021), - Monthly	
Monthly	
	naveraĝes
Aulti-year average	
variability(Variance)	6,1 %
eviation	
កដូច	0.0 %
lability (motor + suctors)	-
	6.4 %
	r varlability(Variance) eviation nge flability (meteo + system) Quadratic sum)


P50 - P90 evaluation

	Simulation and parameters uncer	tainties
	PV module modelling/parameters	1.0 %
	Inverter efficiency uncortainty	0.5 %
	Soiling and mismatch uncertainties	1.0 %
	Degradation uncertainty	1.0 %
	· · · · · · · · · · · · · · · · · · ·	
	Annual production probability	
	Veriability	37.5 MWh
	P50	589.8 MWh
	P%0	541.7 MWh
	₽98	502.4 MWh
Probabi	lity distribution	
<u>;</u> ···	<u>. </u>	···· 1

PVsyst - Simulation report

Grid-Connected System

Project: Lahore Mes (CMH) Variant: New simulation variant No 3D scene defined, no shadings System power: 1001 kWp Lahore MES (CMH) - Pakistan

i

ı

.

Project: Lahore Mes (CMH)

Variant: New simulation variant

....

PVsyst V7.3.1 VC0, Simulation date: 08/01/24 10:37 with v7.3.1

		Project s	summary ——		
Geographical Site Lahore MES (CMH) Pakiatan		Situation Latitude Longitude Attitude	31.54 "N 74.37 °E 210 m	Project settings Albedo	0.20
		Time zone	UTC+5		
Meteo data Lahore MES (CMH)			•		
Mateonorm 8.1 (1996-2	015), Sat=100% - Syr				
	· · · · · · · · · · · · · · · · · · ·		summary		
Grid-Connected Sys Simulation for year no f		No 3D sceno defir	-		
PV Field Orientation	1	Near Shadings		User's needs	
Fixed plane		No Shadings		Unlimited load (grld)
TH/Azimuth	28/0^		· · · ·		
System information					
PV Array			Invertors		
Nb. of modules		1726 units	Nb. of units		3 units
Pnom total		1001 kWp	Pnom total		900 kWac
			Pnom ratio		1.112
_ u	- r	Results a	ummary		
Produced Energy	1201970 kWh/year	Specific production	-	Perf. Ratio PR	73.94 %
	······	Table of e	contents		· · · · · ·
Project and results sum	marv				
General parameters. PV	Arrey Characteristics	. System losses		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2
Main results					3
_oss diagram					b
Predef. graphs					b
					/

PVsyst V7.3.1 VC0. Simulation date: 08/01/24 10:37 with v7.3.1

Project: Lahore Mes (CMH)

Variant: New simulation variant

_...

	General	parameters —		
Grid-Connected System	No 3D scene de	fined, no shadings		
PV Field Orlentation				
Örientation	Sheds configurati	lon	beau aleboM	
Fixed plane	No 3D scene defin	ed	Transposition	Perez
Tlit/Azimuth 26 / 0	•			eleonom
			Circumsolar	separate
Horizon	Near Shadings		User's needs	
Free Horizon	No Shadings		Unlimited load (grld)	
	PV Arcay C	haracteristics –		
PV module	T Y Anay C			
Manufacturer	CSI Solar	Inverter Manufasturer		177
Modol		Manufacturer		l Technologies
	CS7L-580MB-AG 1500V	Model		00-330KTL-H2
(Original PVsyst database)	ED0 145-	(Custom paramete		
Unit Nom, Power	580 Wp	Unit Nom, Power	3	l00 kWac
Number of PV modules	1726 units	Number of Inverters		8 units
Nominal (STC)	. 1001 kWp	Total power	0	60 kWec
Array #1 - PV Array				
Number of PV modules	868 units	Number of Invertors	8 * MPPT 17%	6.3 ont
Nominal (STC)	503 kWp	Total power	4	00 kWaç
Modules	31 Strings x 28 In series			
At operating cond. (50°C)		Operating voltage	500- 1 5	00 V
Pmpp	463 kWp	Max. power (≏>30°C)	3	30 kWac
И трр	854 V	Рлот ratio (DC:AC)	1.	26
Impp	542 A	No Power sharing betw	veen MPPTs	
Array #2 - Sub-array #2				
Number of PV modules	858 units	Number of Invertera	10 * MPPT 17% 1	.7 units
Nominal (STC)	498 kWp	Total power	5	00 kWac
Modulea	33 Strings x 26 In series			
At operating cond. (50°C)		Operating voltage	500-15	00 V
Իպեհ	457 kWp	Max. power (=>30°C)	3	30 ƙWao
И трр	793 V	Pnom ratio (DC:AC)	1.	aa
գգո լ	577 A	No Power sharing betw		
Total PV power		Total Inverter powe	ŧ٢	
Nominal (STC)	1001 kWp	Total power		00 kWac
Total	1726 modules	Number of Invertere		3 units
Module area	4885 m²	Phoin ratio	1.1	11
		No Power shering		
	Array	losses	·····	
Array Solling Losses	Thermai Loss fa		Serie Diode Loss	
Loss Fraction 4.0		according to irradiance	Voltage drop	0.7 V
	Uc (const)	29.0 W/m²K	Loss Fraction	0.1 % at STC
	Uv (wind)	0.0 W/m²K/m/s		
LID - Light Induced Degrada	tion Module Quality L	.055	Module mismatch io	5585
Loss Fraction 2.0		-0.4 %	Loss Fraction	2.0 % at MPP

		Project	Lahore Mes (
				· ·		
		Variant:	New simulation	varlant		
PVsyst V7.3.1 VC0, Simulation date: 68/01/24 10:37 with v7.3.1						
			Array losses			
Strings Mismatch loss	0.1 %	Module av Yearno	rage degradatio 10			
		Loss factor		%/year		
		Mis match g Imp RMS dis Vmp RMS d	e to dogradation Deraion 0.4	%/year %/year	·	
I AM loss factor Incidence effect (IAM): Use	r defined profile					
10" 20"	 		· ·			
i	· ·	40° .	50°	60°		80° 80″
!0.998 0.998	0.995	0.992	. 0.986	<u>0.976</u>	··· 0.947	0.763 0,000
<u></u>						
		D(wiring losses			
Global wiring resistance	10 mΩ	-	ming losses			
Loss Fraction	1.5 % at STC					
Array #1 - PV Array			Array #	#2 - Sub-ar	тау #2	
Global array res.		26 mΩ		may res,	2	23 mQ
Loss Fraction		1.5 % at STC	Loss Fra	action		1.5 % et STC
···		_	-·	·	·	··
			stem losses			
Unavailability of the sy Time fraction		Auxiliarles				
Time traction	3.4 % 12.4 days,	Proportionna		WAW		
	3 periods	0.0 kW from Night aux. co		50		
		Hight dax. ed	a. 500			
		A0	wiring losses			
Inv. output line up to M	V transfo		3			
Invertor voltage	i dansio	800 Vac tri				
Loss Fraction		0.08 % at STC				
Inverter: SUN2000-330KTI	L-H2		Inverter	: SUN2000-3	330KTL-H2	
Wire section (1 lav.)	Alu 1 x 3 x	240 mm²		tion (2 Inv.)		lu 2 x 3 x 150 mm²
Wires length		20 m	Average	witee length		Dm
MV line up to Injection						
MV Voltage		11 kV				
Wires	. Alu 3 x	120 mm²				
Length		100 m				
Loss Fraction		0.02 % at STC				
			n			· ·
		AC loss	es in transform	ers		······································
MV transfo						
Medium voltage		11 kV				
Transformer from Datashe						
Nominal power		250 kVA				
Iron Loss (24/24 Connexion		1.00 kVA				
fron loss fraction		0.08 % of PNcm				
Copper loss		0.00 kVA				
Copper loss fraction Coils equivalent resistence		1.60 % at PNom 8.19 mΩ				

ł

.

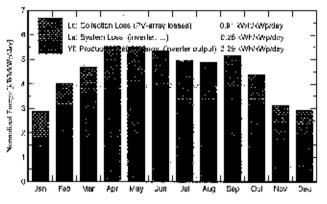
.

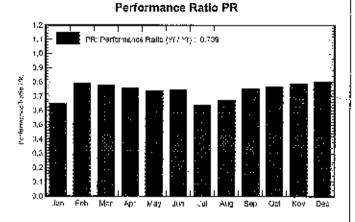
:

: .

Variant: New simulation variant

PVsyst V7.3.1 VC0, Simulation date: 08/01/24 10:97 with v7.3.1


Main results


System Production

Produced Energy (P50) 1201970 kWh/yeer Produced Energy (P90) 1103932 kWh/yeer Produced Energy (P99) 1024030 kWh/yeer Specific production (P50) Produced Energy (P90) Produced Energy (P99)

1201 kWh/kWp/year Performance Ratio PR 73.94 % 1103 kWh/kWp/year 1023 kWh/kWp/year

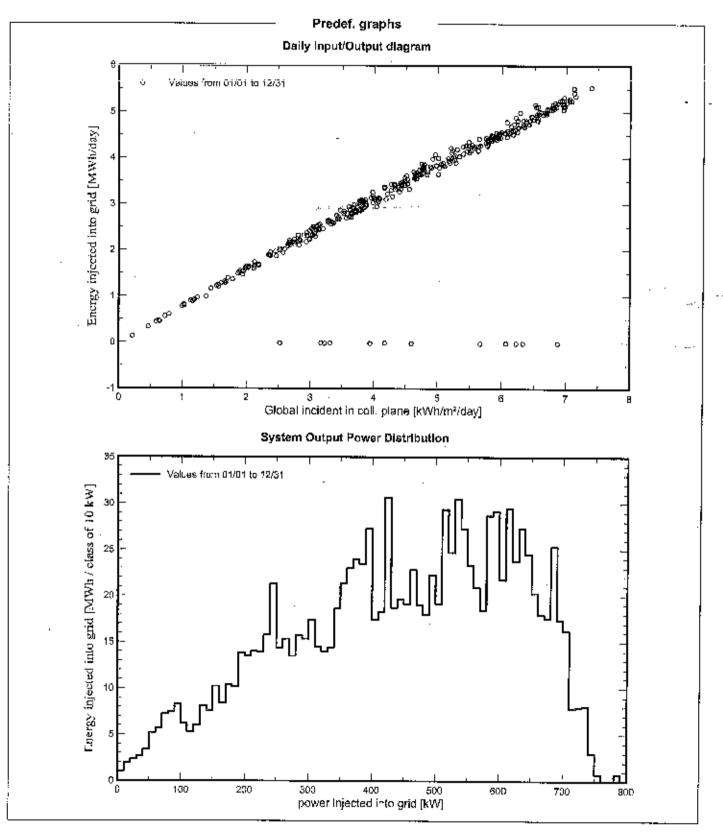
Normalized productions (per installed kWp)

Balances and main results

	GlobHor	DiffHor	T_Amb	Globine	GlobEff	EArray	PR
		kWh/m²	°C	kWh/m²	kWh/m²	kWh	ratio
January	69.8	43.B	11.97	89.2	84.1	75051	0.648
February	91.5	47.0	16.DB	112.8	106.6	93022	0.793
March	\$30.8	77.5	22.10	145.7	137.2	117704	0.779
April	160.2	87.6	27.05	165.9	156.2	130724	0.760
Мөу	176.0	99.4	33.10	171.5	161.5	132088	0.742
June	169.5	102.6	33.05	160.2	150.7	f24093	0,747
July	160.6	102,3	31.57	153.2	144.1	119855	0.641
August	151.4	95.3	30.78	151.6	142.7	118810	0.675
September	141.5	71.5	29.07	154.5	145.6	121017	0.755
October	115,7	69.5	26.00	135.2	127.6	107744	0.768
November	76,5	52.0	19.07	93.4	88.0	78644	0.788
December	68,5	41.8	13.92	90.7	85.6	75726	0.801
Year	1511. 9	890.5	24.52	1623.8	1529.9	1292479	0.739
Legends							
GlobHor	Global horizontal irradiation			EArray Eff	ective energy at th	e output of the arm	ay
DiffHor	Horizontal diffuse irradiation			PR Pe	dormance Ratio	-	-
T_Amb	Ambient Temperature						
Globino	Global incident in coll, plane						
GlobEff	Effective Global, corr. for IAN	and shadlings					

ï

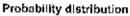
Variant: New simulation variant

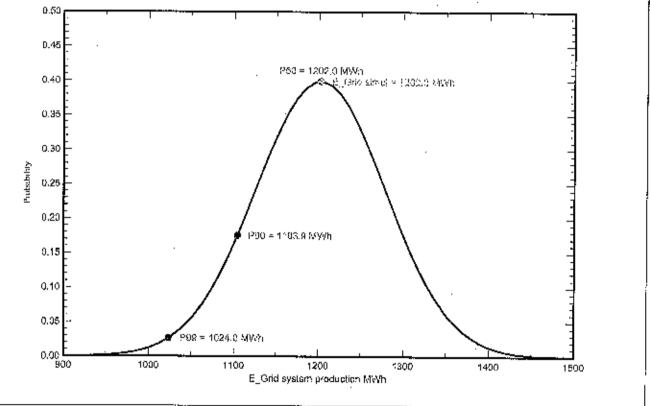

PVsyst V7.3.1 VC0, Simulation date; 08/01/24 10:37 with v7.3.1

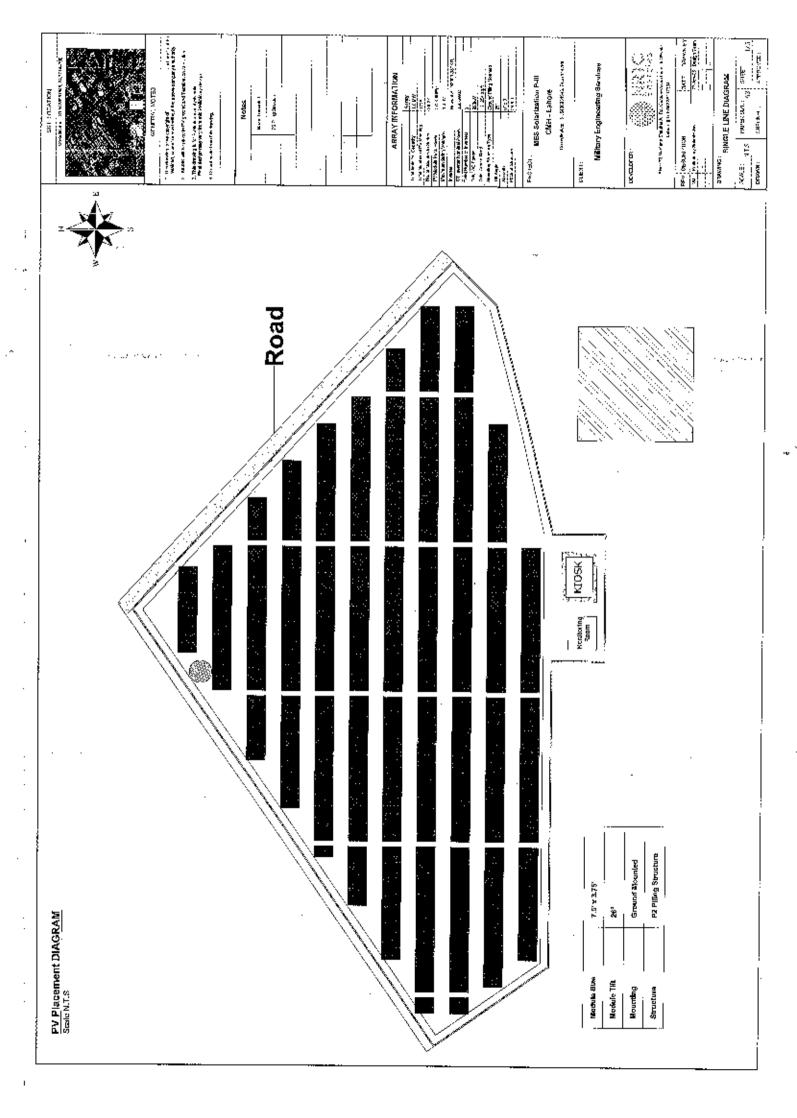
> Loss diagram 1512 kWh/m* **Global horizontal imadiation** +7.4% Global incident in coll. plane ⇒-1.86% IAM factor on global 4.00% Soiling loss factor 1530 kWh/m² * 4885 m² coll. Effective irradiation on collectors efficiency at STC = 20.58% PV conversion 1538279 kWh Array nominal energy (at STC effic.) <u> - -</u> -3.80% Module Degradation Loss (for year #10) -0.27% PV loss due to irradiance level -6.53% PV loss due to temperature { +0.43% Module quality loss -2.00% LID - Light induced degradation -3.91% Mismatch loss, modules and strings (including 1.8% for degradation dispersion 9-0.93% Ohmic wiring loss 1292479 kWh Array virtual energy at MPP 9-1.66% Inverter Loss during operation (efficiency) 90.00% Inverter Loss over nominal inv, power ₩0.00% Inverter Loss due to max, input current 90.00% Inverter Loss over nominal inv. voltage ን -0.01% Inverter Loss due to power threshold 90.00% Inverter Loss due to voltage threshold N-0.01% Night consumption 1270876 kWh Available Energy at Invertor Output 9-0.66% Auxiliarles (fans, other) 4-0.03% AC ohmic loss -1.24% Medium voltage transfolioss +-0.01% MV line ohmid Joes \$-3.55% System unavailability 1201970 kWh Energy injected into grid

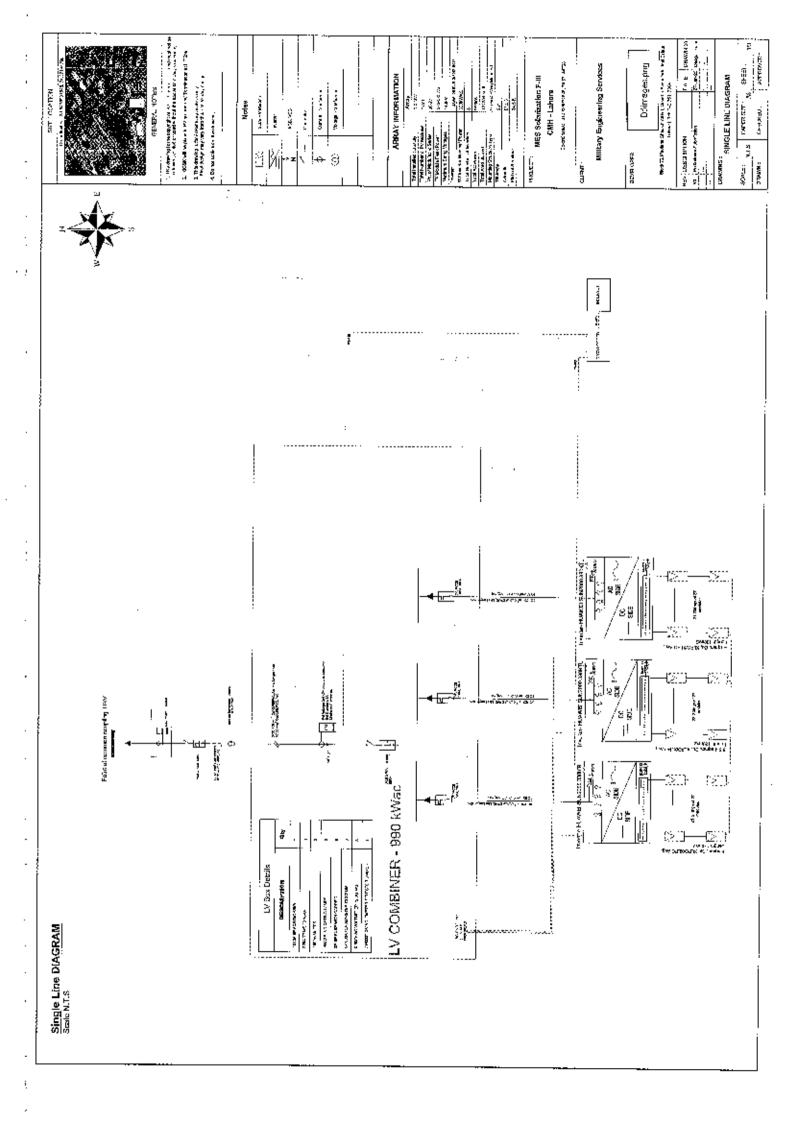
Variant: New simulation variant

PVsyst V7.3.1 VC0, Simulation date: 08/01/24 10:37 with v7.3.1


Variant: New simulation variant


PVsyst V7.3.1 VC0, Simulation date: 08/01/24 10:37 with v7.3.1


P50 - P90 evaluation


Source Meteor	onn 8.1 (1996-2015),	Saf∺100%
Kind	Monthly	v averages
Synthetic - Multi-ye	er everage	
Year-to-year variab	ility(Variance)	B.1 %
Specified Deviatio	n	
Climate change		0.0 %
	v (meteo + system	
Variability (Quadrat	• • •	" 6.4 %

Simulation and parameters unce	rtaintles
PV module modelling/paramotern	1.0 %
Inverter efficiency uncertainty	0.5 %
Soiling and mismatch uncertainties	· 1.0 %
Degredation uncertainty	. 1.0 %
· · ·	
· · ·	76.5 MWh
Annual production probability Variability P60	76.5 MWh 1202.0 MWh
Variability	

6-19-

PVsyst - Simulation report

Grid-Connected System

Project: Lahore MES (Akram Line)

Variant: New simulation variant No 3D scene defined, no shadings System power: 501 kWp Lahore Mes (Akram Line) - Pakistan

Author

. ...

:

:

ļ

Project: Lahore MES (Akram Line)

Variant: New simulation variant

PVsyst V7.3.1 VC0, Simulation date: 08/01/24 10:40 with v7.3.1

			Project su	ummary —			
Geographical Site		Situatio	n		Project settings		
Lahore Mes (Akram Li	ne)	a butite. I		31.53 FN	Albedo	0.20	
Pakistan		Longitude)	74.38 °E			
		Altitude		217 m			
		Time zon	э	UTC+5			
Meteo data Lahore Mes (Akram Lini	0)						
Meteonorm 8.1 (1996-2)	015), Sal=100% - Syr	nthetic					
·			System si				
			F	-	·		
Grid-Connected Sys Simulation for year no 1		No 3D s	cene define	ed, no shadings	·	·	
PV Field Orlentation	1	Near Sh	adings		User's needs		
Fixed plane		No Shadii	าฏร -		Unlimited foad (grid)	
Till/Azimuth	28/0°						
System Information							
PV Array				Invorters			
Nb. of modules		864 units		Nb. of units		2 unite	
Pnom total		501 kWp		Priom total		600 kWaq	
		· ·		Prom ratio		0.835	
	"- `- ±		Results su	ummary			.
Produced Energy	595529 kWh/yeer		roduction	-	Perf. Ratio PR	72.86 %	
			Table of c	ontents			
Project and results sum	mary						2
General parameters, PV	Array Characteristics	s, System lossa	s	·······			2 9
Main results	,			·····	~~~~		5
Loss diagram				······			6
Predef. graphs							7
P50 - P98 evaluation				······	~		é.
-							

Variant: New simulation variant

PVsyst V7.3.1 VC0. Simulation date: 08/01/24 10:40 with v7.3.1

Grid-Connected System

26/0 *

PV Field Orientation

General parameters Second defined, no shadings

No 3D scene defined

Near Shadings No Shadings

Models used Transposition Parez Diffuse Parez, Mateonorm Circumsolar separate

User's neods Unlimited load (grid)

Horizon Free Horizon

Orientation

Fixed plane

Tllt/Azlmuth

:

PV module		Inverter	
Manufacturer	CSI Solar	Manufacturer	Huawei Technologies
Model	CS7L-580MB-AG 1500V	Madel	SUN2000-330KTL-62
(Original PVsyst detabase)		(Custom parameters definition	n)
Unit Nom, Pawer	580 Wp	Unit Norn, Power	300 kWac
Number of PV modules	864 unite	Number of inverters	2 units
Nominal (STC)	501 kWp	Tatai power	600 kWao
Modules	27.Strings x 32 in series	Operating voltage	500-1500 V
At operating cond. (50°C)		Max. power (=>30°C)	330 kWac
Pmpp	480 kWp	Phom ratio (DC:AC)	0.84
U impp	978 V	Power sharing within this laverter	
f mpp	472 A	-	
Total PV power		Total inverter power	
Nominal (STC)	501 kWp	Total power	600 kWad
Total	864 modules	Number of inverters	2 unita
Module erea	2445 m²	Phom ratio	0.84

Array 8	osses
---------	-------

Array Soiling Losses osa Fraction	4.0 %	Thermal Loss fact Module temperature e Uc (const) Uv (wind)	or icco/ding to irradiance 29.0 W/m²K 0.0 W/m²K/m/s	DC wiring losses Global array res. Loss Fraction	34 mΩ 1.5 % at STC
ierie Diode Lass fallage drop oss Fractian	0.7 V 0.1 % at STC	LID - Light Induced Loss Fraction	d Degradation 2.0 %	Module Quality Loss	-0.4 %
lodule mismatch los		Strings Mismatch	loss	Module average degr	adation
loss Fraction	2.0 % at MPP	Loss Fraction	0.1 %	Year no	10
				Loss factor	0.4 %/year
				Mismatch due to degrad	lation
-				tmp RMS dispersion	0.4 %/year
				Vmp RMS dispersion	0.4 %/year
AM loss factor Icidence e″ect (JAM): Us 10° 20°	er defined profile	<u></u> . 40° 50	• - <u>60</u>~.	. <u></u>	
0.998 0.998		0.992 0.98			1 90°
			36 D,970	0.917 0.763	 0.000

i

: i

.

Project: Lahore MES (Akram Line)

Variant: New simulation variant

.

-- .__

PVsyst V7.3.1 VC0. Simulation dete: 08/01/24 10:40 with v7.3.1

		System los	58S	
Unavailability of the sys	stem	Auxillarles loss		
Time fraction	3.4 %	Proportionnal to Power	5.0 W/RW	
	12.4 days	3.6 kW from Power threet		
	3 periods	Night aux. cons.	500 W	
		AC wiring lo		
Inv. output line up to M	V transfo			
Invertor voltage		800 Vac tri		
Loss Fraction		0.10 % at STC		
Inverter: SUN2000-330KTL	-H2			
Wire section (2 Inv.)	Alu 2 x 3	x 240 mm²		
Average wires length		20 m		
MV line up to injection				
MV Voltage		11 kV		
Wiros	Alu (4 x 95 mm²		
Longth		100 m		
Loss Fraction		0.01 % at STC		
		AC losses in tran	sformers	
MV transfo				
Medium voltage		11 kV		
Transformer from Datashe	ets			
Nominal power		630 kVA		
Iron Loss (24/24 Connexion) .	1.00 kVA	· ·	
iron loss fraction	-	0.16 % of PNom		
Copper loss		20.00 KVA		
Copper loss fraction		3.17 % at PNom		
Colls equivalent resistance	3 x 3	32.25 mΩ		

.

·-.

i

;

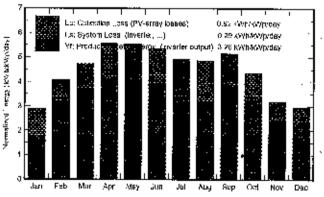
:

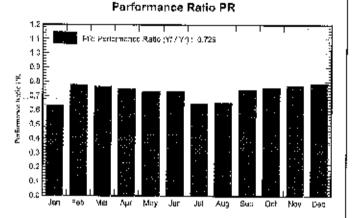
Project: Lahore MES (Akram Line)

Variant: New simulation variant

PVsyst V7.3.1 VC0, Simulation date: 08/01/24 10:40 with v7.3.1

Main results

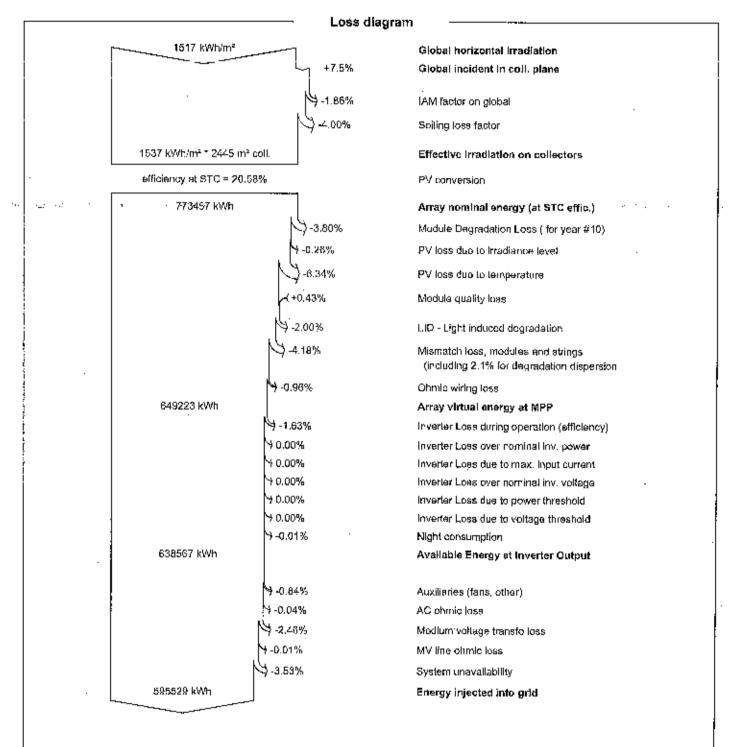

System Production


Produced Energy (P50) 595529 kWh/yeer Produced Energy (P90) 546955 kWh/year Produced Energy (P99) 507367 kWh/year

Produced Energy (P90) Produced Energy (P99)

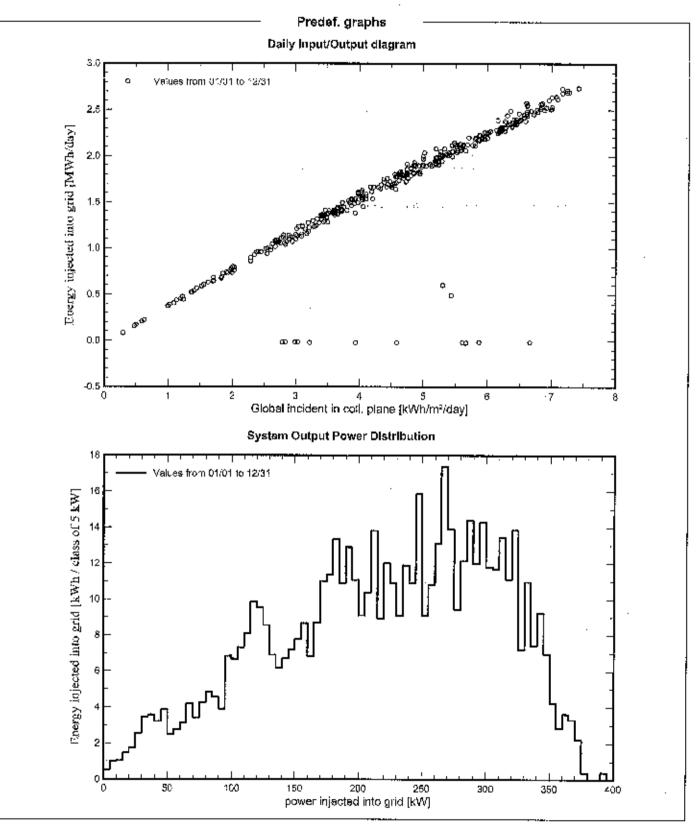
Specific production (P50) 1188 kWh/kWp/year Porformance Ratio PR 72.86 % 1091 kWh/kWp/year 1012 kWh/kWp/year

Normalized productions (per installed kWp)


Balances and main results

	GlobHor	DiffHor	T_Amb	Globinc	GlobEff	EArray	E_Grid	PR
	kWin/m²	kWh/m²	°C	kWh/m²	kWh/m²	kWh	, kWh ,	≠atio
January	69.8	43.8	11.37	89.2	84.1	37528	28371	0.635
February	92.5	46.5	15.69	114.4	108.1	47087	44653	0.779
March	131.6	77.3	21.71	146.B	138.3	59241	56368	0.766
April	161.0	B7.2	26.85	†66,B	157.1	65640	62526	6.748
May	176.7	99.C	32.94	172.2	162.2	66243	63090	0.731
June	169.5	105,7	32.79	160.3	150.8	62C1B	59076	0.736
July	160.5	105.1	31.24	153.2	144.0	59925	49693	0.647
August	151.1	95,5	30.47	150.9	142.0	59213	49407	0.653
September	• 141.8	74.6	28.75	154.3	145.4	60574	57618	0.745
October	116. 2	71.3	25.59	135.5	127.9	54007	51303	0.756
Novembar	77.2	50.6	18.59	95.9	90.4	39371	37208	0.774
Decembor		42.5	13.44	91.7	86.5	38375	36218	0.788
Year	1517.3	899.2	24.18	1631.1	1536,7	649223	595529	0.729
Legends								
GlobHor	Global horizontal irradia	rtion		EArray	Elfective (energy at the ou	#put of the array	
DiffHor	Horizontal diffuse irradi	ation		E_Grid		jected Into grid		
T_Amb	Amblent Temperature			PR	Performat	nce Ratio		
Globine	Global incident in coll. p	lane						
GlobEff	Effective Globel, corr. fo	x JAM and shad	lings					

Variant: Now simulation variant

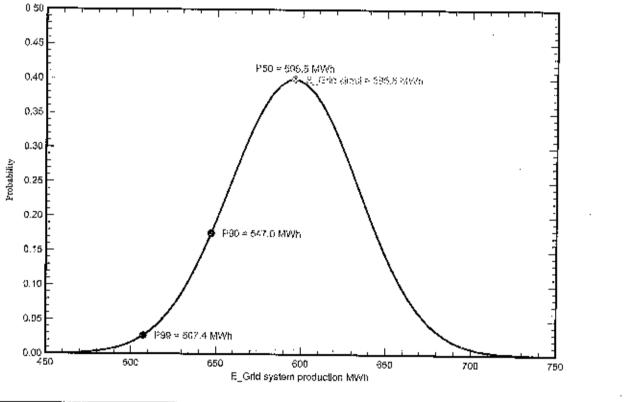

PVsyst V7.3.1 VC0, Simulation dato: 08/01/24 10:40 with v7.3.1

Variant: New simulation variant

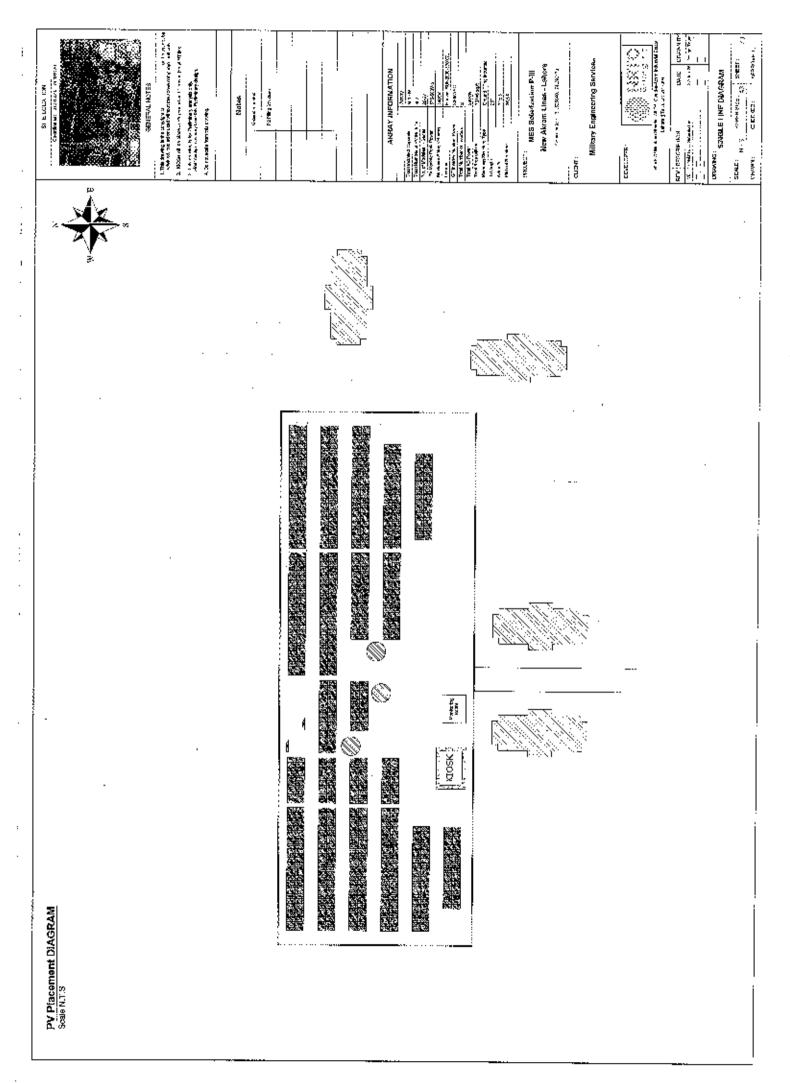
PVsyst V7.3.1 VC0, Simulation date: 08/01/24 10:40 with v7.3.1

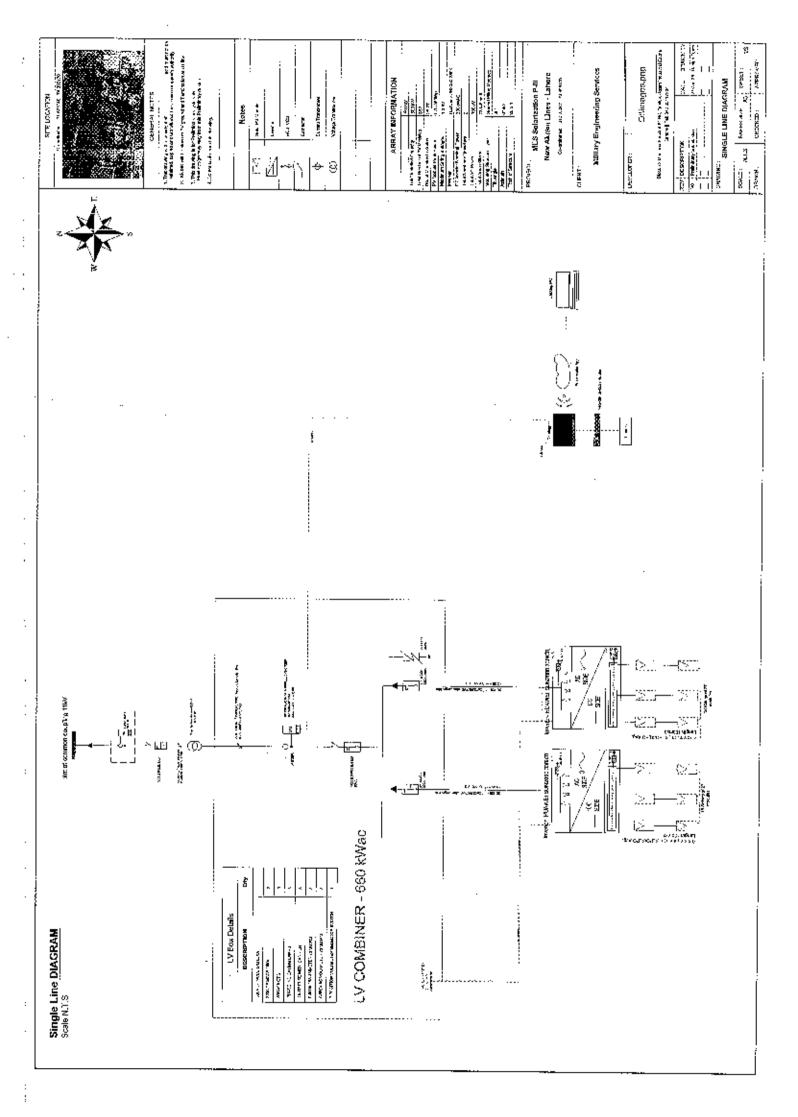
ć

Variant: New simulation variant


PVsyst V7.3.1 VC0, Simulation date; 08/01/24 10:40 with v7.3.1

Meteo d Sourca		
	Meteonorm 8.1 (1996-2015),	Sat=100%
Kind	Manthi	à avei.aõee
Synthetic	- Multi-year avorage	
Year-to-y	eer variability(Varlance)	0.1 %
Specified	i Deviation	
Climate c	hanga	0.0 %
Giobal v	/ariability (meteo + system	à
	/ (Quedratic sum)	") 6.4 %


P50 - P90 evaluation


·

	Simulation and parameters uncer	tainties	
	PV module modelling/parameters	1.0 %	
	Invorter efficiency uncertainty	0.5 %	
	Soiling and mismatch uncertainties	f.0 %	
	Degradation uncertainty	1.0 %	
	Annual production probability		
	Veriebility	37.9 MWh	
	P50	595.5 MWh	
	PSD	547.0 MWh	
	P39	507.4 MWh	
Probability d	Istribution		

•

PVsyst - Simulation report

Grid-Connected System

Project: Okara MES

Variant: New simulation variant No 3D scene defined, no shadings System power: 1001 kWp Okara MES - Pakistan

Author

•

. .

.

:

:

Project: Okara MES

Variant: New simulation variant

PVsyst V7.3.1 VC0, Simulation date: P1/08/24 17:58 with v7.3.1

	.	Project a	summary ——			
Geographical Site Okara MES	0	Situation Latitude	30.75 °N	Project settings Albedo	0.20	
Pakistan		Longliude	73.35 °E	Albedo	0.20	
		Allitude	170 m			
		Time zone	UTC+5			
Meteo data						
Okara MES						
Meteonorm 8.1 (1996	5-2015), Sat≃100% - Sj	rthetic				
·	·	System s	summary	、,		
Grid-Connected S Simulation for year n		No 3D scene defit	ied, no shadings			
PV Fleid Orientati	ion	Near Shadings		User's needs		
Fixed plane		No Shadings		Unitmited load (grid)	
Tilt/AzImuth	26/0 *					
System Informatio PV Array	on		Invertors			
Nb. of modules		1726 units	Nb. of units		3 units	
Phom. total		1001 kWp	Phom total		900 kWae	
		·	Pnom ratio		1.112	
		Results a	ummary		, ,	
Produced Energy	1353019 kWb/year		1352 kWh/kWp/year	Perf. Ratio PR	78.68 %	
· · ·	 .	Table of e		-		_
Project and results su General parameters	mmary RV Arroy Chamotovistic	e Rusion Interes				2
Comprar parentierers	F V Analy Gharacteristic	s, aysiani ibeeas				3
coss disgraph						Б Б
ствові, ўгазлів "						7
			· · · · · · · · · · · · · · · · · · ·			•

.

:

·

•

;

.

PVsyst V7.3.1 VC0, Simulation date: 01/08/24 17:58 with v7.3.1

Project: Okara MES

Variant: New simulation variant

	General	l parameters – – –		
Grid-Connected System		efined, no shadings		
PV Field Orientation		-		
Orientation	Sheds configurat	tion	Models used	
Fixed plane	No 3D scene defin		Trensposition	Peraz
TllVAzimuth 26/0°		1000		Meteonorm
2010			Circumsolar	separate
Horizon	Near Shadings		User's needs	
Frae Horizan	No Shadings		Unfimited load (grid)	
	PV Array (Characteristics –		<u></u>
PV module		Inverter		
Manufacturer	CSI Solar	Manufacturer	Hugu	voi Technologiae
Model	CS7L-580MB-AG 1500V	Model		vei Technologias
	037 E-300 M B-AG (300 V			2000-330KTL-H2
(Original PVsyst database) Unit Nom, Power	C00 141-	(Custom paramete	rs celinition)	
	580 Wp	Unit Nom, Power		300 kWac
Number of PV modules	1726 units	Number of inverters		3 units
Nominal (STC)	1001 kWp	Total power		900 kWac
Array #1 - PV Array				
Number of PV modules	868 units	Number of inverters	9 / MPPT 17%	1.5 units
Nominal (STC)	503 kWp	Total power		450 kWac
Modules 3	1 Strings x 28 In series		•· ·	
At operating cond. (50°C)		Operating voltage	500-1	1500 V
Ртрр	463 kWp	Max. power (=>30°C)		330 kWac
U трр	854 V	Priominatio (DC:AC)		1.12
լ աեն	542 A	No Power sharing bat		
Array #2 - Sub-array #2				
Number of PV modules	858 units	Number of Invartors	9 * MPPT 17%	1.5 units
Nominal (STC)	498 kWp	Total power		450 kWac
1 1	3 Strings x 26 In series			
At operating cond. (50°C)		Operating voltage	500 -	500 V
Pmpp	457 kWp	Max. power (=>30°C)	200-1	330 kWec
и търр	497 KMP 793 V	,		
		Pnom ratio (DC:AC)		1.11
փրթ	577 A .	No Power shading betw	veen MPP1S	
Total PV power		Total Inverter powe	÷٢	
Nominal (STC)	1001 kWp	Total power		900 kWac
Total	1726 modules	Number of Invarters		3 unite
Module area	4885 m²	Pnom ratio	· .	1.11
		No Power sharing		
	Arra	y losses ———	- <u>-</u>	<i>.</i>
Array Solfing Losses	Thermal Loss fa	actor	Serie Diode Loss	
Loss Fraction 2.0 %	Module temperatu	re according to irradiance	Voltage drop	0.7 V
	Uc (const)	29.0 W/m²K	Loss Fraction	0.1 % at STC
	Uv (wind)	0.0 W/m²K/m/s		
LID - Light Induced Degradation	Module Quality	Loss	Module mismatch	losses
Loss Fraction 2.0 %	Loss Fraction	-0.4 %	Loss Frection	2.0 % at MPP

:	•		ć	ŝ	2	3	3
	ş	Ĵ	į) N	10.000		10044

1

÷

· · •

:

.

:

.

÷

Project: Okara MES

Variant: New simulation variant

-- .

----

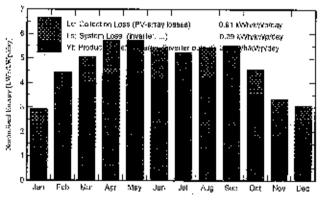
PVsyst V7.3.1 VC6, Simulation dote: 01/08/24 17:58 with v7.3.1

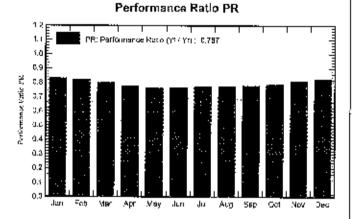
	A	rray losses	·
Strings Mismatch loss	Module avera	age degradation	
Loss Fraction 0.1 %	Year no	10	
	Loss factor	0.4 %/year	
		to degradation	
	Imp RMS dispe	rsion 0.4 %/year	
	Vmp RMS disp	ersion 0.4 %/year	
IAM loss factor Incidence effect (IAM). User defined profile			
10° 20° 30°	40°	50° 60° 70°	
0.998	0.992		·
produkt (110 molekov v 110 molekov	0.002	0.970 0.917	0.000
· · · · · · · · · · · · · · · · · · ·			
·······		wiring losses	
Global wiring resistance 10 mΩ		-	
Loss Fraction 1.5 % at STC			
Array #1 - PV Array			
Global array res.	26 mΩ	Array #2 - Sub-array #2	
Loss Fraction	1.5 % at STC	Global array res. Loss F <i>r</i> action	23 mΩ
			1.5 % at STC
· · · · · · · · · · · · · · · · · · ·	AC v	wiring losses	··· ·
		in the topological sector of topologic	
Inv. output line up to MV transfo Inverter voltage	900 Mar 44	and a second second	
Loss Fraction	800 Vac tri 0.03 % at STC		
Inverter: SUN2000-330KTL-H2	0.03 % at STC		
	3 x 240 nim²	Inverter: SUN2000-330KTL-H:	
Average wires length	10 m	Wire section (2 Inv.)	Alu 2 x 3 x 150 mm²
Avarage withs length	19 (1)	Average wires length	0 m
MV line up to injection			
MV Voltage	11 kV		
	3 x 120 mm²		
Length	392 m		
Loss Fraction	0.08 % at STC		
	– AC losse	s in transformers	
MV transfo			
Medium voltage	. 11 kV		
Transformer from Datasheets			
Nominal power	1250 KVA		
Iron Loss (24/24 Connexion)	1.00 kVA		
Iron loss fraction	0.08 % of PNom		
Copper loss	2.00 kVA		
Copper loss fraction	0.16 % at PNom		
	x 0.82 mΩ		i

Project: Okara MES

Variant: New simulation variant

PVsyst V7.3.1 VC0, Simulation date: 01/08/24 17:58 with v7.3.1


Main results


System Production

Produced Energy (P50) 1353019 kWh/year Produced Energy (P90) 1267301 kWh/year Produced Energy (P99) 1197439 kWh/year Specific production (P50) Produced Energy (P90) Produced Energy (P99)

1352 kWh/kWp/year Performance Ratio PR 78.68 % 1266 kWh/kWp/year 1196 kWh/kWp/year

Normalized productions (per installed kWp)

Balances and main results

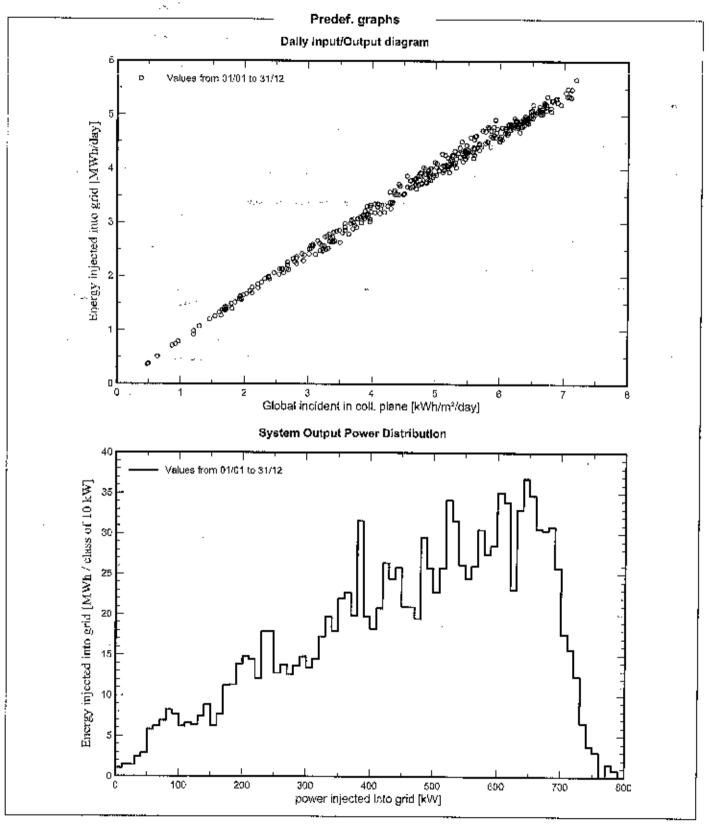
	GlobHor	DiffHor	T_Amb	Globinc	GlobEff	ЕАгтау	E_Grid	PR
	kWn/m²	kWh/m²	°C	kWh/m²	kWh/m *	kWh	kWh	ratio
January	72.0	44,1	12.67	90.8	87.4	77537	75382	0,830
February	100.5	52.8	16.58	123.9	119.5	: 104112	101593	0.819
March	139.6	78.4	22.74	, 156.9	151.2	128386	, 125384	0,798
April	166.7	89.5	28.19	172.4	165.8	137437	134293	0.778
Мау	183.4	101,2	33.85	177.8	170.9	138844	135639	0.762
June	173.7	107.9	i 34.21	163.3	156.8	128068	125087	0.765
July	170.9	104.8	33.08	162,4	156.0	1 2 8382	125359	0.771
August	168.5	99.0	31.92	168.6	162.1	133754	130648	0.774
September	r 152.3	78.4	29.90	168.1	159.8	132403	129346	0.778
October	120.0	68.2	26.94	141.0	135.9	113872	111127	0.788
November	. 80.9	52,4	20.30	100.1	96.3	83176	80993	0.809
December	71.7	44.1	14.94	94,6	9f.1	80339	78167 j	0.825
Year	1600.1	919.0	25.49	1717.7	1652.6	1386311	1353019	0.787
Legends								
GlobHor	Global horizontal imertia	alion		EArray	Effective (energy at the or	uppet of the array	
DiffHor	Horizontal diffuse irradi	ation		E_Grid		iected into grid	apper of the citaly	
T_Amb	Ambient Temperature			PR	Períoma			
Glabina	Globel incident in coll. p	lane						
GlobEll	Effective Global, corr. fo		ands					

PVsyst V7.3.1 VC0, Simulation date: 01/09/24 17:58 with v7.3.1

Project: Okara MES

Variant: New simulation variant

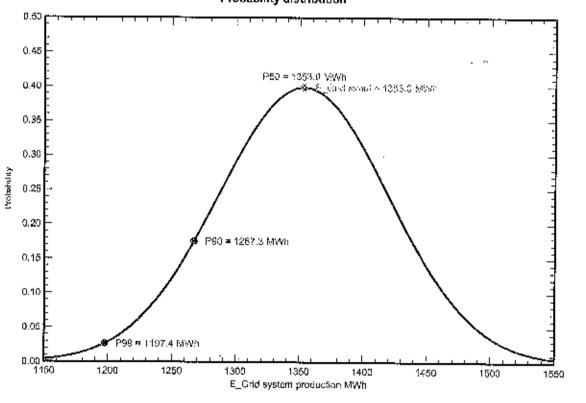
Loss diagram


1600 kWh/mª **Global horizontal irradiation** +7.4% Global incident in coll. plane -1.83% IAM factor on global -2.00% Soiling loss factor 1653 kWh/m² * 4885 m² coll. Effective Irradiation on collectors efficiency at STC = 20.58% PV conversion Array nominal energy (at STC offic.) Module Degradation Loss (for year #10) -3.80% 9-0.10% PV loss due to irradiance level -7.00% PV loss due to temperature (+0.43%) Module quality loss \$ -2.00% LID - Light induced degradation -1.14% Mismatch loss, modules and strings (including 2% for degradation disporsion 9-0.97% Ohmic wining loas 1386311 kWh Array virtual energy at MPP ¥)-1.65% Inverter Loss during operation (efficiency) 90.00% Inverter Loss over nominal inv. power 90.00% Inverter Loss due to max. Input current N 0.00% Inverter Loss over nominal inv, voltage N 0.00% Inverter Loss due to power threshold 9 0.00% Inverter Loss due to voltage threshold 90.00% Night consumption 1363346 KWh Available Energy at Inverter Output 9-0.02% AC ohmic loss 9-0.70% Medium voltage transfolioss 9-0.04% MV line atmic lass 1353019 kWh Energy injected into grid

Project: Okara MES

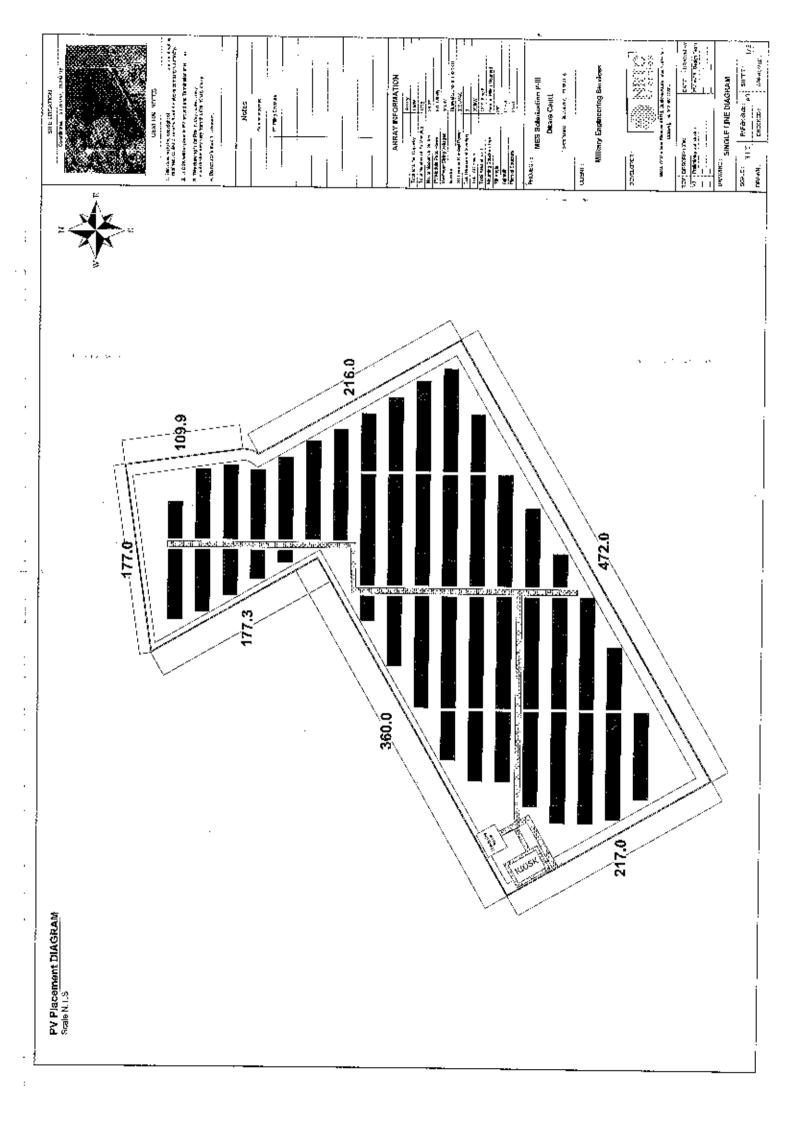
Variant: New simulation variant

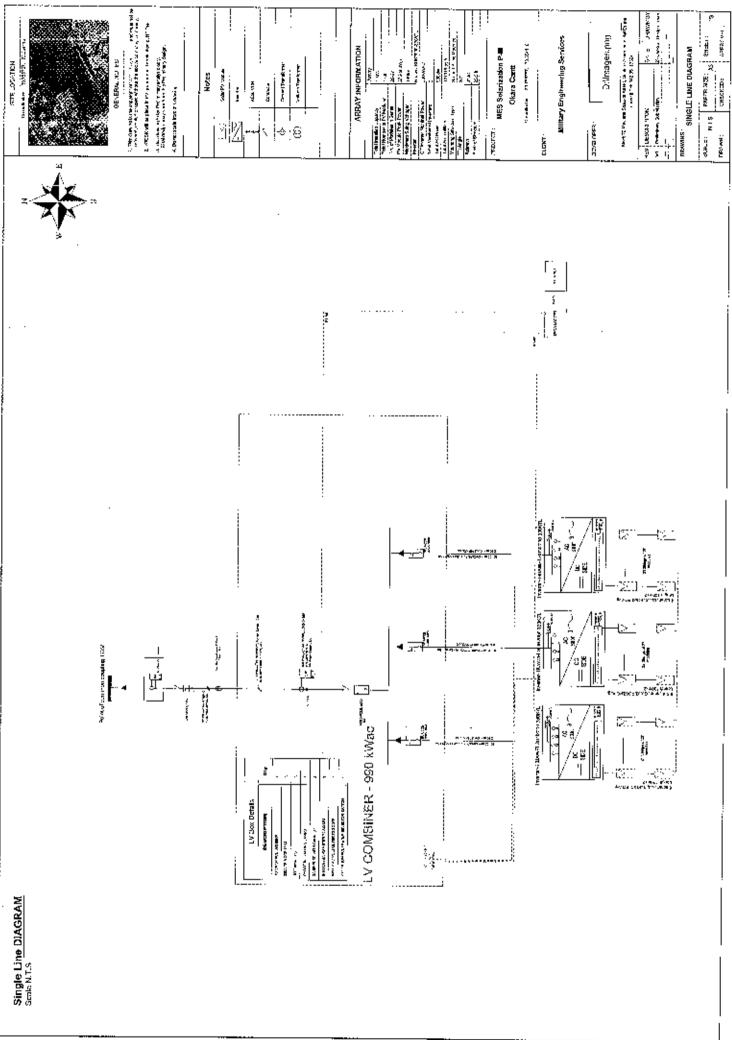
PVsyst V7.3.1 VC0, Simulation date: 01/08/24 17:58 with v7.3.1


:

Project: Okara MES

Variant: New simulation variant


PVsyst V7.3.1 VC0, Simulation date: 01/08/24 17:58 with v7.3.1


		P50 - P90 e	valuation	
Meteo data			Simulation and parameters unce	rtainties
Source Meteonom 8-1 (1996-2015),	5at=100%		PV module modelling/parameters	1.0 %
Kind Monfhly	/ averages		Inverter efficiency uncortainty	0.5 %
SyntheticMulti-year average			Solling and mismatch uncertainties	1.0 %
Year-to-year variability(Varience)	4.6 %		Degradation uncertainty	1.0 %
Specified Deviation			÷ •	
Climate change	0.9 %			
Global variability (meteo + system))		Annual production probability	
Variability (Quadratic sum)	4.9 %		Variability	66.8 MWh
			P50	1353.0 MWh
	.	56 mil 140	P90	1267.3 MWb
			P99	1197.4 MWh

Probability distribution

01/08/24

i

.

•

ł

:

1

i ļ

:

:

:

;

Annex - K (Project Cost)

.

÷

Regulatory Complaince								
 Generalian Lisconsinu 	NEPRO.	2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		070000000000000000000000000000000000000	100720002000000000000000000000000000000		122032222222222222	1.
2 Disgriščigenery 3 Eviceratal Second	EN NE	Cate Mark - (Pistors / Sictions) 	-	∩ri⊓	1CF/32/F	4601,428	672°90)	690/201V
18233334							Ř	
Civil Works								
🔶 😤 🖓 et n sel atuellas		Unit and considered in reach site medianed in the zone.	- <u>.</u>	3	1,556,000 (APR)	8,425 (2003)	(3)(2)(2)(1)	CUCDO E77.3
2 Land preparation	P	1914 35 BW	5	11.	2215 803.09	1: 271(54540	17727,2771	12 HEADON 13
X Red CV1 Works	NE	1440 UNA	. .	! ę	2,260,0000	!	' 	
1	<u>נ</u> ר	Unit cost considerant la machanadia the zame	!	\$. 	2,4000.0F	13 605,056 06 1	(0.960 HML)	15,082,030,00
_ I	ž	l Comulative 10.90 metros destructed (engilit is considered for several e	! 	4	2 PONIDE DE	13,125,000.00	0.00000000	15 225,000 00
	*	Acres Portform & Maribaling russing hearth ang	_ 	ţţ	3 dount	13(00)20		10,000,000
International Contraction	2		~	93	2.000,000.5	000'005'2-	20000/2	20-'30%'M
- ×	1 100000000000000000000000000000000000	Unit call curvationed in vector site monthanced in the come	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	LA SETERACIONES	1,420,000 395,509,600,650,550	7, 141,000 600 600 600 600 600 600 600 600 600	1228,000 (1228,000)	02 822 8
PV Plant							9 9	
t in version	UNICINOUNTRY HAVE THE	jeer 1	202	Kiter -	23,426.26	a3.02478/5720		30,026,975
 ¹⁰ Intertors ¹⁰ Division entremiser 	Hiterati Surgitas Mi	Smart String June 14: 14V Genes	COEE	Weild	00000°-	07000'001%2	6,300 000,0	41,800,
	NE .		20X	IFAX	22,500.00	75, 250,000,000	14 175,050.50	92,926,200
a unatime b Lu Switchgoor	ICCANNERS.	DOXEND (AA MURENAE) Dif contains an an an an an an	÷,	FL	2250.0000	Callabard'ss	2205(020-00	14,633,000
		LVNV Selfchuse in transmissions	÷ ن	 [] 	1,200,000,000,000,000,000,000,000,000,00	// Winterior	- 3, <u>029,00</u> 0 -	91273.00
					A SOLUTION OF A CONTRACT OF A	2 X100 X	AND TAKES	
				STOCKING STOCK				

.

•

:

Annex - L (Health and Safety Plan)

and the second second

.

Conte	nts

i

. .

•

.

.

•

. .

• .

;

:

i

:

:

:

. .

.

. .

.

.

1.0.	PURPOSE:	4
2.0.	SCOPE:	4
3.0.	HSE POLICY:	4
4.0.	OBJECTIVES:	5
5.0.	SITE HSE RULES:	5
6.0.	MANAGEMENT SYSTEM AND RESPONSIBILITY:	6
6.1.	Common Requirement:	7
6.1.1.	Legal and Other Requirements:	7
6.2.	ORIENTATION AND TRAINING:	8
6.2 .1.	HSE orientation:	8
6.2.2.	HSE Training:	8
6.2.3.	HSE Induction Training for New Personal:	8
6.2.4.	Tool Box Talk:	9
6.2.5.	First Ald Training:	9
7.0.	HSE INSPECTION:	9
7.1.	Check List;	9.
7.2.	Periodic Inspection:	10
8.0.	HSE MEETING:	10
8.1.	Weekly HSE Meeting:	10
9.0.	Risk Management:	10
9.1.	Risk Identification:	10
9.2.	Hazards Type:	10
9.3.	Interface Potential Hazards:	11
9.4.	Risk Assessment:	11
9.5.	Risk Controls:	12
10.0,	Incident Accident Report and Investigation:	13
10.1.	Incident Report:	13
10.2.	Incident Investigation:	13
10.3.	Accident Report:	14
10.4.	Accident Investigation:	14
11.0.	Permit To Work:	14
12.0.	Emergency Response:	1 4
12.1.	Emergency Communication:	14

.

.

	12.2.	Emergency Response Plan:	14
	13.0.	Emergency response drill:	15
	13.1,	Plan of Emergency Procedure:	15
·	13,2,	Emergency Layout Plan:	. 15
	14,0,	Safety Work Practices	15
:	14,1,	Electrical:	15
• ,	14.2.	Hand & Power Tools:	15
	14.3,	Work At Height:	16
	14.4.	Ladders:	16
	15.0.	Hazardous Material:	17
	15.1,	Guidelines:	17
	15.2,	Emission Control:	17
	15.3,	Noise Control:	17
	15.3.1.	Hazard Identification:	17
	15.3.2.	Control Measure:	17
	16.0.	Housekeeping:	18
	17.0.	Site Security:	18
	17.1,	Control Measure:	18
1	17.2,	Identification Control:	18
	17,3.	Material Control:	19
:	17.4,	Incoming Material:	19
	17.5.	Outgoing Material:	. 19
:	18.0.	Fire Prevention:	19
·	18.1.	General:	19
	18.2.	Fire Prevention Guide:	19
	18.3.	Requirements:	19
	19.0.	Engagement of Staff and Labour:	20
	19.1.	General:	20
	19.2.	Labour Law:	20
:	Sub H:	SES Plans/Policies	21
	Securi	ity Management Plan	21
	Health	h and Safety Policy	21
	Health	h and safety handbook	21
:	Emerg	gency Response Plan	21
	Safety	Practices and Procedures	21
	Code «	of Practice for hazardous equipment and materials	21

.

. ·

:

:

.

. 🕶

.

Traffic Management Plan	21
Environmental Policy	21
Environmental Procedures Manual	21
Hazardous waste management procedure	21
Emission and dust control procedure	21
Noise emission and control procedure	21
Water conservation procedure	21
Policy on sexual harassment	21

1.0. PURPOSE:

The purpose of this HSE Plan for Project of **Procurement of Grid Connected Solar PV Plants Aggregate up to 33MW at Various locations in Pakistan** is to identify the strategy and devise mechanism which is directed towards the better management of occupational Health, Safety, Environment (hereinafter referred to as HSE) for the Solar power project and demonstrates the NRTC Energies' overall approach in relation to health and safety to meet its health and safety obligations under both the Contract and Health and Safety Legislation

2.0.<u>SCOPE:</u>

The MSE Plan details the procedures and Standard Operating Procedures that shall apply to all activities coming under project scope of work at the project including the subcontractors employed by the contractor under the EPC contract. The scope of work shall be executed by supplying the designated materials, baseline manpower, temporary facilities, baseline equipment / tools, consumables, testing and inspection facilities and other services necessary to complete the scope of work.

3.0. NRTC's HSE POLICY:

Every employee, no matter from or sub-contractors shall recognize that health, safety, environment and community responsibilities are an integral part of his work. We shall prevent harm to people, environment and community around us by:

- Developing management structure and procedures for implementations at all our workplaces and continuous improvement through regular monitoring.
- Fully abiding by applicable government legislation and regulations.
- Creating awareness amongst all the employees, through a comprehensive program, facilitated by HSE department and implemented by respective site and office management.
- Ensuring that every leader of an operation, whether in the field or office, is directly
 responsible for the judicious enforcement of an organized program upholding this HSE
 Policy.
- Making line managers, all personnel accountable for HSE management effort towards elimination of causes that might lead to harm people, environment and community.
- Ensuring that the management systems of our subcontractor and vendors are compatible with our own commitment to HSE.
- Participating in hazard identification, risk assessment and eliminating potential threats to HSE.
- Providing training and encourages behavior that upholds this policy.

- Every employee and subcontractors work shall endeavor to conserve the environmental resources and work in an environment friendly atmosphere.
- Developing environmental management standards in compliance with EPA & SEPA and their maintenance through application of inspection and audit system.
- Fully abiding by government legislations and regulations related to environmental preservation and pollution control.
- Communicating environmental issues all across the company and investigation of incidents and violations thereof, to prevent recurrence.
- Ensuring commitment from our subcontractors and vendors to comply with environmental standards.
- Striving for continuous improvement in environmental matters.

4.0. OBJECTIVES:

Pursuant to the Policy Statement above, the following objectives are identified in order to create a positive approach to health, safety, and protection of the environment during all activities for project:

- To avoid all personal injuries during the execution of the Project, 'Target Zero LTI (lost time injury)'. ('Target Zero LTI' can be achieved by conducting risk assessments, safety trainings to employees and employers of the project, permit to work (PTW) system and implementation of HSE plan at site.)
- To ensure that all personnel employed on the project either employee or subcontractor employee are competent to carry out their designated tasks safely.
- To create positive health, safety and environment attitudes and perceptions at all levels of the project organization, and to raise health safety and environmental awareness in general.
- To implement a training program that supports the achievement of personnel competency in relation to Health, Safety, and the Environment.
- To complete the Project without Incurring any significant property damage to permanent equipment, or temporary facilities.
- To complete the Project with minimum avoidable impact upon the surrounding environment.
- To implement a hierarchy of communication forums that ensure that HSE concerns can be raised and addressed at all levels of the organization.
- To introduce a method of motivating good safety and environmental performance, which shall include the usage of commendation, as well as corrective techniques.
- To continually monitor and improve HSE performance.
- Ensure availability of resources to fully implement health and safety policy of the company.

5.0. SITE HSE RULES:

- All new workers of the contractor and subcontractors must go through the HSE Orientation before starting work, understand HSE Policy of NRTC ENERGIES and adhere to HSE rules.
- Personal Protective Equipment will be provided and must be worn when required. Safety shoes, overalls and hard hats in all site areas, masks, gloves and earplugs as required, etc.
- Follow the messages and instructions displayed on HSE boards installed on site. Be aware of emergency assembly points and escape routes. In the event of an emergency do not panic, follow the site emergency response procedures.

- Report promptly all accidents to your supervisor and HSE officer at site. Immediately provide first aid for the injured and call for the medic.
- While working in a confined space make sure that your nearby colleague and supervisor are well informed.
- Ensure adequate lighting is in place for work on night shifts or for emergency response.
- All scraps, waste materials and garbage must be disposed of in accordance with the construction waste management plan.
- Always clean work site after completing the job or shift. Maintain appropriate barricades as required. Never tamper with electric cables and appliances. Never insert direct cables into sockets, rather use proper plugs.
- Work at height is strictly prohibited without appropriate fall arrest systems in place. Ensure
 presence of strong side railings; there should be no gaps and ensure that all planks are
 secured appropriately.
- Do not enter scaffold that is not tagged safe for access.
- Tools or materials must not be carried while climbing up or down scaffolding or ladders. Use pouches or ropes for this purpose.
- Do not smoke or produce naked flame in NO SMOKING area. Use of open fire is prohibited.
- Keep all gangways and aisles clear and clean at work sites.
- Vehicles must be driven at a safe speed, observing speed limits. Drivers must have a valid driving license. Vehicles shall only be parked in designated parking areas.

6.0. MANAGEIMENT SYSTEM AND RESPONSIBILITY:

Project Management is committed to a HSE Plan requiring that accountability will begin at the highest level of management. Each level of Project Management, Subcontractor Management, supervision and employees will claim ownership in, and take personal responsibility for their roles In the safety program and will act as a change agent to modify each employee's behavior positively towards working safely. Each level of management shall take on the responsibility for the safety of employees and comply with the project safety standards and requirements. Contractor and The Project Company will perform inspections and audits and continuous field monitoring jointly and/or separately to determine compliance to safety. Accountability is a critical part of the HSE Plan and will be implemented with positive reinforcement that will challenge everyone involved, irrespective of his level of responsibility, to achieve our mutual goal of "No Accidents." All activities will be governed by the assumption that, "all accidents can be prevented" and that the "behavior of all employees can be modified to work safely". In order to achieve a No Accident and No Injury culture all levels of management are required to subscribe to the following:

- A bold aligned commitment to the elimination of worker injury.
- Establishing a sense of urgency for the elimination of incidents and injury.
- Forming a powerful coalition with parties that can make a difference to lead the initiative.
- Creating a vision of No Accident that emphasizes the impact on people and the possibilities it creates.
- Communicating the vision to everyone many times and in many ways.
- Focusing on leadership, behavior and the environment for safety.
- Empowering everyone to act on the vision.
- Institutionalizing new approaches by articulating the connection between incident and No Accident and the project's business objectives.

6.1. Common Requirement:

The management of HSE issues for contractor and subcontractors shall be based on the following:

- Performance Standards on Social and Environmental Sustainability
- Environmental, Health, and Safety General Guidelines.
- Ensuring the requirements of the contract.
- Contractor's HSE Policy.
- HSE issues must be integrated in all business areas and every subcontractor.
- All incidents can be prevented. Everyone responsible for safety, if anyone witness unsafe acts or conditions must act. Safe behavior must be promoted & rewarded in order to continuously improve working conditions.
- Establishing performance standards to eliminate or minimize risks to the HSE resulting from the work to be done.
- Establishing means for management of subcontractors and coordination of subcontractor's activities.
- The Project's HSE Policy, Objectives and Plan must be communicated to everyone.
- HSE risks associated to construction and commissioning activities must be understood and managed effectively.
- Workers must be competent to carry out their designated work.
- Corrective and preventive actions must be implemented.
- HSE shall not be compromised in order to achieve any objective.
- HSE Management Plan update as necessary.
- Performance must be openly reported.
- Consequences for non-compliance:
- HSE violations are not condoned, tolerated and accepted as the norm, but strict disciplinary action shall be taken against violators as per the disciplinary procedures.

6.1.1. Legal and Other Requirements:

The EPC Contractor shall comply with its obligations (with respect to the EPC Contractor, its subcontractors and otherwise) under and in accordance with the HSE Audit Requirements. The EPC Contractor shall additionally grant or ensure the grant to the Project Company and the Client of all the rights accorded to the Project Company and the Client under and in accordance with the HSE Audit Requirements.

HSE-related laws and regulations of Pakistan.

- Environment Protection Rules of Pakistan, 2054(1997)
- Environment Protection Act of Pakistan, 2053 (1997)
- National Ambient Air Quality Standard (NAAQS; issued in 2003)
- Environmental Impact Assessment (EIA; issued in 1993)
- Labor Protection Act of Pakistan (2010)

6.2. ORIENTATION AND TRAINING:

6.2.1. Het orientation:

Every person will undergo an HSE orientation program. On completion of orientation he/she will be issued an ID card and permitted to enter the site. HSE orientation shall be performed by Safety Manager, based on but not limited to the following:

- Introduce and explain HSE Policy and Project organization.
- General HSE rules and regulations for working at the project, including use of PPE, electrical equipment, Working at the height, accident Reporting, First Aid, Emergency Response, HSE Inspection, Housekeeping, etc.
- Risk Identification, Risk Assessment and Control at construction site, works, offices, etc. Specific hazards like work at height, electrical, fire, crane, scaffold and vehicle safety etc. Environmental hazard.

6.2.2. HSE Training:

This training Is to improve all kinds of engineers as civil engineers, electrical engineers, quality engineers, especially HSE engineers, for the safety management level and quality to better reflect pairs of responsibilities system, people-oriented principle, and be conducted by the Safety Manager and HSE engineers.

- HSE rules and regulations
- HSE theoretical knowledge
- Risk Identification, Risk Assessment, Risk Controls.
- Typical accident case.
- HSE induction training for new personal
- HSE training for management and supervision
- Emergency evacuation training
- HSE Training Weekly
- Occupational Health and safety
- Fire Safety & prevention
- Emergency Response Preparation
- Onsite Waste Management
- PPE Training
- Driver Safety
- Implementation of environmental and social management plan.

6.2.3. HSE Induction Training for New Personal:

All employees must attend a site-specific orientation presented by Contractor/Subcontractor prior to the start of work or as required when site conditions change such as when there is a change in the construction phase and/or during recommissioning and start-up. The goals set for the project, the project safety rules and regulations and the No Accident philosophy will be communicated to all employees, supervisors and managers. The course will also emphasize the importance of human life and promote employee ownership and accountability by utilizing behavior based safety techniques. The subcontractor should give the new hire internal orientation and submit the copy of attendance list to HSE department before the start of the site work. The orientation should include but not limited to following:

- Safety and environment policy,
- Basic PPE,
- Emergency preparedness and response plan,
- evacuation plan,
- Disciplinary procedure,
- Site safety and environment rules,
- Security procedure,
- Applicable HSE legalization and regulations.

6.2.4. Tool Box Talle

- All supervisors will be trained to deliver daily tool box talk in their respective areas.
- Subjects for "tool box talks" would be selected to reflect the specific hazards of a particular site, feedback from first line supervisors/ HSE inspectors and observation / input from any other employee.
- Incidents, which may occur in the site, shall also be discussed in "tool box talks". Annexure:018

6.2.5. First Aid Training:

- First AID training will be conducted by safety Manager.
- Although all employees will be trained in basic first aid, having got training in advance first aid will be posted at selected points to impart first aid, when required.

7.0. HSE INSPECTION:

7.1. Check List:

Safety Check List is an effective management procedure for the discovery of potential hazards and the implementation of various laws and regulations. Safety Check Lists comprise of and will be used as per site requirements:

Annexures	Description
Annexure:001	Minutes OF Meeting
Annexure:002	Safety Signs
Annexure:003	Environmental Inspection
Annexure:004	Hazardous Waste inspection
Annexure:005	Ladder Inspection
Annexure:006	Permit to Work
Annexure:007	Confined Space
Annexure:008	Chemical Inventory
Annexure:009	Fall Protection
Annexure:010	Job Safety Analysis
Annexure:011	DG Inspection
Annexure:012	Electrical Safety
Annexure:013	Monthly Fire ExtInguisher
Annexure:014	Hazard Identification
Annexure:015	Scaffold Inspection

Annexure:016	Housekeeping
Annexure:017	Daily TBT
Annexure:018	HSE Rules
Annexure:019	Daily EHS Report
Annexure:020	Lifting Activities
Annexure:021	Accident Report
Annexure:022	Risk Assessment Format
Annexure:023	EHS Orientation
Annexure:24	Training plan/Record

• Others, if necessary

7.2. Periodic Inspection:

HSE periodic inspection include weekly, monthly, quarterly HSE inspection that will be respectively conducted by engineers, Safety. After completion, HSE inspection reports must be delivered to relevant company, department, personnel, so that they can correct unsafe behaviors, conditions and circumstances. HSE monitoring will be conducted all time until unsafe behaviors, conditions and circumstances are corrected thoroughly.

8.0. HSE MEETING:

8.1. Weekly HSE Meeting:

Weekly HSE Meetings chaired by the Safety Head, will be held each week with all sub-contractors and nominated Engineers, Supervisors etc. All-important HSE matters of the site as well as the results of the HSE inspect and corrective action will be discussed in weekly HSE meeting. The meeting will promote the Implementation of the HSE management and rectification.

9.0. Risk Management:

Hazard Analysis and Risk management techniques shall be carried out on all life critical and asset damaging activities, so that all the potential hazards are identified and evaluated prior to execution, thereby enabling either substitution or adoption of control techniques. All method statements, hazard analysis & control sheets will be reviewed.

9.1. Risk Identification:

Hazard Analysis and Risk management techniques shall be carried out on all life critical and asset damaging activities, so that all the potential hazards are identified and evaluated prior to execution, thereby enabling either substitution or adoption of control techniques. All method statements, hazard analysis & control sheets will be reviewed.

9.2. Hazards Type:

Following are examples of typical hazards that can be encountered:

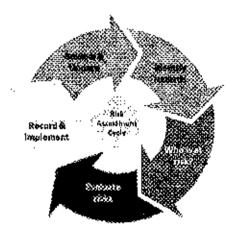
- Fire (Fire extinguishers will be set on any location based on the risk assessment)
- Falling objects

- Falls from heights
- Grinding
- Erection of steel work
- Installation of equipment
- Electric shock.

9.3. Interface Potential Hezards:

- Existing emergency evacuation procedures
- Emergency communication system
- Protective equipment requirements
- Waste disposal

C.4. Risk Assessment:


The responsibility for ensuring that risk assessments are carried out lies with Health & Safety Head.

The Head of HSE must ensure that all operations likely to give rise to risk are fully assessed and that control measures are put in place to reduce any significant risks.

Basic Five Steps for a Risk Assessment:

Five steps to risk assessment can be followed to ensure that your risk assessment is carried out correctly, these five steps are:

- Identify the hazards
- Decide who might be harmed and how
- Evaluate the risks and decide on control measures
- Record your findings and implement them
- Review your assessment and update if necessary.

Procedure to calculate risk level by matrix method

The matrix works by selecting the appropriate consequences from across the top, and then cross referencing against the row containing the likelihood, to read off the estimated risk rating.

The following is a guide to the matrix's risk rating clarification.

Insignificant Risk. No action is required.

Medium Risk. Efforts should be made to mitigate the risk. Risk should only be tolerated for the short term, and then only whilst further control measures to mitigate the risk are being planned and introduced, and these within a pre-defined time period. However, the costs of prevention should be carefully measured. Where the moderate risk is associated with extremely harmful consequences, further assessment maybe necessary to establish more precisely the likelihood of harm, this as a basis for determining the need for improved control measures.

High Risk. Work activities should not be started until the risk has been mitigated. Significant resources may have to be allocated to mitigate the risk. Where the risk involves work in progress, urgent action should be taken.

Extreme Risk. Work should not be started or continued until the risk has been mitigated. If it is not possible to mitigate risk even with unlimited resources, the work should remain prohibited.

- The Safety Manager will assign duties for the preparation, review communication, coordination and implementation, of the work method statement and risk assessment process, to the concerned individuals of execution team.
- Details on who is doing the work and the respective disciplines, numbers involved, date
 of preparation and reference number to be supplied by the individual responsible for
 managing and controlling the work an outline definition of the work scope to be
 provided, and then any risks identified in terms of high potential, should be highlighted
 and addressed as part of the stage two procedure on risk assessment.
- It is essential for the purpose of this procedure that all tools and equipment are listed and a Performa providing a list of considerations should be reviewed against the previous sections and after undergoing the approval route of this procedure, an assurance regarding communication should be made that parties involved with the task are fully aware of the steps, procedures and considerations necessary to undertake the task.
- Following the completion of the work method statement Performa, an evaluation will be made as to any identified hazards which shall be ranked in order of magnitude against the list of hazards.
- The rankings are given as low, medium and high in terms of probability and severity, the assessment should therefore be based on what the hazards are and what potential exists for injury or property damage. In other words, risk rating i.e. low, medium and high = severity x probability.

9.5. Risk Controls:

- The hierarchy of Risk/Hazard Control is used to determine risk reduction measure in order of their effectiveness, as follows:
- Elimination or substitution of the task / job step or substance.
- Engineering Control
- Including guarding and mechanical aids such as scaffolding, extraction ventilation and alike Administrative Controls.
- Including permits, training, signage, reduction in time or personnel exposure
- Personal Protective Equipment
- Control of Ignition Sources

Factors Contributing To Fires:

To eliminate chances of fire, its causes must be identified. The most common ones are summarized below:

- Electrical Safety: This is a leading cause of fire. Most electrical fire starts in wiring and can be prevented by proper installation.
- Smoking: Smoking must be strictly prohibited in storage area. It can be permitted in clearly designated safe areas only.
- •
- Static Sparks: Ignition of flammable processes getting out of control, chemicals reacting with other materials, and decomposition of unstable chemicals can cause
 - fires. These can be prevented by proper operation, Instrumentation and controls; and by careful handling and storage, particularly avoiding conditions of heat and shock.

10.0. Incident Accident Report and Investigation:

- 10.1. Incident Report:
 - The objective of incident reporting, investigation & analysis is to identify the cause(s)
 of an incident to allow for preparation of recommendations, to avoid recurrence of
 such incident(s) in future.
 - As soon as an incident occurs, Supervisor/Area Engineer will immediately inform the Area Supervisor, who will communicate the incident to the HSEHead.
 - For a restricted work injury/lost time injury/fatal case or any serious incident involving damage or loss to property or a near-miss, email to PM, Initial Incident Report, within one hours of the incident; a copy of the report will also be provided to.
 - If an injury results from an incident or causes damage to the EMPLOYER assets, HSE Engineer would classify the injury and estimate the cost of damage.
 - HSE In-charge will issue a Weekly HSE Report to Head Office, with one copy to.
 - In the internal Weekly Site Meetings, HSE Head shall brief the attendees about the incident(s).
 - The HSE Engineer, covering each and every incident, including all the first aid cases shall also fill monthly injury record format.
 - One copy of the monthly injury record shall be sent to Head HSE while one copy of each report will be kept in the office of the HSE Manager.

10.2. Incident Investigation:

- As soon as an incident occurs, the Area Supervisor and HSE Head shall go to the location and investigate the cause of the incident.
- HSE Head will involve the Site Manager and together take immediate corrective action(s), if required.
- As soon as possible the HSE Manager and Site Manager with input from the area engineer will compile an incident report. The incident report should include where appropriate, statements from the people involved, eye witnesses and technical experts.
- Based on the incident report the HSE Manager would indicate responsibility for the incident and make recommendations on the corrective actions on the incident Report.

10.3. Accident Report:

The objective of accident report and investigation is to Identify the causes, draw lessons, avoid reoccurrence, and specify the procedure. The following accident report and investigation procedure, include near misses/incidents.

 As soon as an accident occurs, the partles or relevant personnel as supervisor, engineer, team leader, etc. at site, must immediately inform Site Manager and Safety Head.

10.4. Accident Investigation:

As soon as an accident occurs, Safety Head, Site manager shall go to the site and investigate the cause.

- Safety Manager involve the Site Manager and together take immediate corrective actions.
- As soon as possible the Safety Manager and Site Manager will compile an accident report after investigation. The accident report should include casualty, causes, responsible personnel, witnesses and technical measures.

11.0. Permit To Work:

PTW procedure will be followed at operations. The Work Permit System incorporates procedure, commonly used to ensure that necessary communication takes place and hazards are controlled. Project areas are potentially hazardous. However, people using proper procedures can perform work tasks efficiently and safely.

12.0. Emergency Response:

12.1. Emergency Communication:

Mobile Phones will be the main communication method for emergency purposes. Location of accidents should be clearly communicated by area according to the area identification system. All emergency contact numbers should be saved on all project line management's mobile phones. All emergency contact numbers should be clearly displayed in all project site working and office areas.

Emergency Telephone Number					
Police Help line	15				
_					
	,				

12.2. Emergency Response Plan:

Relying on emergency rescue system, according to actual engineering Project will formulate and publish the following site response plan, as an emergency response guidance documents.

- Site response plan for falling accident
- Site response plan for mechanical injury

- Site response plan for electric stroke
- Site response plan for fire accident

13.0. Emergency response drill:

- Emergency response drills shall be conducted based on Risk Assessment but at least quarterly and Risk assessment will be conducted after the TSF construction. Emergency drill should be carried out on quarterly basis.
- The observations and debrief notes shall be recorded. Safety Manager shall analyze the findings and identify any remedial actions required.
- The emergency procedure shall be updated from time to time to reflect observations made.
- Training shall be conducted on regular basis for emergency response teams.
- The location of emergency facilities e.g. firefighting appliances shall be clearly identified on plans displayed at conspicuous locations.
- Shall be also very clearly marked on this plan.

13.1. Plan C Emergency Procedure:

In an emergency or on hearing the Stop Work Alarm, every employee shall ensure the following:

- All work is stopped at once.
- All equipment is shut down and put in a safe place.
- All men are evacuated to a pre-determined assembly point in an orderly manner.
- No one is permitted to return to work until notification has been received from operations or from the company representative that it is safe to do so.

13.2. Emergency Layout Plan:

To be added at site

14.0. Safety Work Practices

!

14.1. Electrical:

- The Electrical HV side to MV generation, prior to back energizing all HSE
 precautionary measurements should be taken, and confirm with concerned
 department. All work on electrical equipment is subject to 'Permit to Work'
 handled by key persons.
- All electrical work, installation, modification and wire capacities shall be in accordance with the pertinent provisions of the national electric code, and shall be approved by contractor's electrical engineer.
- All temporary power panels shall have covers installed at all times. All open or exposed breaker spaces shall be adequately covered and is subject to the approval of contractor's HSE Manager and/or electrical engineer.

14.2. Mand & Fower Tools:

All hand tools shall be kept in satisfactory condition and used only for the purpose for which they are designed.

Regularly cleaned and, where necessary, slightly oiled to prevent corrosion.

- Non-conductive and properly insulated hand tools will be used in areas where activities are exposed to electrical risks.
- Appropriate type of hand tools will be used depending upon the nature of work, as determined by the competent foreman or supervisor.
- Damaged hand tools will immediately be taken out of serviced and repaired.
 If the damaged tool cannot be effectively repaired, it will be removed from Client facilities.
- All applicable requirements of Hand Tools and Power Tools will be adhered. All Power tools shall be kept in satisfactory condition and used only for the purpose for which they are designed. Prior to use, power tools shall be inspected and tested to ensure safe operating conditions. Periodic inspections shall be made to assure safe operating conditions.
- A designated competent electrician to conduct a periodic and ensure proper maintenance is performed on all power tools.
- Rotating tools, such as grinders, will have to be switched off and held until rotation has completely stopped before they are set down.
- Only authorized / competent persons will be allowed to operate portable power tools.
- ONLY the designated competent maintenance personnel will perform repair of defective power tools
- ٠

14.3. Work At Height:

All subcontractors must take three-step systematic approach to protect the employees who work at height from falling. This approach consists of falling elimination, falling protection and falling arresting.

Falling Elimination: The first step in this approach is to assess the workplace and the work itself in the earliest design/engineering stages of the project/site and during the planning stages of all work. The objective is to eliminate all fall hazards..

Falling Protection: The second step in continuous fall protection also requires assessing the workplace and work processes. If fall hazards cannot be eliminated during the first step, management must take a proactive approach to the prevention of falls by improving the workplace. Early installation of stairs, guardrails, barriers, and travel restriction systems can ensure a safe work environment.

Falling Arresting: The third step, the last line of defense against falls, is to use fallarresting equipment. Use fall-arresting equipment, however, ONLY after determining that potential falls cannot be eliminated by changing work procedures or the workplace. Equipment such as harnesses, lanyards, shock absorbers, fall arresters, lifelines, anchorages, and safety nets can reduce the risk of injury if a fall occurs. Carefully assess the workplace and work processes to select the most appropriate equipment and to install and use it correctly.

14.4. Ladders:

When using A-shape ladders, both side should be fix tight, no standing on the top side, no position change allowed on ladder. When operate on slippery surface, ladder foot should be fixed with cloth or other measures.

15.0. Hazardous Materiai:

Any substance or compound that has the ability to produce an adverse health effect in a worker

15.1. Guidelines:

Subcontractors and vendors who introduce a material onto the Project shall provide a Material Safety Data Sheet (MSDS Annexure:008), if available, shall be submitted to the Site HSE office.

15.2. Emission Control:

Air quality emissions associated with the project are to be managed during construction. These potential impacts include:

- Emissions to the atmosphere generated by combustion of fuel from construction plant including small volumes of particulates, carbon monoxide, carbon dioxide, hydrocarbons and nitrogen oxides.
- The Contractor shall control dust and other airborne emissions from such activities as, but not limited to, vehicular and machinery movement, demolition and/or decommissioning of existing structures, stockpiling of soils or other construction materials.
- Burning of refuse or other material is prohibited, to control emissions to the atmosphere due to construction activities including small volumes of particulates, carbon monoxide, carbon dioxide, hydrocarbons, etc.
- Construction machine and equipment will be well maintained and regularly serviced so that vehicular emissions remain within relevant air quality guidelines and standards.
- Investigate and implement corrective/preventative control measures, and report corrective action.

15.8. Noise Control:

15.3.1. Hazard Identification:

The steps that must be taken in order to effectively and efficiently control the noise in the workplace are:

- Identify the sound sources: vibrating sources.
- Identify the path of the noise from the source to the worker.
- Determine the sound level of each source.
- Identify solutions by taking into consideration the degree of sound attenuation, operation, and productivity restraints and cost.

15.3.2. Control Measure:

The exposure to noise can be reduced by eliminating the source of noise (if possible), substituting the source with a quieter one, applying engineering modifications, using administrative controls, and by using protective equipment.

16.0. Housekeeping:

- Housekeeping is the act of keeping the work environment cleared of all unnecessary waste and materials thereby providing a first-line defense against accidents and injuries. Housekeeping is the responsibility of all site personnel.
- The main road in construction site should be smooth, firm, clear and keep regular watering to reduce dust, advocate beautify, hardening.
- The construction site must be standardized enclosure, make it tidy and nondestructive. The site should be neat and clean, smooth drainage, garbage should be placed at fixed-point and removed regularly.
- Machinery, equipment, materials such as woods, bricks, sand and so on must be classified and placed neatly with sign broad.
- Site area should be identified respectively with safety signs and warning signs.
- Construction site must be kept clean by three work: clear after work, clear the rest of materials, clear remaining work.
- In the duration of construction process, everyone must respect the neighbors, no disturbing.
- Mess must be cleaned up daily and kept tidy at all times. Cook should have health certificates.
- All spillages of liquids, especially oily or greasy liquids, shall be immediately cleared by absorption in inert sand or other sultable materials. All material used to mop up spills shall be immediately removed to a safe place and stored in closed containers for safe disposal.
- Tools, equipment and raw materials at the workplace should be kept to a minimum, commensurate with efficient working practice. Finished work, tools and equipment should be removed as soon as possible to the area defined storage, such that the workplace is maintained clear.
- Any instances of poor housekeeping that results in the creation of a tripping, slipping or fire hazard shall be immediately dealt with.
- Materials shall be stacked or stored in a safe manner that prevents sliding, falling or collapse.

17.0. Site Security:

The site contractor has the overall responsibility for security access control at the project.

17.1. Control Measure:

All project employees, including subcontractors and/or vendors and visitors shall use only the designated gate for entrance and exit to and from the job site and lay-down facilities. Access of project personnel, subcontractors, vendors and visitors, vehicles and equipment will only be allowed with a valid entry pass.

17.2. Identification Control:

Security will conduct random searches of vehicles, property and personal carry items of project personnel and visitors as they enter or exit the project. Bags and attach

cases hand-carried by persons authorized to have access shall be voluntarily presented for inspection to the security guards on duty at the main gates.

17.3. Material Concol:

All tools and materials, other than trash, that is removed from the project must be accompanied by a material gate pass. All trash that is removed from site will be checked by security to verify the content.

17.4. Incoming Material:

All packages for delivery to personnel on site shall be inspected by the security guards at the access gates. The addressee shall be informed about the arrival of the package prior to inspection. After inspection, the package may be collected by the addressee, or stored in the Security office, depending on the addressee's advice or the contents of the package.

17.5. Outgoing Material:

All supplies, materials and equipment to be taken off the site or lay-down facilities shall be presented for inspection to the security guards on duty at the gate and signed off by the supervisor. The corresponding gate pass for said items shall be presented to the security guards on duty. A designated representative(s) of Management must sign the material gate pass to authorize material exit. All signatures will be checked against a list of authorized signatories, which will be maintained at the security office. A copy (original) of the gate pass shall be retained with the Security.

18.0. Fire Frevention:

18.1. <u>General:</u>

Contractor shall appoint a Fire coordinator with adequate training and experience in fire prevention and firefighting to coordinate the Sub Contractor's overall fire prevention and firefighting program, fire prevention/fighting training program, and the training of Fire-watchers at the jobsite.

18.2. Fire Prevention Guide:

- Good Housekeeping shall be maintained in all work areas. (Accumulation of
- flammables is prohibited.
- Fire protection equipment will be provided in all areas where combustible materials are present. Regular inspections will be made by the Safety Department to assure that fire extinguishers, hydrants are in good working order.
- A clear access to all fire protection equipment will be maintained. (Including extinguishers, hydrants, etc.
- Fire protection equipment is to be used only for that purpose.
- Smoking will be permitted only in designated areas.

18.3. Requirements:

Contractor/Subcontractor shall at a minimum comply to the following requirements:

- Adequate distance for firefighting equipment shall be maintained.
- Provide portable or permanently mounted extinguishers shall be available within 10 meters of a workforce involving welding, burning or the use of an open flame.
- All fire prevention/firefighting equipment shall be inspected monthly to ensure they are in a good working order and replaced if faulty. Records of inspections shall be maintained for review, as applicable.
- Extinguishers shall be conspicuously located where they shall be readily accessible and immediately available in case of fire, and their locations shall be conspicuously marked. Extinguishers shall be installed on hangers or in the brackets provided.

19.0. Engagement of Maff and Labour:

- 19.1. General:
 - The object of the act is to provide for health, safety and welfare of the workers and to regulate the employment in the factories.
 - The law is meant for the welfare of the worker and as such the beneficial operation of the legislation should not be limited.
 - The underlying sprit of act is to eliminate condition which so often renders the job in the factory hazardous, unpleasant, monotonous, and even lacking in comfort.

19.2. Labour Law:

Article 11(3) of Pakistan' constitution expressly prohibit the employment of children below the age of fourteen years in any factor, mine or other hazardous employment.

The factories act,1934 allow the employment of children between the age of 14 and 18 years provided that each adolescent obtain a certificate of fitness from a certifying surgeon

Under the employment of children rule anyone who employs a child to work in contravention of the constitution is punishable by imprisonment from a term extending up to one year or may be fined up to 20000 or subject to both.

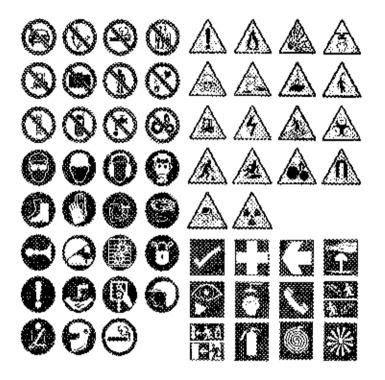
Sub HSES Plans/Policies

Security Management Plan Health and Safety Policy Health and Safety Policy Health and safety handbook Emergency Response Plan Safety Practices and Procedures Code of Practice for hezardous equipment and materials Traffic Management Plan Environmental Policy Environmental Procedures Manual Hazardous waste management procedure Emission and dust control procedure Noise omission and control procedure Water conservation procedure Policy on sexual harassment

Adult worker manor woman maximum working time daily should not exceed more than 9 hours a day. In case seasonal factory 10 hours.

MINUTES OF MEETING

Meeting Attendees:	Location:
······	····


Meeting Date:_____

bility	Responsibil	Current status	Resolution {	Description	Ref#
	·	· ·		· · · · · · · · · · · · · · · · · · ·	i
			· · · · · · · · · · ·	·····	· · · · ·
			·		••••••
			ф	·	·· : ··
					· · · · · · · · · · · · · · · · · · ·
			ļi		·
			┥∔		
	~~			·····	
				····	<u> </u>
					·
			L		·~···
			L!		
			ļ	<u> </u>	
			<u>i</u>		
				· · · · · · · · · · · · · · · · · · ·	
_					
					:
···· · ·}			1		

Action Item Summery

Site Safety Signs List:

i

Environmental Site Inspection

اماممط	1
 hecki	ោទ្យ

Note: This form is designed for general use and may not be exhaustive. Modifications and additions may be necessary to suit individual projects and to address specific environmental issues and associated mitigation measures. Project : Bits Lousilon -

Construction stage / status during inspection : Inspection Date : Inspection Time : Inspected by ; Weather : Remarks Implemented? itio, apecity togation, good practices, Inspection items N/A problem observed, possible cause of nonconformity and/or proposed Yes 20 corrective/ansventative actions) Air Pullution Control 1. 1.1. Are Rus construction enes watered to minimize generated? dust 1.2. Are stockpiles of dusty materials (size with more than 20 begs coment) coverad or watered? Cermotit debagging process undertaken in sholtered areas
 Are all vehiclos carrying dusty loads coverad/watered even prior to seaving the site? 1.5 Are corrolition work areas watered? (e.g. biraming activities by using toreaker) 1.6. Are dusty roads peved and/or sprayed with water? 1.7. Are dist controlled during Are plant controlled surmo;
 percussive dolling (c rock)
 breaking?
 1.8. Are plant and equipment well
 maintained? (any black emote
 occervod, steese indicate the plant/oquipment and location) 1.9. Is dark smoke controlled from plant? 1,10. Are there enclosures around the main dust-generating activities? (B.g. grout Inixing) 1.11. Hoarding (nut <2.4m) provided elong boundaries and property: maintained (any domage / opening observed, pieses indexte the bordies. the location). 1.12. Are speed control measures applied? (e.g. speed limit sign) 1.13. Others (please speed) _____

Page 1

Hazardous Waste Checklist Hazardous Waste Inspection Checklist inspection information Contained or area being inspected (number/contents/todation); Date and time: Date lest respected: enspection completed by: Hazardous Waste Y7N **Corrective** Action 223 Employee Are controllers property and clearly labeled ("Razardous Waste." the specific contents, and the Responsible cofraction date)? Are containers tightly closed? ------. Ats wastes stored in compatible containers? is there evidence of container dotorioration? Are spaces between containers clear of dearls? Are incompatible wastes proparly segregated? Are there any signs of teaks or splits? Is aply response aquipmont,adequate and accessible? Does each container havs adequate secondary containment for its volume? If required, is an events in second ob-and ready for use? Are "Hazardous Waste" signs in place and

Annexure 005

olearly visible?

waste storage area?

and grounded/bonded?

is a tire extinguisties in place and clearly visible? }

Are all waste containers stored baids the

Is the total volume of wostos stored below the facility's generator status? Ato flammable wastes property stored

General	Needs Repair	Condition OK
Splinters on side rails and legs	ø	ü
Joints tight between the side mit and steps	10	()
Metal hardware is secure,	Ð	13
Spills in side rais	n	D
Couges, dents greater than 10% of intokness	¢1	a
steps, tops or platforms	8	57
Play of ½ luch in the rails due to loose rungs or steps	Ω	C1
Broken or boot guide frans, sprauder or looks	©	Ü
Rusted or corroded spots	С	Ē
Damaged or wom non-slip bases	13	ų
Rivets shoared, pulled through, uncuried, konsened	a	G
Steplacklers		
Loose or bent hinge spreaders	Q	D
Stop on hinge spreaders broken	0	[]
locse hages	£3	ρ
Damage to the pail shelf	f.1	b
Extension ladders		
.oose, broken, missing extension tocks	. a	ដ
Defective locks that do not seat property	C (ü
eqes to dollarioneloc	. ¤	Ŋ
Foxed ladders		
.cose worn or demaged rungs or side rais	۳.	c
Damaged or corrocted parts of the cage		ΰ
Connided botts and rivet heads on inside of metal stacks		c,
Damaged or conocled handraits or breckets on pladarms		10
Neakened or damaged turgs on brick or concrete slabs		æ
Sase of ladder obstructed		ŝ

Ladder Inspection Checklist

If any item needs repair tag the ladder 'Do Not Use' and remove from service.

	••••••			Parn	nil to We				Penal No:	
	.		Price	Si da sen: Yarûg (ter Me	ne (ölen 124	nov.	a vitrostreautoovanity	4		
_		est Section				0	2000-000-000-000-000-000-000-000-000-00			
. .	، محرک	of Work Requesies,	⁻ ∺∞ ₩	orh 👘 Colle Wa	n 's	Jee	iotool Additional	Percell	s Required;	
{	៍ រទ	EA completeletecter	ð				1010 Perm	ıli≭		
	issue	Liager Tallie					Continue St		any 9	
1	Explici	a Dote: Time					Graund Dia			
	Looat				D 🔐 (a	Contractor GampMay		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	:	iption of Work			· · ·					
	Conte									
2		t PersorvSuperviser	CALCUID G	mpicted by Partoin	Plaze No.			3 N 2		Yeperes
-					1 marie fact				Рафія Біезьтору	
88	Edrild	ment Condition		optoleo og Parlorn	ios Autop	4	and Veritted by heaven	o Avin	onty	
	យ៍	Oul ⊯ Şervi¢e	ត	O2provagneć	i.	ť.	2)-Risen	Aim	usphere shorked for:	
z.		in Szavios Dechargiostifiscāgaja	띧	Neoscealego Locked see			NOS EXPANSIÓ		5. C/14 (8-1	
- T	뜅	Mediniously Emergized	1.1	Соскед Бол Сірафија орел			· · ·	· ·		
:	: ``	Gitter Danscorps.				• • • •		[PPM loc	i koej
20	Work	Hazonts	Co	noioteo BV Parlimin	Mat Author	ni.	and wannied by leguin	1	and Second Second	
	<u>, o</u>	214075	C		Ţ	2			****	
. :	: <u>Q</u>	Fower tools	<u> </u>	Chygon doliciumry Try Stocarbon yngwr	0	-	Phone Leaves	ĉ	Нособизмерлии)	
		Vice of Cor		Channeo: naa//wr			Walking of herefolds Steelman		Cold en ingrogely	
4	님	Лофи понулика	8	55054000066		9	Oversiad wark		i Antony Pallog Phalang segona	
	Ē	Service Wood A	Ē	Seconds of Ignition			Eye have do	2	estany sejesa Mga natap	
	. 🗑	Annelses cal Mang	ă	Expansion	Ē		HapCold and some	님	Stheep eigenty.	
	- 10 L	Stored energy		istate and strategy as	• •	-	Welking/Working sustance	ä	SwoobSve moties	
		Ottos: Nerende.				\		_	MSDOV	
98X	Contr	ols 6	О́Ю.	notested by lossening	and amound	۴ł	inerily of the second second			
	° g	Оалбоераз	ß	P-MH waterr	Ç	1		<u>ii</u>		000000000
	- 8	Парлал кодото	岩	Plantaky include public	ikat E		Additional Baccellog www. Additional Agents	_ <u>Q</u>	Tracio) Téolo: 2011 (2020) device	
_	8	F05.0	ö	idented to carry or op,			All Cover request	6.1	-340X	
₹.	: <u>C</u>	Linki 2 Kilk Associated) Conspond (symmetry mappe		Use sag)ava		_	Generation in a short exists	аас Тури	4	
	0	Additional processes								
	<u>500.00</u>	e Activity and a service of the 188	રહેલ્ટ્રીસી પ્રત	iedates.os						
	PPF L		C vy	adoled by Parloan	lng Author	i.	sight become Authority.			- 2-22
	ីកី	diandard Registed PPD:	(solely <u>inp</u>	f bools, transfers, coder,	X 934142)		iii []: Protestive soft	1ape		
:	5	Platibes honis Pase shok/soggles		Cooling vite:			🔁 Rospitator, 1y	ro i		
ຮ່	· H	Haming proveling		Robertop ougt Divide			Diaves, Yyjst Fileti@al-nors			
		Soppled et	ω.	Safety barrison longer	dfodaalo		D 1750	ະ.ຫຼະ ຕິ	- 8 m.	
:	8	Any according PPE					10.05		46 eu:	
						-				
	Autho	rization	ः अस्ति	NUL & NOT Voled Line	li Standal					2.0
					Prior				22gn	
•	Padom	NUD Approxity								
		Automly						~~~~~	·····	~~~
7	Ance A	othersty/Fachity Manager	:			_				
	News	d heating Astrony (SINC	ж <u>я</u> 184к							
L	.il Are	a Astronty noticed by pa	ince and a	vaniovas (fai silice in	ALC: MOLES		D-4+02			
- 1					over a work)		1100.1000			·
	Paroni	C <u>errific Alea Aubic (ist</u> w (Sign Off	(dis work in Colo					000000		
	~~ <u>C</u> "			12						
-		Ward Chaustain		When means	We Masse	94	l executions			
θ.	Par	alisen g Asalisnay					e: Astiseardy			
							d; Authority			
				QONY OF PROVIDE	non be gt	, v	sh Losatina			
:							-			

CONFINED SPACE EMTRY CHECKLIST

Conduced Space Lucation/Decoription/D Nukober:______Date:____Date:______Date:_____Date:_____Date:_____Date:_____Date:______Date:_____Dat

Entry Purpose:_____Supervisor:

Hazards of Confined Space	Y96 .	No	Special Recomments	Yes	No
Dxygen deficiency		~~~~~	Hat Work Permit Respired	{···	
Combustible gas/vanor			LockoutTagout	÷	
Compustible dvst	777777}		Lines broken, capport, or bianked	1	
Carbon Morsoxide	1		Purge-Rush and very	1	·····
Hydrogen Sullide			Secure Area-Post and Flag	**	
Foxic gas/vapor		~~	Ventilation	i	
loxic fames	1		Other-List:	i	
www.chemicathazards			Special Equipment	j	
Becrical hexand			Breathing apparatus testicator	1	· · · · · ·
lechanical hazard			Escape harress required	j~	
ngukment hazzoc		*******	Tripod emergency escape usid	*******	
Intraprovent hazard	· [· · · ·]		Lifelines	†	:
narmal hazard	-1~~~~		Lighting (explosive prout/low voltage)	<u> </u>	
Slip or tail reazand		~~~~~	PPE goggles, gloves, clattory, Mc.	1	
	-1¥		Fire Extinatisher	;	

DO NOT ENTER IF P LEVELS AHE EXCEEDED	ERMISSARR E ENTRY	Test Starl and Stop Thno Start	" Stop
	Ponsileshie Ecory		
i	Leve		}
% of Oxygen	1 19.5 % 16 23 5 %		
% of LEL	Lase mon 10%		 A state of the sta
Carbon Montxide	35 PPM (B15.)		****
Hydrogen Sullida	(.cf 8) M99.01		~
108ior	~~~~		
Namo(s) or Parson(e) leating:	Communications P.	02820125:

-----Test lostroment(s) used-include hame. Modet, Sensi Number and Date Last Calibrateri:

CFIS-VeroSidion	Size-Cubb; Fed	Pre Entry Time	þ	Supervision Notified Defere	Time Nation:	
			1	Bupervisor Notified Alter	Timo Nesilies;	
Aviborized Ensiz	inte			Authorized Asea	danis	
	Contin	ed Space Author	ize (b)	0 and		~~~~~

ł

Name_____Date_Time_____ Environmental Safety & Health Department Form

.

	Chemical Inventory						
Sr:	Material Name	Manufacturer	MSDS Available				
ŧ .	• • •						
2							
3							
4		• • • · · · · · · · · · · · · · · · · ·	· ·				
5			····				
6							
7							
8	· · · · · · · · · · · · · · · · · · ·	n m					
9			***				
10		**************************************	-				
11		· · · · · · · · · · · · · · · · · · ·	*				
12		~					
13	· · · · · · · · · · · · · · · · · · ·	-¦					
14							
15	· · · · · · · · · · · · · · · · · · ·	······································					
16	·····						
17		·····					
18		· · · · · · · · · · · · · · · · · · ·					
19		······································					
···	· · · · · · · · · · · · · · · · · · ·	·					
20							
21	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·					
22							
23							
24							
25	······	····· · ···········					
26							
27							
28	· · · · · · · · · · · · · · · · · · ·						
29							
30	0000.000000						
31	00000000000000000000000000000000000000						
32		[

~

Fall Protection Checklist

	Pre-Join		[
1.	Does this project implies a low-slope roof (4:12 or less)?	Y	N
₽,	Does this project involve a sieep-slope root (greater than 4:12)?	Y	N
3 . '	Is the distance from the roof to the ground or a lower level 6 feet or grazier?	Ŷ	Ñ
4 .	is the roof a residential roof (dwelling) and constructed using residential-type methods (6.g., wood framing or trusses and sheathing)?	Y	R
5.	If a residential root, is conventional fall protoction inteasible or does its use creater hazard?		
5.	Is the reof orea in proximity to dangerous equipment, machinery, open tanks or electrical equipment?	Y	N
7.	Will the project involve use of a debris chole?	Y	N
8.	WIR the project involve a holst?	Y	N
ġ	ts material and equipment storage located at loast 8 feet from the 1001 edge?	Y	Ñ
10.	Are there skylights or other dangerous structural openings on the roof (HVAC openings, southe holes, attiums etc.)?	Y	N
51,	Are there any holds 2 inches wide or more?	Y	N
12.	Are there any permanent anchorages on the roof capable of supporting a 6,000 to the lifeline attachment?	Y	N
19,	Will mechanics? equipment (such as roof cutters, power washers, power sweepers sto.) be used on the roof?	Ŷ	N
4.	Does the roof have different levels?	Y	N
5,	Is the roof more than 60 feet wide?	Y	ĸ
6.	Does the roof have a parapet of basit 39 inches high?	Y ~	N
7.	Have at employees on the project been trained in fail protection?	Y	N
Ð.	Have all employees on the project been trained in the use of the fall-protection system to be used on the project?	· .	Ñ

.

JOB SAFETY ANALYSIS

JOB SAFETY ANALYSIS	JOB TASK:	PAGE OF NO	354	DATE: REVIEW:	©≊NEW ⊜∂revised
INSTRUCTIONS ON NEXT FAGE	EMPLOYEE JOB	SUPERVISOR:		ANALYSIS BY	
ORGANIZATION:	LOCATION:	DEFARIMENT	:	REVIEWED BY:	
REQUIRED AND/OR RECOVERED EN	D PERSONA), PROTECTO	E EOUIPMENT			
SEQUENCE OF BASIC JOB STEPS	POTENTIAL HAZAFDS		RECOMM	ENDED ACTION OF	R PROCEDURE

Page 1 of 1

Diesel Generator Inspection Check List

trapacied 57

Serial Ro	Subject	Obiowelan (Action to be Inken	Sentorbs.
		Yes/MO/RA		
1	is the UG is freely accessible	:		
···	trancial aking	:		L
ş	The overall			
	soust nuclearly condition of DB see	1		
	45 RCCEPT2882	<u> </u>		·.
з	Weather she along acquirit 156			
	QLS set is asceptable?			i ·
4	Were zer the DE K filler with	1		
	silesser?	(
5	Websycloan (55 operator 55	1		·
	sweited	ļį		
0	Weather the DG postato has	T		
	follow-see die bookenig deed			
7	Weather stud 3/S/2 phyored or			
	provided with a sited?			
\$	Weston the 05 easyout k!			
	diverted outside the shad?			
2	Weather the cooles DG get and			
i	sound (covered			
£ΰ	Wendher servourid area of the		******	
	PG set to 5 Set from hommable			
l	material		1	
11	Weating mailance is provided	~	~~~~~	
	on the bettery tormitial.		i	
12	Woother Rotry is realificted in to		~~~~~~	
	the DG shed?			
57	Weather the CG shed is free	~~~~÷		
	from storage of personal			
	resteriut)			
14	Weather the rotación parts of	·····		
	ØG are-cately gaardve?			
25	Weether there is any leakage of	~÷.	~~~~~	
	iubsizetion, fuel, eij etc.?	;		

Checklist for Electrical Safety

	703	No	Action Required
Are all plugs, sockets and electrical littings sufficiently			
tobust for use in the factory?	- 1	1	
Are as orectrical fuser junctions boyers in the factory secondly			
Fixed.			
Briston and Undamedials	j		
Are heres, circuit breakers and other costinios: devices	"		
ocesectly.	- ?		
asted for the coould they proteou?			
to access to have excess prevacies, and the key held by a	j		
responsive person?	[
Are main sweches readily occussible and clearcy ideosited,	i		
with	ł		
all workers knowing how to use there in as parangency?			
Are all electricity installians theoked periodically and		·i	······································
renol/s-		1	
catcled cut by a competent electrician?			
Are there any calles or whes will out proper prairies, touter in	rrrrð.	~~~	
loa	ŝ		
lacioss7	- {		
Are any electrical winds improperly revised at 199667	~~;	·····	
is electrical equipment properly greatered to prevent	····†	~~~;	
£'820000000007/ [847	ł	÷	
Are any electrical whos tours in size a reas ar sizeden	· · ·	·-··;	
witter?			
Are any otablication was abstrating alotas as passageways?		·	
		1	
Are all vision cloco has when securely there?	~-~~þ	÷	
and the strength offers and a cold strength (1981).	Į		
ے ہے۔ روال کے اور اور اور ایک ایک کار کا میں میں کا کا کا میں کا		mul	

Electrical fillage and includedions must be checked on a regular back.

Monthly Fire Extinguisher Inspection

Check there delight during a identify the extinct-isher inspection.

- Confirm the ensinguisher is visible, uscout outed, and in its designated location.
- Verify the locking pin is intact and the temper seal is unbroken. Exercise the extinguisher for gradous gradies, curronion, leakage, or cleaged negate.
- · Continu dis pressure gauge or inclinator is in the green range, and ist the extanguisher to ensure it is set full.
- Make sure the operating instructions on the nameplate are logible and facing autward.
- Check the sast professions service date on the tag. (A knowed fire extragulated maintenance, contractor must have inspected the extinguisher within the past 12 modehs.)
- Initial and date the book of the tag.

Note: An A.S.C. the existing the can be used on all kinds of these

MURAVICANA INARAGEN ANDRE USED ENTINGUISHEDEN DIE MAIN OPPHIE AND SERE BERLAUUNTE BERTIST VOM ANDREAMER DASSEPTATELYS

MONID	TYPE Fample: All(, Water	LOCATION Ecosyle Med foll for solidatin Price or	INSPECTION DATE	SIGNATURE
Statemy	}			
February				
8 kovin	1			
Agril		••••••		· · · · · · · · · · · · · · · · · · ·
Мау		~~~~~		
Jusé	1			
	1			
August		,,	~~~	
September	11			
October			···	
November				
December	··		~~	
	_!		<u> </u>	

Principal/Operator Signature _____ Duite: _____ Preshy Location: _____ Duite: _____ Duite: _____

Working at Height

Hazard Identification Checklist

This structlist is provided as help meangues identify hazardo and risks associated with working at height. IT IS NGCA RESEASCHERT and It is in means on exhaustive list.

Please answer zit of the following satisfiens. Theny masked box is ticked when an working to a question, this indistics that a tak is present and you should transfer it note a Societsi bisk Assessment from for further seekytis,

Workplace / WAR Location:				
Date of Ascessifient:			~~~~~	
Name of Assessme				
Joh Tile:				
	Yes	No	N/A	Comments
 is working at (wights available? consider alternatives, e.g. provision of long handled agailyment) 				
 If staff hows to work at helpht, is appropriate access equipment to available? 				
 Flave you considered if staff should be working on a scaffold or platform rather than factors or steps? 				
 We there be any risk of especials dust, disturbance or actionnent? (see premises aspostos rogistor) 				
5. Do any services (e.g. gas, electricity) need to be isolated before work commerces?				
Seletov opione work contribute (

Page 2 of 3

Scattolding inspection Checklist

Date Inspecied:	राजांधः	{ Convactor:
Location of Scalfold:) College:
Inspected by (designated co	៣០៩០១(០៩ឆ្នោត).	Protect

ı

.

SCAFFOLD SAFETY INSPECTION ORECORDST - Use this let the remined yourist? of what is took for in order to prevent soliderile. Check pack Sen as yes upointed to the sen of work goorations and have pilote the instructive prevantions BEFORE USING THE SCAFFOLD-In Has his work twallen been examined inders the sent of work goorations and have pilote allestoprize prevantions been taken? (a.g., checking for evalued allyants, talling to tripping respond, upening only a door) Will the potection be received why a stirt the statistic? Will the coefficie been eable assorities to interference?

General Rules for All Scottblds	YES	NO	Applicable
Scalisid geingersone can expoort at least four lines their meannum intender load	1	2	
Scaftolo is fully granked- Ko mora (hpri 3° gap batwaen planks.		1	
Pis Korn is galasest 16 states wide (12 inches on stimp jecks).			
Guardralis are vacid or accessment fail extent averant is used, in your, acophuis violated Guardrali averant <u>Top rail</u> <u>Motival</u> <u>Top boend</u> , Poste	· [~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
Resilture 15" or lease com fabel of work of workers resholve from guardiads (18" for plesito(rs)			·····
Pleaks do not extend onal the reading flip application frames more than \$2 (neises	; ;		
Couters are looked baland wants begins.	<u>)</u>		
Work platform free of alution bigg gill or any tripping barand			
<u> Maninger prover has elevanance (1946-91)</u>	;	1	
If the sattleid in oxide IVa, itas it seen recoved from service and tagged dut? General Rules for Supported Scatteride	:		
Height to base with ratio is: Lens than 4.4 Into passing, Ses, to breese requiring	1 .		·
Over 4-1 seasons are acceled from opping to paying, using or bracing.	1		
All scatted barrans and uprigone unit been plated thand sills required if on stell	i		
Focusings and Level, smooth, and right, He settling has passived.	1		
Direxhie objects sijen ve blocks, Mides, butains, etc. are not avors planams ar te suppart seaflokts]		
Art riggers secured and installed correctly?	(
Geoscal Rules for Access	[Ì	:
My coure then 2' ster up of down if a 14' step across it get on or eff a distribution			
Legder rist sting is jot more they 24" above the proved			
Fook-on and aluppheten leviders are designed for the scatterd,			
Acking produkars must have a rang length of al lease 11 %			
Built in follows furt of the scattered thereast more barries have a much bench of at social at	L		
Bongs lide up verbeally for Reporting beings of the seaffold.	ł		
State & even int used for climbles up or shown from the sections.			

House Keeping Inspection Checklist

the this shocklist velow to detoroute if there are housekeeping loster to positive righter. If you are one the to any affin questions holds you may need to happened below increases ing provides in your workplace.

	Yee	8/A	No	Adves
HEALTH AND SAPETY POLICIES				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
See a characteristic according (an according to a solid to condition according to a solid to a solid to condition according to a solid to a solid to condition according to a solid to condition according to a solid to condition according to a solid				
ébore wurdents inconstantioned in general bassachrenning provintions and rada Spécialing severatory sé				
we have been been based as a survey and a second presidents.				
there the reference may use to the second and the been election of the second mode and the second mode and the	-			
es flower e report loge som her dies im place "dag groepe floatseke op ing iterasje og, also oge poeldenes, breke oorpel proese barato weitiget bedee Angerd Sollet, stel is				
NORK AREAS				
Are rel warde und surveys access for a floore herdered also de und vesser Stronghund the newsplay?				
ethe access to this retains so, stall says, and case generates happeness and applicated at settimes?				
is the sen as the adaptation first	• ••	•		
we reptileties galoos keet steat of day, details and shorecessory		·····		
XITS/ENTRAKCS				
exercite noise converse ways buggi transformation, discontral dry root to real contribution of all frames	·			
are all or accession and projulation of provident?			• ••••	
#OUND/FLOORS/STAIRWAYS				****
the floore post regis have not a product of the post of the section of the sectio		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
cord participation of the second state of the self-charactery for				
or Broos, stairs and accore ways been taining randed, clean, and do and		• • • • • • • •		·····
a good condition at althouse?				
of the second		•		
w water swife on agh for equipment and solory accessible?				
foress from costs and where been more relieve toped-down on they may extension out in the work?	••• ••	• • • • • •		
in cases and closes in morely and property?				···· •• ··· · ····
in her index on the start of the set in a particular is			,	

.

Fileprivers:		······································	·····	
101 100039877777		······································		
208/00/5-mbs				
Nape	1 Draunallan	······	Senature	
		<u>,</u>	1 360 HOLE	
	~^~~~~		f	
·	-†	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	·	
	~~~~~			
			; ;	
			<u> </u>	
~~~~~	··{	· · · · · · · · · · · · · · · · · · ·	L	
	·	nt saats aa	<u></u>	
			l	
			:	
	<u> </u>			
			·····	
	<u> </u>			
	}			
	+		·	
~~~~				
	·/····			
·	+	•		
	·ተ			
	- <u>;</u>			
****		·····		
	+			
	<u> </u>			

#### Printed version of this dovument in UNCONTROLLER

3

<u>Tool Box Talk Topics</u>: Work At Height, Importance of PPEs, Tools Inspection, Work Stress, Sharp Edges, Pinch Points, Electrical hazard, Fire Hazard, Entanglement, Manual handling, Hot Work etc.

#### **HSE RULES**

نې،كېللار اور دايلى تې،كېدنورون اۇ تمام نېر كاركنون كو كام شروع كېرنى سے بېلې BBE اورېتىرشان يېر گاريا بېوگا، نىڭبو گارېل لانىڭ انوچى بېرتىيوىت تمايلا كى HSE يا،دىر.كې حمدېنا اور HSE كې فواغد بار عمار كويا جارىي.

ذائی حداظتی مذمان میہا کرنا جانے کا اور جب شہرورت ہو تو بہنا جاہئے۔ مقاطعی جوتے ، سائٹ کے تمام حدموں ، ماسک ، مادستانے اور ایئر بلگس جیسے شہرورت کے مطابق سخت توہاں ، فرغیرہ

سالت پر نصب HSE بورنڈز بن دکھنے لے گئے پہندامان اور پندایات پر معل کریں۔ بینڈی اسمیٹی پوائنٹس اور اطرار کے راستوں سے آگاہ روپی، تسمیر بینڈی صورت حال ہیر گھررائیں نہ ، سانیہ کے بینڈامی ردسال کے طریقہ کار پر عمل کریں

تدام حادثانت کی اطلاع فوری عابور بر سانٹ پر نبایر سیرونانرو نور ارچ ایس ای آفلیسر کار دیں۔ زخمدود، کو فوری طور ار استدائی طبی اسدند قراریم کریں اور میڈر۔ ن حلب کریں۔

ایک معدود مگه میر، کم کرانے موال یہ بقدی بنانیں گه آپ کا قریبی ساتھی تور سھریاتار اچھی طرح کے انجبر تھے۔

جہی یات کو پنیپنی بیٹرین کہ بات کی شفاوں میں گام کے لئے یا بینگامی روضعلے لیک Odequate منتسب ریٹ نے کی مگاہ ۔ موجود بہہ -

تهميراتي فيهرود کے اندیشام کے متصوبے کے مطابق تمام سکریے ، فعضله مواد اور کمچنوں کو شافع کرنا پیوگا۔

لیؤکری یا دیدین ماندان کریز کے بعد بیمیشه کام کی سافٹ کو صافف کو یں۔ غیرویوں کے مطابق منامیب بڑاوقتی دیلرار وکھی۔ برق کیپلز اور الادن کے معاقبہ کنہیں چیپیز چھاڑ تہ کرہی۔ سائلت میں کمپھی بھی وولم ولسٹ کویٹیں داخلی نہ کریں ، بلک جنامیب پلگ استعمال کوہیں۔

اولردانی پر کام کررنی بر منتسب طور پر زوال کی گرفتاری کے مناسب نظام کے بغیر معترم بھے۔ مشہوط سالیڈ ریلنگ کی موجودگی کو رقبینی پیدانه نہی میں کوئی خلام لہیں ہونا چاہئی ٹور یہ یغینی بندنا چاہؤ گہ نمام نخیر مناسب طور پر محفوظ باہی

كېږي لويږ گرېټانش مال داخل نه بدون جس لک وساني 🔍 لېد لېگ تېنې يې.-

سپاروں یا سپڑھی کو جنروی بندی یا فیری جائے بقد، : کال یا مواد کاو تہیں لے جاتا جامیے۔ اس مدہب کے لئے باؤچ یا دسان استعمال کریں۔

الدېكرېدىد توشى فته كوين كونې كې كالاستخطار مصلوع ايم.

کام کی جگہوں پر تعام گیدک ویز اور گیوں کو صاف زکیجہ

کازیپی کو ایک نیز رفتان میں جاننا جامونی ، رفتار کی حدود کو دیکھیز موالی۔ ڈیندوروں کے یامن درست ڈیزاندونگ افٹا سلس سوتا ہر بری ہیں۔ کازیاں سرف مخصوص بارکنڈ والے علاق ہیں میں کھڑی کی جائیں گی۔

ł

.

Denijnen; Same	EHS Daily Report	Form: Hepselae	Bris Doly Repor
Praject Equipment Missic Set Bintlatics ; Il Sociudes Set head Could mark hors, sitematege & mit dispard observations	Cutronier       Project       Project <th></th> <th></th>		
EHS Isques; Gio vast: Sown	A Inddext     Autodext     Autodext	 	દાન્લ, 6Rs 1.eec
EHS Corrective Actions: Actions taken to Implexo EVIS Permits to work			<u>Site Tanın, SHS</u> 9!ta Tazın, EHS
			erant to work was swed by rustanser
	factallen Kapperen done by dugnemer.		Veriikad by EHS
923HH ( 1505			КМЗ, Supervisor
Werk a belah:			SUpervisor, Grew Teare
Come Operatings			Suctory)por

	Major	& Critical Lift Per	rmit	Jimus Doje
		Mobile Crane		1
Parten e (1998) Eroathy De				
	C Fridagero	15.10 Say	454105/001	
•	i	1		
<ol> <li>Deve Manifecture</li> </ol>	1. 0.22	7,7914-6	1. The same line in the second	A VE NO. POWER LESS
10. 150 Conne Aure Mires 2.	S Stepter And Dignates			butte softers:
Yang, she say	w/4		ti, teen kiyo	
the law of a Decendral Jong Amore	10-	15 White Atlantic to a way of the	da14 u32	
3 "rh. 3043 (to): tos				
Ledor Yrk Stever	70%	<u> </u>		
15 Component Wagow		17 3ce3 0ec6cen	10 NO.SIDEMARTINE CONTRACTOR	n   33
Ja / Boss.4%stg.cm			Chaff an ouder a la Distin S - 14 (Cang)	ſ
Covered to Del Deve			D. WALK J LCCT , MS	
Loan Bing Sper		1	32 YOM CO LAND STAR HER (1) 714	s
Artis: Oron dest.	•	1	H Loss to & O're Capital prove to	
		-	26% ( 15;	20020000
Weigebrof-Constituting of Jag St	୍ୟା 	_	Kinadire / Vice at before proventioned Kinadire / Vice at before proventioned Kinadire proveder arou	h h f
\$2155.\$266-0. Oʻlardar	. Dell'	1	Caufie man 55% ho port and	vərd vərasyngav and vəfasi
ACCORDENCE OF Deep		1	2. (apader) et ar	
Alaxanze Bri Caratagon	əl	St Obselent Yes	Der eiler Genörgentagspraciel Mit	
Nadadalla Bylangy;		Di THE CONSILIN'		
Ohe:		Catulations -	too Guo	
10 al Coreported Vingites			rection	
6 Federe hergend"	St. Germa - afert and larg	Cope Style v	beared MeLG-spined	<u>A., </u>
We merely the more	Even models		Show againer Fariway, Ficklabour da	
	Overdeeu?		"You, and an Engeneers, the South Control	
Er Grenn unsellerne	U Programation	· · · · · · · · · · · · · · · · · · ·	il Teo regivo	
Conditation XXXXXX []	0+x.17	~~~ ^{**} * ~~~ ^{**} ~~ *	I Tel colore provide a serie	
N Nethol Conclusion (1)	ee volk verseen vereeste	Provincia Lington	Paulty Corp You Lin	
			1	
			1	
			i i	
			1	
ari m 4-4-qr-1966				
weight MicalDe				
. Ope etar		- me		
110				
- Siller		S. Soldy Rogins		
		2 State Parts		
Array Mat Ogeni Person		2 September		
	7 - 5/6¢(D6y 59.1'e4	1001001 224		

.

•

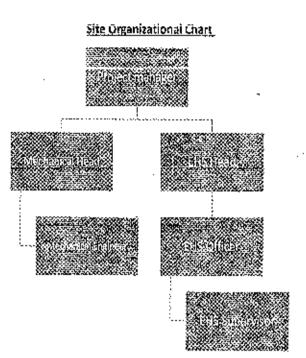
The missions					
Reported by			Department		
Ensald	<b></b>		рукро <u>е</u>	£s1	
Date of accurrence			t)roz		
Exact location					
Rezident 门	inchance ()	1/201 mitts 门	vieksee 🖂	(8 h2011) 🗀	saiary 🙄
What happened Use additional g	i? Report any deta seper as necessar	uls that may bave y and attach to fee	contributed to a	he incident (i.e., p	oor Ughtingj.
Describe the ou	toome: harm/hea	ith effects/classing	6.		*
Describe the ou	toome: haem/nea	ith effects/damag	(č.	***************************************	1
	·····				*·····
	·····			elatesi to inckient.	•••••••••••••••••••••••••••••••••••••••
	·····			elatesi to incident.	•

Risk Assessment Templat	:e				······
Prospective Risks	Who is Affected by risk?	On Hand Control Measures	Rick Rating	Defensive Measures	Errands/ Responsibilities
	· · · · · · · · · · · · · · · · · · ·		<u>!</u>	·	
		·			
	· · ·				· · · ·
			<u> </u>		, 

.

# Site EHS orientation

A	Genoral Orientation	÷	EHS politice and procedures evaluable to workars; - Hazem - EHS manuel - Lacal/Country specific
			Customer Site Specific SHS Ruise
	··· -	9 ⁱ	Work sign boundaries, off their group of the produce access
		ця Ц	Brief four of facility including:
			- tst ald equip - traffic areas areas Are conformed - traffic areas areas Areas areas - washroons - showetsteyewash - easing area
		ø	Safety goals for the Ouloga
		Ŷ	Inspections and safety meetings - daily pre-issic meeting - wessiving-action - westly safety meeting - responsibilities for inspection
		8	Disciplinary action/consequences of failure to comply
Ta.	Modicel & Emergenity Platniny	<b>9</b> .	Reporting Injury/Illness of emergency or uncode condition - how, when where and to inform - investigation of Incidents - Becarity Flandbe-Pot Rosta
		9	Smorgency Exite - Ideality access and ogress froations and raily points - source weather tesponse - meaning of plant alarity
~		8	A. M
Ç.	PPE) Dress code		Costomer requirements on wearing jawainy, wolchoo, etc.
		9	FPE required, and ensuring sitis to evaluate
		17	
Ð.	Pornits	7	Lock Ovt/Tag Out - vesik down procedute


#### Works' basish and safety training plan and second template

Profesil Barre / coupled .

•: ....

. .

Sxill/KAOA/edgs	Flagment	dial world	Bripleyee		estes
	Cala	by	The second	Flammed	Completer
Rashiraha Kategy	1		·		
mapposibilities			ş		
Socidemontpration and			******************		
managansant	1		ĺ		
Preident screenting and	1 1		[	<u> </u>	
and Ing	1 1				
See were underland	1				
Sectore of prevalenced			·····	l	
and prevale relevant highly					
worker is oothery			ł		
Use say maintenappe of				r • • • • • • • • • • • • • • • • • • •	
shypersseal presseave	1 1				-
rsupport.	1		1		•
Safe non precision the of	7			~~	
haonabausasbotences			[		
Proafeo (Cristicadure),				· · · · ·	- · ·
inclusing rescuellant	( }				
protections and use of	2		1	1	
envergiency mout private			{		
First Aid	1				
003 anevention	+				
Хама пальдинева.	1			!	
uanasiyua +ap-	·				
March Der	1 1		• I		
aic handling and lithing	1 1		·	•	
			L		



# Annex - M (Environmental Study)

#### Introduction:

Extensive fossil fuel consumption in almost all human activities has led to some undesirable phenomena such as atmospheric and environmental pollution, which have not been experienced before in known human history. Consequently, global warming, greenhouse effect, climate change, ozone layer depletion, and acid rain terminologies started to appear in the literature frequently. Since 1970, it has been understood scientifically by experiments and researches that these phenomena are closely related to fossil fuel use because they emit greenhouse gases such as carbon dioxide (CO2) and methane (CH4), which hinder the tongwave terrestrial radiation escape into space, and, consequently, the earth troposphere becomes warmer. In order to avoid further impacts of these phenomena, the two concentrative alternatives are either to improve the fossil fuel quality with reductions in their harmful emissions into the atmosphere or, more significantly, to replace fossil fuel usage as much as possible with environmentally friendly, clean, and renewable energy sources. Among these sources, solar energy comes at the top of the list due to its abundance and more even distribution in nature than any other renewable energy type, such as wind, geothermal, hydro, wave, and tidal energies. Solar energy technologies are essential components of a sustainable energy future. Energy from fossil fuels may be inexpensive and assurances may have been given of the plentiful supplies of petroleum and other fossil fuels, but these fuels are finite in nature and a major source of greenhouse gas emissions.

#### Objective:

Pakistan is located in the Sunny Belt and can take advantage of its ideal situation for utilization of solar energy. The country's potential for solar generation is beyond doubt as it has high solar irradiation and enough space for installation of generation system those are ideal for PV and other solar energy applications. Villages and other areas which are away from grid or distribution system of utilities can also benefit from solar power generation which will also save the extra cost of laying the system and the losses. Every day, for example, the country receives an average of about 19 Mega Joules per square meter of solar energy Pakistan being in the Sun Belt is ideally located to take advantage of solarenergy technologies. This energy source is widely distributed and abundantly available in the country. The mean global irradiation falling on horizontal surface is about 200-250 watt per sq.m in a day. This amounts to about 2500- 3000 sun shine hours and 1.9-2.3 MWh per sq. meter in a year. It has an average daily global isolation of 19 to 20 Mi/sq. meter per day with annual mean sunshine duration of

8 to 8.5 hours (6-7hrs in cold and 10-12 hrs, in hot season) and these values are among the highest in the world.

For daily global radiation up to 23MJ/m2, 24(80%) consecutive days are available in this area for solar energy. Such conditions are ideal for solar thermal applications. Pakistan receives about 15.5x1014 kwh of solar irradiance each year with most regions receiving approximately 8 to 10 sunlight hours per day. The installed capacity of solar photovoltaic power is estimated to be 1600 GW per year, providing approximately 3.5 PWh of electricity (a figure approximately 41 times that of current power generation in the country). To summarize, the sun shines for 250-300 days per years in Pakistan with average sunshine hours of 8-10 per day. This gives huge amount of energy to be used for electricity generation by solar photovoltaic and solar thermal power plants.

#### Environment Assessment:

The Lahore and Okara project will be executed on within the premises of Purchaser, and the Applicant has carried out a detailed environment assessment of the site in preparation of the Solar PV Plant. The assessment of the Project has been considered for both positive and negative effects. The proposed photovoltaic Power Project has been located as per international guidelines. Adoption of green power generation with no emission and effluent discharge with have least impact on the ambient environment and on the host community.

The importance of the sustainable development concept has increased in the whole world. As a result, some new regulations enforce that all development projects should be compatible with the environmental criterions. An environmental impact assessment should be carried out to make sure that projects are compatible with the environmental criterions. Environmental Impact Assessment (EIA) can be defined as a process of environmental management, planning, and decision-making with a purpose of keeping and improving the quality of the environment. The main goal is to develop environmentally friendly industrialization. With this kind of environmentally friendly industrialization, "sustainable development" can be a possibility in the future by keeping the usage/protection balance between economic development and the environmental protection.

Every energy generation and transmission method affect the environment. Conventional generating options can damage air, climate, water, land & wildlife, landscape as well as raise the levels of harmful radiation. PV technology is substantially safer offering a solution to many

environmental and social problems associated with fossil and nuclear fuels. Solar PV energy technology provides obvious environmental advantages in comparison to the conventional energy sources thus contributing to the sustainable development of human activities. Not counting the depletion of the exhausted natural resources, their main advantage is related to the reduced CO2 emissions and normally absence of any air emissions or waste products during their operations.

The use of solar power has additional positive implications such as:-

- Reduction of the emissions of the greenhouse gases (mainly CO2, NOx) and prevention of toxic gas emissions (502, particulates)
- Reduction of the required transmission lines of the electricity grids.

#### Project Environmental Impacts & Mitigation Measure:

This Section discusses the potential environmental impacts, assesses the significance, recommends mitigation measure to minimize the adverse effect and identifies the residual impacts associated with the proposed activities of the project during the construction and operation phase of the proposed project at the proposed site and of secondary actions like potable, raw water and waste water lines. Solar energy is a lot cleaner when compared with conventional energy sources. Solar energy systems have many significant advantages, like being cheaper and not producing any pollutants during operation, and being almost an infinite energy source when compared with fossil fuels. Nevertheless, solar energy systems have some certain negative impacts on the environment just like any other energy system. Some of these impacts will be summarized in this section.

#### Identification of Potential Impacts:

- a) Discharge of Pollutants
- b) Visual Impacts
- c) Impact on Natural Resources
- d) Air Pollution
- c) Noise Intrusion
- f) Impact on Air
- g) Impact on Ground Water! Surface Water
- h) Impact on Solid Waste

i) Impact on Soil

j) Impact on Natural Resources

#### **Discharge of Pollutants:**

Solar cells do not emit any pollutants during their operations. But solar cell modules contain some toxic substances, and there is a potential risk of releasing these chemicals to the environment during a fire. Necessary precautions will be taken for emergency situations like fire.

#### Visual Impacts:

There will be some visual impacts depending on the type of the scheme and the surroundings of the solar cells. Especially for applications on the buildings, solar cells can be used as a eladding material that could be integrated into the building during the construction phase. Solar cell applications after the construction phase of the buildings might cause negative visual impacts. However, through proper planning the Applicant will minimize this impact.

#### Impacts on Natural Resources:

Despite being a benign energy system during operation, solar cells have some negative impacts on the environment during their production phase like many other systems. The energy needed for the production of solar energy systems is still produced in conventional methods today. Some toxic chemical substances used during the production phase are produced as a byproduct. However, the solar panels to be

utilized for this project have been manufactured in China therefore, there is no direct impact on the designated vicinity.

#### Air Pollution:

Solar cells do not enuit any substances to the air during operation. But there could be some emissions during manufacturing and transport. The emissions associated with the transport of the modules are insignificant when compared with the emissions associated with the manufacture, Transport emissions are 0.1-1% of the manufacturing emissions.

#### Noise Intrusion:

Solar cells do not make a noise during operation. But during the construction phase, there will be a little noise as usual in other construction activities. However, since the solar panels to be utilized for this project have been manufactured in China, this is not a risk for the designated vicinity.

#### Impact on Air:

There would be no hazardous emissions at site as well as during construction phase except Motor Vehicle and Crane. Moreover, there are no objectionable odors as well as alternation of air temperature.

#### Impact on Ground Water/ Surface Water:

There would be no use of water during design phase except curing of civil pads during construction, which have no negative impact on environment.

#### Impact on Solid Waste:

It may only Create litter and trash waste which is recyclable and may be cleared from site after construction. Impact on Soil: No impacts as all installed systems are roof top.

#### Impact on Natural Resources:

There won't be any increase in the rate of usage of any natural resource like any minerals, additional fuel other than vehicles. But there would be increase in the amount of usage of Paper for mapping, enlisting items etc. However, paper may be recycled by throwing it in ordinary dustbin, further maximum usage of electronic system e.g., emails will be done.

#### **Environment Assessment:**

a) Almost all conventional methods of energy generation have varying degrees of adverse environmental impact. These methods have far reached detrimental effects on the climate, air, water, land and wildlife of the adjacent vicinities. However, Solar PV energy technology provides significant environmental advantages in comparison

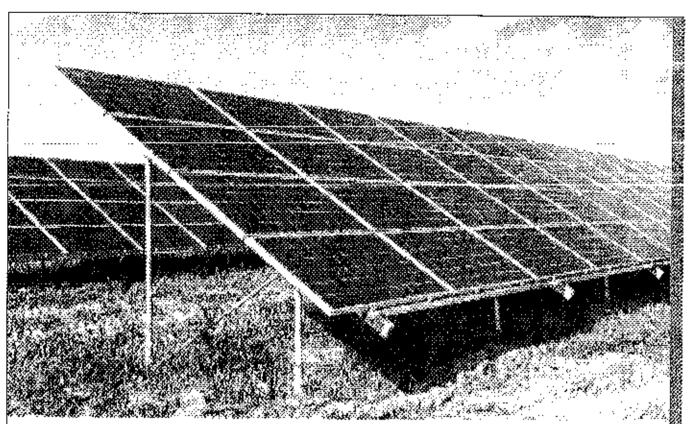
to the conventional energy sources while contributing to the sustainable development of human activities. Besides slowing down the depletion of natural resources, the main environmental advantage is zero air emissions, waste production and eventual reduction in emissions of greenhouse gases (COx, NOx) and toxic gases (SOx).

b) Solar power plants have zero fuel requirement and hence limit the depletion of natural resources, fossil fuels. Unlike conventional thermal power plants, no water consumption is required for cooling purposes. A very optimized quantity of water is occasionally used for plant maintenance / cleaning. As stated earlier, the proposed system of 507p DC will offset approximately 607 tons of carbon dioxide annually.

Environment	Level of	Reasons	Mitigation
Parameters	Impact		Méasures
Air Impact	Low	Solar Energy	No Emissions,
· ·		Carbon Uree	however, during
-			construction
1			adequate measures
- - - - -			to limit dust
			pollution will be
			taken,
Water	Low	Plant will require a	Specialized
		very low quantity of	equipment that
		water for cleaning	conserves water will
		purpose only	be used to cleaning
			the PV modules.
Land	Low	No Impact on	The land being
		, Land	allocated for this
			facility is baren.
Ecosystem	Low	No	There is no
		ecologically	significant
		sensitive area	vegetation cover
		lies with in premises	within the selected
			area, land is barren.

The Applicant has carried out environment assessment of the Site for installation of solar:

Socio EcoSystem	Low	Total area identified	Not Applicable
		for said project is	
		adjacent to the plant	
		premises and no	
		acquisitions needed.	ĺ
		No displacement	
		will occur.	


.

1

· · · ·

.

.







# SYSTEM STUDY ANALYSIS OF COMBINED MILITARY HOSPITAL (CMH) 999kW SOLAR PV SYSTEM

Report

ARCO Energy

PAKISTAN Tel: +92-300-8827101





# CONTENTS

	SUMMARY
	0.CHON
1.1 Proje	ect Description
1.2 Inter	connection Arrangement
1.3 Ођје	ctive of System Study Analysis
1.4 Study	y Components
2 STUDY 2	METHODOLOGY
	y Criteria
2.2 Stead	ly State Analysis
2.2.1 Sys	stem Intact Analysis
2.2.2 Ter	ansmission Line Loading Analysis
2.2.3 Vo	ltage Analysis
3 STEADY	STATE ANALYSIS
	el Development
3.2 Powe	er Flow Assessment Without CMH PP and with Sanctioned Load In Service
3.2.1 Bas	se Year 2025: Peak Loading Summet with Sanctioned Load in Service
3.3 Powe	r Flow Assessment with CMH PP
3.3.1 Bas	se Year 2025: Peak Loading Summer with Sanctioned Load In Service
3.4 Conc	husion
4 CONCLU	ISTON
	y State Assessment
LIST OF ANN	TEXURES





### **EXECUTIVE SUMMARY**

This report provides the documentation of an assessment that has been performed for the interconnection of a 999EW Solar PV Power Generation project at Combined Military Hospital (CMH) distribution system at 11kV project of "Military Engineering Services" (MES). The project will be a Grid tied 999kW Solar PV based system connected with the power network of CMH. The '999kW CMH solar PV Power Generation project' is located at CMH, Cantt, Lahore, Punjab, Pakistan.

The integration of solar power generation at the CMH premises necessitates a comprehensive system study analysis to ensure optimal operation of the electrical network. CMH currently receives a single point supply from LESCO with a sanctioned load of 4.6MW. The introduction of solar power generation will influence the flow of electricity within the premises, impacting both consumption and injection dynamics.

The existing scup includes transformers, switchgear, and distribution panels to distribute electricity throughout the premises. The sanctioned load of 4.6MW is the maximum load that can be drawn from LESCO's grid.

The entire solar generation within the CMH premises will be consumed internally without exporting any power to the grid. To ensure the safe and efficient integration of solar power, a load flow study is required to analyze the impact of this interconnection on the existing electrical network. This study will assist in obtaining solar generation concurrence and ensuring compliance with relevant technical and regulatory requirements.

The analyses have been carried out in following scenarios;

- Without 999kW CMII solar PV system with sanctioned load in service.
- With 999kW CMH solar PV system with sanctioned load in service.

Steady state power flow assessment has been performed using the network data of CMH. Power flow study was conducted without Solar Project with sanctioned load in service to analyze the magnitude and phase angles of bus voltages, line loadings and power flows under steady-state conditions. Power flow analysis was also conducted with sanctioned load in service after the interconnection of the Solar project with the CMH distribution system. The power flow results for the system intact shows that the power flows on all the CMH transmission and distribution line branches are within their normal

Ί





line loading limit. There is no capacity constraint in terms of power flow or voltage ratings within the study area.

This systems study is a critical step in obtaining solar generation concurrence for CMII. By cosuting the stability and reliability of the electrical system, the study facilitates scantless solar power integration while maintaining compliance with CMH and regulatory requirements.

Based on the study results, it is concluded that proposed generation interconnection assessment for 999kW CMII solar PV Power Generation project meets the NEPRA grid code planning criteria.





### **1** INTRODUCTION

#### 1.1 Project Description

This report provides the documentation of an assessment that has been performed by ARCO Energy in response to a request made by Combined Military Hospital (CMH) ("Project Owner" or "PO") for the interconnection of a 999kWp Solar PV Power Generation project ("Project") to the CMH power System at 11kV.

The '999kW CMH solar PV Power Generation project' is located at CMII, Cantt, Lahore, Punjab, Pakistan, Figure 1.1 shows Google site map of the project.

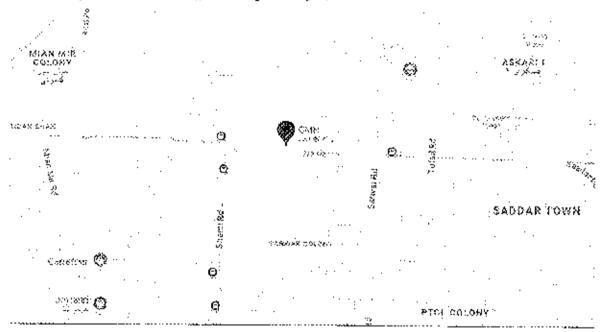



Figure 1.1: Google Site Map of the Solar PV Power Generation Project.





#### 1.2 Interconnection Arrangement

CMII aims to integrate solar power generation into its existing electrical infrastructure. CMH currently receives a single-point power supply from LESCO with a sanctioned load of 4.6MW. The entire solar generation within the CMH premises will be consumed internally without exporting any power to the grid. The objective of the analyses is to evaluate the impact of the solar power plant on the CMH transmission and distribution system.

#### 1.3 Objective of System Study Analysis

The primary objectives of the load flow study are:

- To evaluate the impact of solar power injection on the voltage levels and power distribution within CMH premises.
- To determine the changes in power flow patterns resulting from the integration of solar generation.
- To ensure that the existing electrical infrastructure can support the additional solar power without causing instability or operational issues.
- To verify compliance with regulatory requirements for solar power interconnection and obtain concurrence for solar generation.

#### 1.4 Study Components

999kW solar PV system is modelled into the CMH distribution system by ARCO Energy. Technical analysis includes:

- i) Data gathering and modelling
- ii) Steady state analysis
- iii) Conclusion

The above scope of work involved in the technical analysis has been carried to demonstrate that connection assessment of this PV system meets the National Electric Power Regulatory Authority (NEPRA) distribution code.

The analyses have been carried out in following scenarios;

- Without 999kW CMH solar PV system with sanctioned load in service.
- With 999kW CMH solar PV system with sanctioned load in service.





This report documents the results of the steady state analyses. The principal objective of these analyses is to evaluate the impact of 999kW solar PV system to the distribution system of CMH and vice versa.





### 2 STUDY METHODOLOGY

#### 2.1 Study Criteria

The study has been carried out based on the National Electric Power Regulatory Authority (NEPRA) Grid Code planning criteria. Key parameters and their corresponding limits have been summarized in table below.

Parameter		Range
Voltage Level	Normal Condition	±5 % p.u at 132kV and below +8%,-5% p.u at 220kV and above
	Contingency	±10 % p.u
T/Line Loading	Normal Condition	100%
Capacity	Contingency	100%
Frequency	Nominal	50 Hz
	Normal Variation	49.8 Hz - 50.2 Hz
	Contingency Band	49.4 Hz - 50.5 Hz
Power Factor	Lagging	0.95
	Leading	0.95

#### 2.2 Steady State Analysis

The purpose of steady-state analysis is to analyse the impact of the proposed solar power plant on distribution system facilities under steady-state conditions. It involves two distinct analyses: line loading analysis and voltage analysis. Power flow solutions using the PSS/E® program (Version 33.4) has been performed.

A "study area" was defined to represent the areas of interest within CMH.

#### 2.2.1 System Intact Analysis

The incremental impact of the project on substations and transmission line loading under normal conditions was evaluated by comparing transmission and distribution system power flows through different scenarios for the project.

#### 2.2.2 Transmission Line Loading Analysis

11kV and 0.4kV rated transmission and distribution facilities in the study area have been monitored for line loadings.





### 2.2.3 Voltage Analysis

Voltages at buses inside the study area have been monitored for possible for voltage violations in accordance with NEPRA Grid Code guidelines.





### **3 STEADY STATE ANALYSIS**

#### 3.1 Model Development

Project specific data was provided by the plant owner and it has been compiled and presented in **Annexure-A**. The steady state model of the power plant is presented in table below:

	Generator					
No. of Collector Units	1					
Generation size of each collector (kVA)	811					
Active Fower of each collector Pgen. (kW)	799					
Power Factor	0.95 lagging, 0.95 leading					
$\overline{\text{Qmin}}, \text{Qmax} \langle k \vee \Lambda R \rangle$	- 0.2626, 0.2626					
Rated Frequency	50 Hz					
Generation Voltage						
Xsource	30					
Genera	tion Step Up Transformer					
No of Transformer	1					
kVA Capacity of each GSU	1250					
% Reactance (X)	5%					
	СМН					
Sanctioned Load (LESCO)	4600 kW					

Steady state power flow assessment has been performed using the network data of CMH.

## 3.2 Power Flow Assessment Without CMH PP and with Sanctioned Load In Service

Power flow study without CMH solar and with sanctioned load in service, was conducted to analyze the magnitude and phase angles of bus voltages, line loadings and power flows under steady-state conditions.

The result of this power flow analysis is in Annexure-B.





#### 3.2.1 Base Year 2025: Peak Loading Summer with Sanctioned Load in Service

Power flow analysis has been performed on the peak loading summer (June) 2025 case of CMHI network. This base case included a detailed representation of the CMHI transmission and distribution system in the study area.

The steady state results, depicts that the power flows on all the CMH distribution line branches are within their normal loading limits. There is no capacity constraint in terms of load flow or voltage ratings around the study area. Result of the power flow analysis is attached in **Figure B-1**.

#### 3.3 Power Flow Assessment with CMH PP

Power flow study of CMH solar project was conducted with sanctioned load (in service and out of service) to determine the reliability impact of the 999kW CMH solar project on the CMH distribution system. This includes the performance of load flow analysis to identify any facility overload or voltage condition that violates the NEPRA planning criteria. Any such violation that is either directly attributable to this project or for which it will have a shared responsibility is included in this report.

The results of the project power flow analysis are plotted in Annexure-B.

#### 3.3.1 Base Year 2025: Peak Loading Summer with Sanctioned Load In Service

A base case has been developed with sanctioned load in service at CMII solar for peak loading summer (June) 2025 that allow us to judge the impact of CMH solar project on the CMII network. Project power flow analysis has been performed after the connection of the project with the CMII distribution system. This includes the detailed representation of the power plant.

The steady state result, with sanctioned load in service at CMH solar depicts that the power flows on all the transmission line branches are within their normal loading limits. There is no capacity constraint in terms of load flow or voltage ratings around the study area.

Result of the power flow analysis is attached in Figure B-2.

The results of the project bus voltages analysis are attached in Annexure-C.

#### 3.4 Conclusion

Steady state power flow assessment has been performed. Power flow study was conducted without solar Project with sanctioned load in service to analyze the magnitude and phase angles of bus voltages, line loadings and power flows under steady-state conditions. Power flow analysis was also conducted





with sanctioned load in service after the interconnection of the Solar project with the CMH distribution system. The power flow results for the system intact shows that the power flows on all the CMH distribution line branches are within their normal line loading limit. There is no capacity constraint in terms of power flow or voltage ratings within the study area.





### 4 CONCLUSION

#### 4.1 Steady State Assessment

Steady state power flow assessment has been performed. Power flow study was conducted without CMH solar with sanctioned load in service, to analyze the magnitude and phase angles of bus voltages, line loadings, and power flows under steady state conditions. Power flow analysis was also conducted with CMH solar and with sanctioned load in service with CMH distribution system. Power flow results showed that the power flows on all the CMH distribution branches are within their normal loading limit. There is no capacity constraint in terms of power flow or voltage ratings within the study area.

The steady state results found no capacity constraint in terms of power flow and voltage ranges.

Hence, it is concluded that based on the study results the Interconnection Assessment for 999kW CMH solar PV system with CMH Transmission and Distribution Network, meets the NEPRA grid code planning criteria.





### LIST OF ANNEXURES

Annex A: Project Specific Data.

Annex A-1: Project Site Map.

Annex A-2: Power Plant Data.

Annex B: Fower Flow Steady State Analysis Result

Figure B-1: Base Year 2025 - Peak loading summer without CMH solar and Sanctioned load in service.

Figure B-2: Base Year 2025 - Peak loading summer with CMH solar and Sanctioned load in service.

Annex C: Assessment of Bus Voltages.

Annex C-1: Without CMH solar and with Sanctioned Load In Service.

Annex C-2: With CMH solar and with Sanctioned Load In Service.

## Annexure-A

Project Specific Data

## Annexure-A-1

Project Site Map

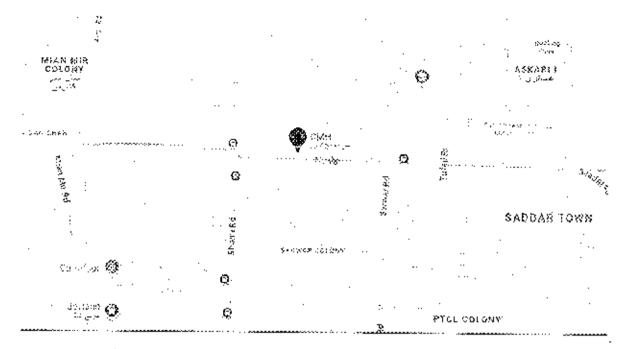
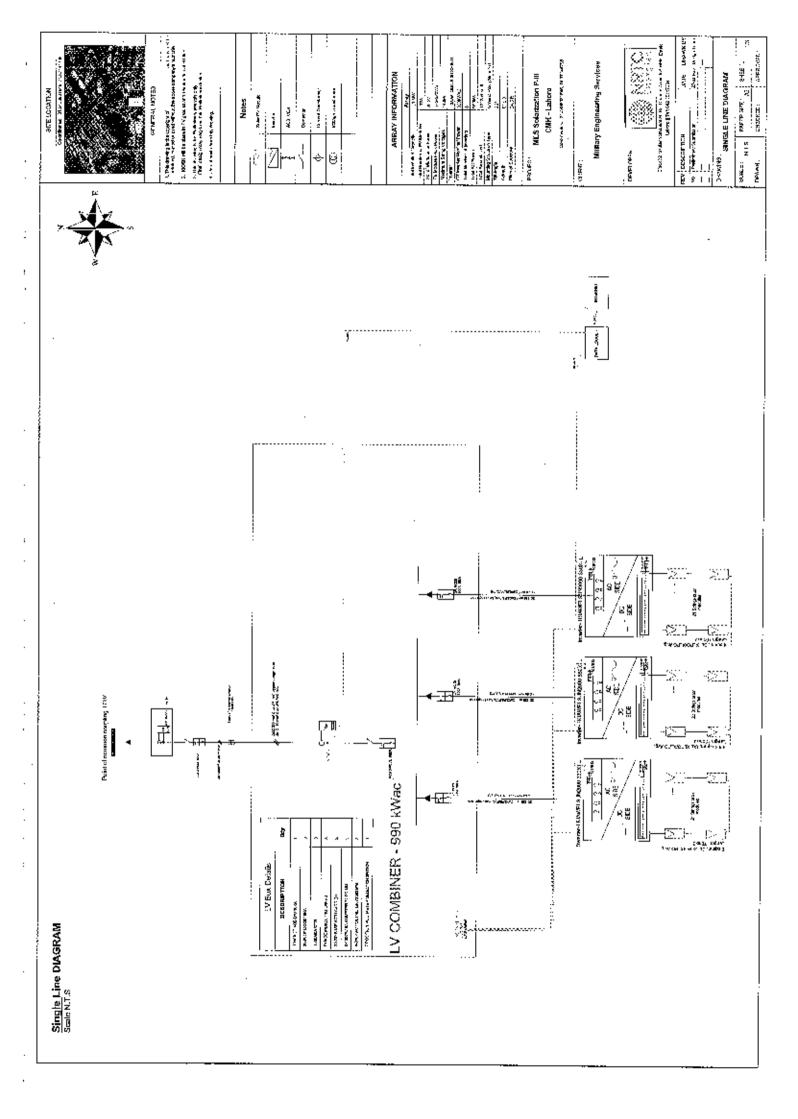
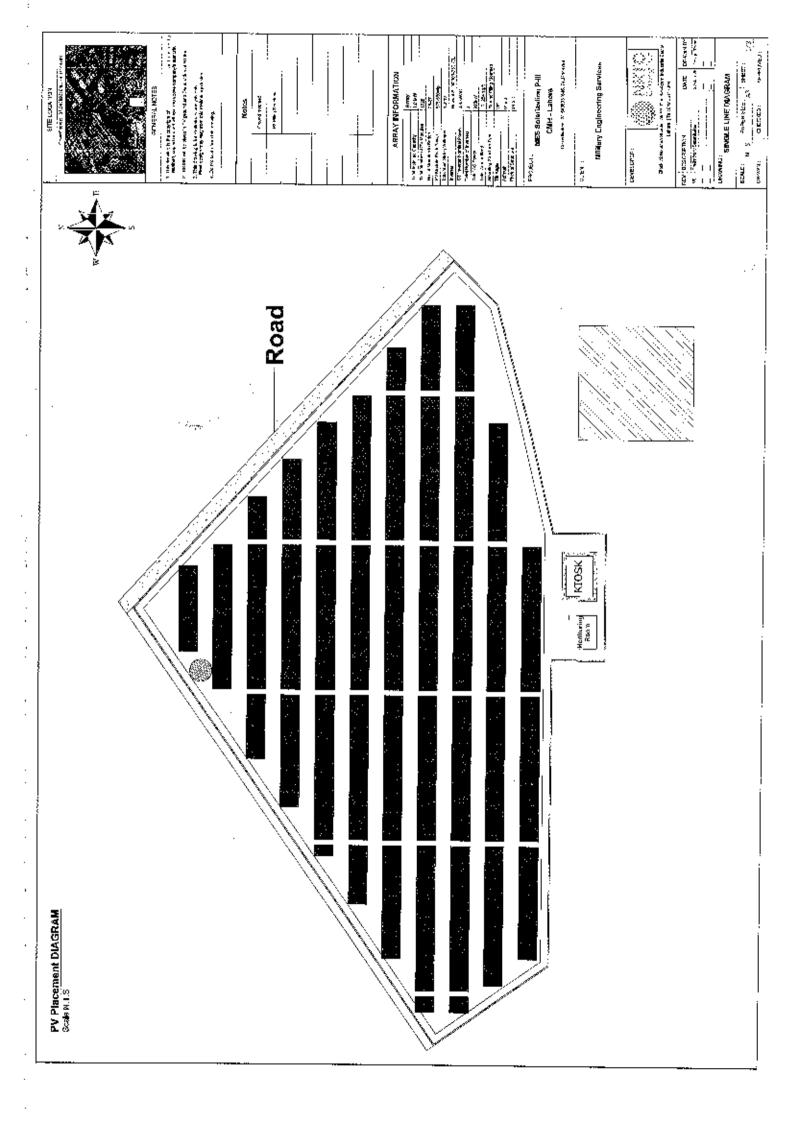





Figure 1.1: Google Site Map of the Solar PV Power Generation Project.

## Annexure-A-2

Power Plant Data





## SUN2000-330KTL-H1 Smart String Inverter



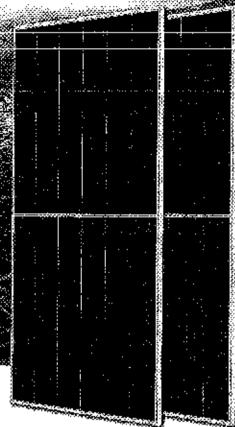
#### зоцая нем мылоо м

## SUN2000-330Ki)u II...

	£fficiency	
	Max. Efficiency	295.0%
	Burdoean Efficiency	292.8%
	Max. nout. Voltage	
	Rumber of MPP Trockers	
	Max. Current per MPPT	
	a faith and a grant a second	
	Max. Short Circuit Current per MPPT	1)5A
	Max. PV Inputs per MPPT	4/5/5/4/3/5
	Start Vo tage	550 V
	MPPT Operating Voltage Range	500 V ~ 1,500 V
	Nominal leput Voltage	1,CB0 V
	Output	
	Vominal AC Active Rower	500,000 W
	Max. AC Apparent Power	330,000 VA
	Mark AC Active Power (cost) (1)	330,000 W
	Nominal Output Voltage	800 V, 3W + PE
:	Bated AC Grid Frequency	50 · 2 / 50 Hz
	Namical Output Correct	236.6 A
	Max. Output Corrent	238 2 A
•	Adjustopic Powe: Factor Range	0.816 0.810
	Total warmonic Distortion	··· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ··
	Protection	······································
	Smart String-Level Disconnector(SS.D)	Yes
	Anti-is anding Protection	Yes
	AC Oversurveyt Protection	Ye:
	DC Reverse polarity Protection	Yes
	PV-erray Scring Fault Monitoring	· ··· ·· ··· ···
	DC Surge Arrester	יייין איז
	AC Surge Arrester	and the second
	DC Insulation Resistance Detection	Type I
	AC Grounding Hault Protection	Yes
	Desidual Correst Monitoring Unit	Y25
		Y=s
	Communication	· · · · · · · · · · · · · · · · · · ·
• •	Display	LED Indicators, WLAN + APP
		YPS
	MBUS	Yes
	R5485	Y25
	General	
	Dimensions (W x H x D)	1,018 x 732 x 395 mm
	Weight (with mounting slote)	<312 kg
	Operating Temperature Ronge	-25 °C ~ 60 °C
	Cooling Method	Smart Air Coping
	Max. Operating AUTude without Denating	4,000 m (13,125 H.)
	Relative Humidity	0~100%
	AC Connector Wa	terproof Connector + OT/DT Terminal
:	Protection Degrae	IP 65
	lopology	Transformentess

÷

## Harvest the Sunshine


## DEEP BLUE 4.0

580W n-type Bifacial Double Glass High Efficiency Mono Module JAM72D40 555-580/GB

#### Introduction

Mono

Power by the lastisst SMBB in type solar cell, half-bell toning paten and gapless abbon connection test noting; these mouth's have trigher authors gower, lawer ND, tabler weak alumination responses and celler temperature postficient.





#### Higher power generation better LCOE



ri-type with very Lower L(D)



Better weak illumination response



#### Setter Temperature Coofficient

Suparior Warranty

- 12-year product warranty
- 30-year linear power output warranty.

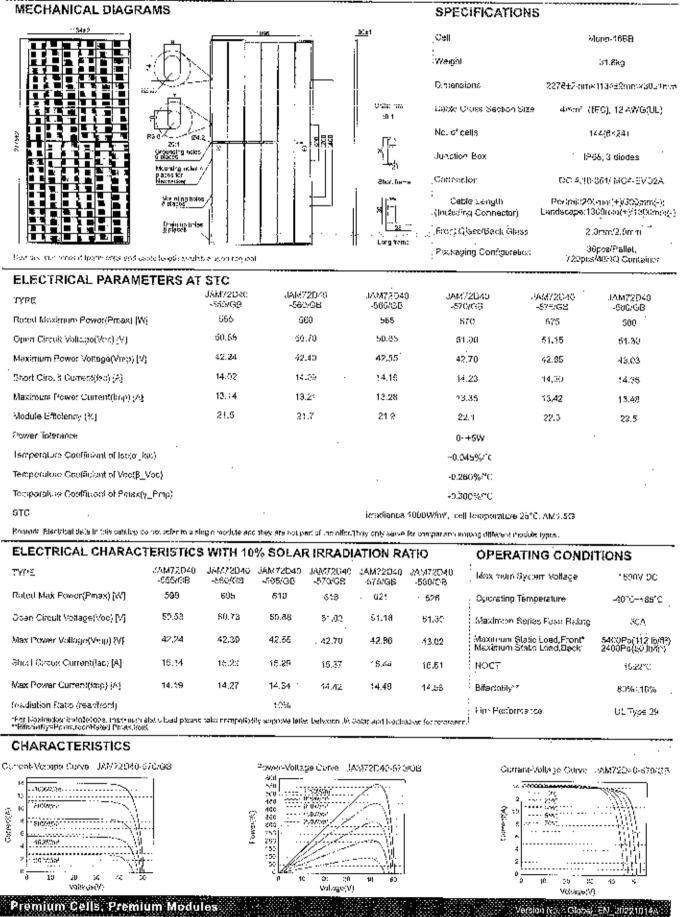


- n-type Bifacial Coubte Glass Modula Linear Performance Warranty
- Standard Module Linear Performance Warranly

## Comprehensive Certificates

- 第三〇台1235, 第三〇台1730
- (SO 9001: 2015 Quality management systems)
- ISC 34001: 2015 Environmental management systems
- < ISO 45001: 2018 Occupational hould: and safety management systems
- IEG 62941: 2019 Terrestrial photovoltalo (PV) modules -Quality system for PV module manufacturing



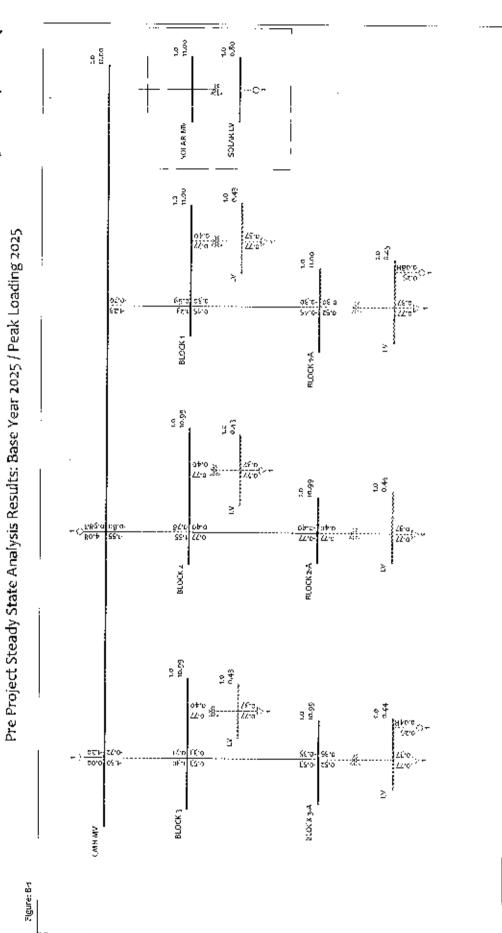

WWW JOSOIAN COM C WWW JOSOIAN COM C SUDE 1 10 Inchical program and ress. Accessions the cold of fine interpretation.





## JA SOLAR

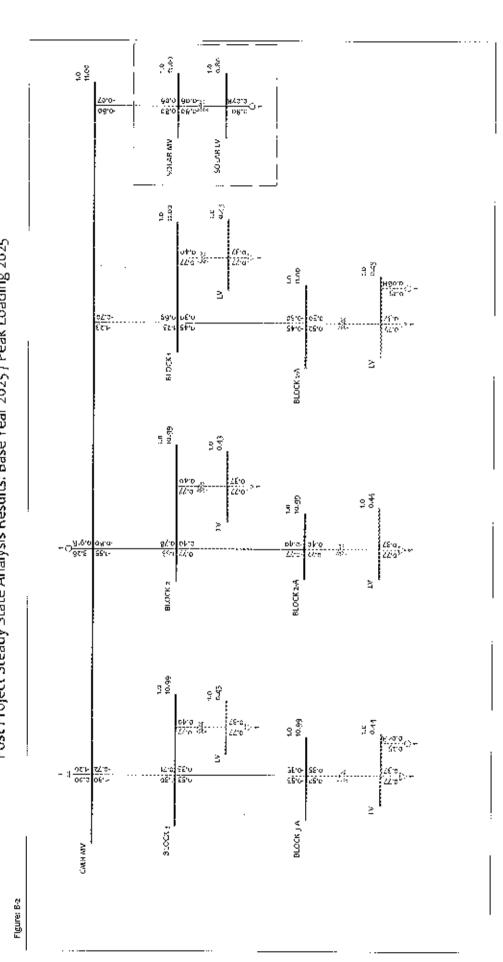
JAM72D40 555-580/GR




## Annexure-B

ł

Steady State Analysis Results


Load Flow Analysis of 999kW Solar PV System at Combined Military Hospital (CMH)



• 11 .

<del>ب</del>

Load Flow Analysis of 990kW Solar PV System at Combined Military Hospital (CMH) Post Project Steady State Analysis Results: Base Year 2025 / Peak Loading 2025



## Annexure-C

۰.

ī

± + ∠,

## Assessment of bus voltages

## Annexure-C-1

## Without CMH PP and With Sanctioned Load In Service

	CMD SOLAR	n,	L INTERA SYSTEM	CTIVE PO9	JER SYSTE	VIJKIS N	241 INTRACTIVE PONER SYSTEM SIMULACHPSS(2)"	SAT, FER IN 2025 SAVA FOR TRANS VI FOR NOR-D	8.2	1771) RMERS Lérornet	SERCIVER
X FROM 203X TRAV3703MEX RATING BUS# X NAMX 3ASKV	X AREA SKV ZONE	NA/NJ	ANGUS	GGN Mai/Murr	GTN LOAD SHUFT MA/MYRR NA/MVAR		MAVAX #302	AX25td X	X Rea ckt	ММ	AVAR.
1.0 RNGAS & SEF & 4130 CMF MV 11,000	-11	1.0200	0.0	4,1	0, C	0.0					
	.1	11,000		1. OR	0.0	-1-2	I MOOTE 10017	11.003	 •*	1.2	7. 19
10							41005 3203 2	C00.II	- •	۹,°.	9.0
2 T							41009 RLCCX 3	11.000	1 1	<u>.</u>	0.17
41001 BLOCK 1 11, 300	Ţ	0.9967	-0.0	0.0	0.0	· 0 · 0					
Ģ	L Ľ	786'JI		0-0	0'0	0.0	4100 CML WV	11,000	ų 1	-1.2	1.10-
							V1002 IN	007F'2	e1 <2	0.8	6.4
5							с1003 3500K 1-д	11.000	i I N	010 U	613
41002 LV 0.4420	**	3,9875	-1.4	0-0	0.8	0					
1.00000K 54 2	÷	0.4345		0.0	0.4	0.0	41000 RECK 2	000.11		-0.0	-0,4
41003 BLOCK 1-N 11.300	с. ¹	9566-0	с. -0-	0.0	0.0	0,0					
	г 7	369.CI		0.0	0.0	0':	1 NOOTA 10015	21.300	۰.1 جه	-0-5	-0.3
0.37514 38 2 41604 LV 0.4400	ম	1.6160	e.0-	r: 	0.9	- 0.0	41C04 IV	J. 440C		0.5	с.3 
2 EE	÷	0.4470		0.1H	0.4	0.0	41003 BLCCX 1-A	000111	4 I	5°C-	6.0
4.005 BLOCK 2 11,000	~	6, 3693	0.0-	0.0	0.0	- 0'0					
11	Г	10.992		0.0	0.0	0'C	4100 CMF MV	11,200	4 1	-1.5	-0,8,
							41000 EV	0,4400	, 1 1	c C	0.4

.

.

. . .

÷

. .

ł

!

.

.

י י

:

.

:

.

•

.

.

:

ð.4 -0.4 7.6 0.4-0.4 0.3 ð, 6 -0.4 -0.9 0.0 -1.5 0.9 -0,8 о. 8 8°0--0.8 е:<u>-</u> 0.0 0.59.9 9 0.0 5°2-ວ - - --. : ч ч ÷ .--. ! н --·--Ţ s, ÷ s. ÷ ŧ٢ -----÷ ч. .<del>...</del> ÷ ÷ 11.000 100.11 11,000 11.000 0.4430 11.000 0.4400 11.000 11.000 11.000 005610 11.000 0.0 4:007 BLOCK 2-A 0.0 ELCUIL BLOCK R-A 41007 61003 2-3 41301: BLOCK 3-R ٤I 0.3 41305 AuCOA C V NOOTE 60013 DIO 0.0 41003 BLOCK 3 ALOC CML MV A.C. 41035 PLOCK VI CICOIÀ 41000 IV 410012 /// J.C -----0.0 ----i 0.5 è 0.0 0 0 è . 0-0 6.3 \$~C 0.0 0.0 8. 0 £10 0.0 0.0 9''Ê 0.8 0.0 0.0 о, в С 0.4 J. CR 0.0 0.0 0,0 с с 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 - 3 000--0.0 -1.4 **†** . |--0.6 -1.5 -0.1 4 0.4993 018610 2 0.4343 6566.0 F 1 0.4309 1666'J \$ ≤ 0,9968 4 0.9907 1 10,992 066°0. I 0.4342 1 IC,98≎ 1 0.4420 3 0,4400 --0.4400 41007 SLOOK 2-R 11.000 11.000 0.4400 0.4400 11,000 N ~ 24 ~ ŝ m ŝ í 33 Ť 54 ал Ю 21 3  $\frac{1}{N}$ 410011 BLOOK 3-A 41029 NF2CT 3 01 10 VJ 30015 6 13 412012 :V 41008 LV 41.0012 LV : T : 1.000JN КООСО 10 1.0001.K 9 IC 0.9831.0 1. 200UN 7,9881.7 6 13 1,0000 ¢ u: ъ

i

ł

ł

!

## Annexure-C-2

## With CMH PP and With Sanctioned Load

In Service

SAT, FEB 15 2025 17:12 Sava Mdr Transformses y I For Nom-Thansformer Tranforzs

:

•

į

j

:

.

. :

:

:

X-----ZON PUS ------ZARJA VOLT CZN LOAD SHUNT XTT-----ZOEUS -------X ZRANJZOZMEN ARTIAG BUSÉ XTTARF --X BASZY ZONE DU/KY AXGUR FW/NYRA KW/NYAA KU/NYAA HUSI Y-- UAKE --X BASKY ARZA CAT RATO ANGLE & SUT A

IVAR MM

-

۰.

4100 CMH MV	20011	€ 1.0UDO	0.0	т, М	0.0	010						
OT F		11,300		0,9R	0.0	. 91 - 1 - 1	I MOODE [UD12	1,300		1.2	0.7	
							5 NOON SCOT	1.003		"- -	a'0	
							4100% Y.CCK 3	11.000	4 I	÷.	5.10	
-							ALCOLS SOLAR MA	020.11	ب ۲	-0,8	-1,1	
41001 BLCCK 1	000.11	10°9367	-0,0	0.3	0.0	0.0						ŀ
14 :0		1 IC.997		0.0	0'0	0.0	AL DO CME NA	11,1000	ų į	-1.2	Ŀ.O-	
1.00045	5 2						- AT CODE	0.4400	 7	0.8	0.4	
							AIRUS SICCK 1-A	11.060	. ,	c.5	(C. C	
A1 (0)11	0.44.00	4 J.5875	2.1	<b>J.C</b>	9.3	- 0-0						ł
1,0030X	اد: العام الح	1 0.4345		0.0	0.4	0-0	41001 BLOCK 1	11-030	4 1	-Q.B	-0.4	
ALORA NUCK L-A	-A il.000	6 0 <b>,</b> 9696	-0.0	0.0	ü-ñ	0.0 -				~		ł
5 10	   	101595		0.0	0.0	0.0	1 NOOLE ICOLA	11.000	. 1 7	-0°2	-0.3	
0.9751.K 41304 LV	38 % 14400	4 1.JIGO	5°C-	0.2	0.3	- 0.0	41804 EV	0.1400	4 1	5°2	0.3	
L. COUTM	38	1 0,4470		91.O	٥.٨	0.0	41003 BLOCKR	11,000	- 	ې. - ن	-0-3	
410.35 ELOCK 2	11,000	4 3,9993	0.0-	0.0	0.0	0.0						ł
CI ()		1 i0.992		0.0	0.0	0-0	ÀN FWC DOTH	000.13	 بو	י. - ו	а. Э-	

· • •

.

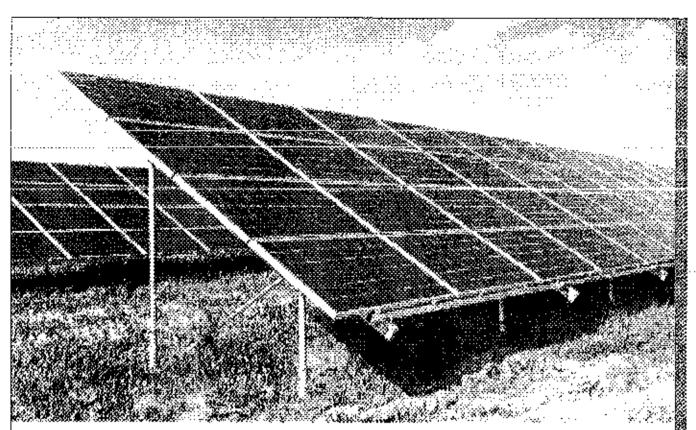
.. •

	5 - 5 5 - 5		-0.4		9 " U-	J. ć	-0,4		-9°5	0.4	0.3	- 77   		-0.3	6-5	-0.3		0.1
с. Т	8.0 1.8		α. Ο-		8'J-	0.8 	-0.3		с. Т	0.8	0.5	8 2 1		-0.5	C.3	-0,5		0.8
	: ম ম	Í	4 1		 7	4 .1	רי קי		4 l	4 I	ן. ק	، ، ال		<del></del> । चा		, ₹		
	0.400 11.000		11.600		11.000	0.4460	1:,000		11.000	0.4430	11.000	80011.		11.000	J, <u>4</u> 4C2	11,000		1.000
• • •	41006 IV 41007 BLCCS 2-A		0.0 4000 BLOCK 2	J. C	0.0 41005 3DOCK 2	41308 LV 6.0	0.0 41007 BLOCK 2-A	0.0	010 \$100 CKH KA	410013 IV	41201) BLOCK 3-R		C.0	0.0 41069 NUOCK 3	010 AI 31015	2-8 XOOTE ELOCIE 010	J. ß	0.6 4100 CMH NV
•		0.8	<b>F</b> .0	0,0	0.5	0.8	6.A	0.0	0.0				0.0	0.J	0.8	0.4	0'C	0.3
		0.0	0-0	<u>ر</u> .0	0.0	U-D	0.0	0.0	0-D		0.0	0.0	0.0	0.0	3.3	0.0a	0.0	0.0
		· i . 4		-0.0		3 . 11 -		-0.0			-1.5		 6		9'n-		0.0	
		4 0.3870	1 0.4243	0636°U >	766-01	4 0,9969	1 D.4399	1699.0 Å	£66°€. I		4 0.9866	, ci	10-9907	7 10,985	4 1.30/5	1 0.4420	€ 1.0602	1 11.002
	54	.0,4⊈ņC	54 2	X 2-A 11.0CD	:	5< 2 €,4400	े। ज	r 3 11.003		54 2	ن. ن.		(3-V 11,000		21 3 0.4400	21 S	- COOTIE - AM :	
	:00:	\$ 10 41006 Lv	1.00014	¥1007 N DCX	9 10	АТ ВОСТ <del>Р</del> ЯТӨЗӨ-О	coory	20019 REDUX	15 1.	1.000LK	6 10 410010 EV		AIGUL BLOCK 2-A	6 10 10	ЧТ 210015 €10312 т∨		410013 202AA MV	рг В

.

.

I


.

;

:

:

:





## SYSTEM STUDY ANALYSIS OF NEW AKRAM LINE (NAL) 500kW SOLAR PV SYSTEM

Report

ARCO Energy

PAKISTAN Tel: +92-300-8827101



## CONTENTS

	TTVE SUMMARY
1 INT	RODUCTION
<b>1</b> .1	Project Description
1.2	Interconnection Arrangement
1.3	Objective of System Study Analysis
1.4	Study Components
2 STU	DY METHODOLOGY
2.1	Study Criteria
2.2	Steady State Analysis
2.2.1	1 System Intact Analysis
2.2.2	2 Transmission Line Loading Analysis
2.2.3	8 Voltage Analysis
3 STE	ADY STATE ANALYSIS
3. <b>1</b> ·	Model Development
3.2	Power Flow Assessment Without NAL PP and with Sanctioned Load In Service
3.2.1	Base Year 2025: Peak Loading Summer with Sanctioned Load in Service
3.3	Power How Assessment with NAL PP
3.3.1	Base Year 2025: Peak Loading Summer with Sanctioned Load In Service
3.4	Conclusion
4 CO2	NCLUSION
<b>4</b> .1	Steady Stare Assessment
LIST OF	ANNEXURES



### EXECUTIVE SUMMARY

This report provides the documentation of an assessment that has been performed for the interconnection of a 500kW Solar PV Power Generation project at New Akram Line (NAL) distribution system at 11kV project of "Military Engineering Services" (MES). The project will be a Grid field 500kW Solar PV based system connected with the power network of NAL. The '500kW NAL solar PV Power Generation project' is located at G9FV+RF5, Abid Majeed Rd, Cantt, Eahore, Punjab, Pakistan.

The integration of solar power generation at the NAL premises necessitates a comprehensive system study analysis to ensure optimal operation of the electrical network. NAL currently receives a single point supply from LESCO with a sanctioned load of 0.5MW. The introduction of solar power generation will influence the flow of electricity within the premises, impacting both consumption and injection dynamics.

The existing scup includes transformers, switchgear, and distribution panels to distribute electricity throughout the premises. The sanctioned load of 0.5MW is the maximum load that can be drawn from LESCO's grid.

The entire solar generation within the NAL premises will be consumed internally without exporting any power to the grid. To ensure the safe and efficient integration of solar power, a load flow study is required to analyze the impact of this interconnection on the existing electrical network. This study will assist in obtaining solar generation concurrence and ensuring compliance with relevant technical and regulatory requirements.

The analyses have been carried out in following scenarios;

- Without 500kW NAL solar PV with sanctioned load in service.
- With 500kW NAL solar PV with sanctioned load in service.

Steady state power flow assessment has been performed using the network data of NAL. Power flow study was conducted without Solar Project with sanctioned load in service to analyze the magnitude and phase angles of bus voltages, line loadings and power flows under steady-state conditions. Power flow analysis was also conducted with sanctioned load in service after the interconnection of the Solar project with the NAL distribution system. The power flow results for the system intact shows that the



power flows on all the NAL transmission and distribution line branches are within their normal line loading limit. There is no capacity constraint in terms of power flow or voltage ratings within the study area.

This systems study is a critical step in obtaining solar generation concurrence for NAL. By ensuring the stability and reliability of the electrical system, the study facilitates searnless solar power integration while maintaining compliance with NAL and regulatory requirements.

Based on the study results, it is concluded that proposed generation interconnection assessment for 500kW NAL solar PV Power Generation project meets the NEPRA grid code planning criteria.



### **1** INTRODUCTION

#### 1.1 Project Description

This report provides the documentation of an assessment that has been performed by ARCO Energy in response to a request made by New Akram Line (NAL) ("Project Owner" or "PO") for the interconnection of a 500kWp Solar PV Power Generation project ("Project") to the NAL power System at 11kV.

The '500kW NAL solar PV Power Generation project' is located at G9FV+RP5, Abid Majeed Rd, Cantt, Labore, Punjab, Pakistan, Figure 1.1 shows Google site map of the project.

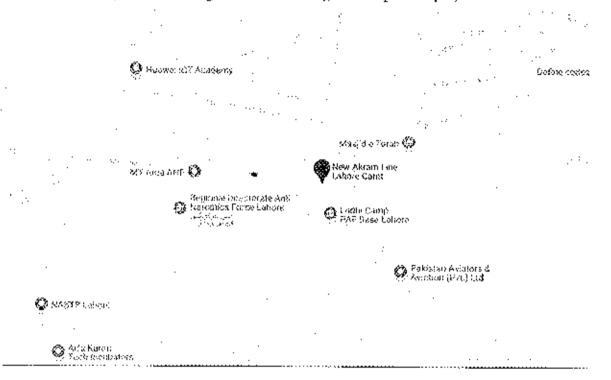



Figure 1.1: Google Site Map of the Solar PV Power Generation Project.



#### 1.2 Interconnection Arrangement

NAL aims to integrate solar power generation into its existing electrical infrastructure. NAL currently teccives a single-point power supply from LESCO with a tanctioned load of 0.5MW. The entire solar generation within the NAL premises will be consumed internally without exporting any power to the grid. The objective of the analyses is to evaluate the impact of the solar power plant on the NAL transmission and distribution system.

### 1.3 Objective of System Study Analysis

The primary objectives of the load flow study are:

- To evaluate the impact of solar power injection on the voltage levels and power distribution within NAL premises.
- To determine the changes in power flow patterns resulting from the integration of solar generation.
- To ensure that the existing electrical infrastructure can support the additional solar power without causing instability or operational issues.
- To verify compliance with regulatory requirements for solar power interconnection and obtain concurrence for solar generation.

#### 1.4 Study Components

500kW solar PV system is modelled into the NAL distribution system by ARCO Energy. Technical analysis includes:

- i) Data gathering and modelling
- ii) Steady state analysis
- iii) Conclusion

The above scope of work involved in the technical analysis has been carried to demonstrate that connection assessment of this PV system meets the National Electric Power Regulatory Authority (NEPRA) distribution code.

The analyses have been carried out in following scenarios;

- Without 500kW NAL solar PV with sanctioned load in service.
- With 500kW NAL solar PV with sanctioned load in service.



This report documents the results of the steady state analyses. The principal objective of these analyses is to evaluate the impact of 500kW solar PV system to the distribution system of NAL and vice versa.

5



### 2 STUDY METHODOLOGY

#### 2.1 Study Criteria

The study has been carried out based on the National Electric Power Regulatory Authority (NEPRA) Grid Code planning criteria. Key parameters and their corresponding limits have been summarized in table below.

Para	aneter	Range				
Voltage Level	Normal Condition	±5 % p.p at 132kV and below +8%,-5% p.u at 220kVand above				
	Contingency	±10 % p.u				
T/Line Loading	Normal Condition	100%				
Capacity	Contingency	100%				
	Nominal	50 T Iz				
Frequency	Normal Variation	49.8 Hz - 50.2 Hz				
	Contingency Band	49.4 Hz - 50.5 Hz				
Power Factor	Lagging	0.95				
TOWER PACIN	Leading	0.95				

#### 2.2 Steady State Analysis

The purpose of steady-state analysis is to analyse the impact of the proposed solar power plant on distribution system facilities under steady-state conditions. It involves two distinct analyses: line loading analysis and voltage analysis. Power flow solutions using the PSS/E® program (Version 33.4) has been performed.

A "study area" was defined to represent the areas of interest within NAL.

#### 2.2.1 System Intact Analysis

The incremental impact of the project on substations and transmission line loading under normal conditions was evaluated by comparing transmission and distribution system power flows through different scenarios for the project.

#### 2.2.2 Transmission Line Loading Analysis

11kV and 0.4kV rated transmission and distribution facilities in the study area have been monitored for line loadings.



ł

## **Akram Line**

### 2.2.3 Voltage Analysis

Voltages at buses inside the study area have been monitored for possible for voltage violations in accordance with NEPRA Grid Code guidelines.



### 3 STEADY STATE ANALYSIS

#### 3.1 Model Development

Project specific data was provided by the plant owner and it has been compiled and presented in **Annexure-A**. The steady state model of the power plant is presented in table below:

	Generator
No. of Collector Units	1
Generation size of each collector (kVA)	421
Active Power of each collector Pgen. (kW)	400
. Power Factor	0.95 lagging, 0.95 leading
Qmin, Qmax (kVAR)	- 0.1315, 0.1315
Rated Frequency	50 I I z
Generation Voltage	0.8V
Xsource	
Generat	tion Step Up Transformer
No of Transformer	1
kVA Capacity of each GSU	630
% Reactance (X)	5%
]	New Akram Line
Sanctioned Load (LESCO)	500 kW

Steady state power flow assessment has been performed using the network data of NAL.

## 3.2 Power Flow Assessment Without NAL PP and with Sanctioned Load In Service

Power flow study without NAL solar and with sanctioned load in service, was conducted to analyze the magnitude and phase angles of bus voltages, line loadings and power flows under steady-state conditions.

The result of this power flow analysis is in Annexure-B.



Contraction and Aug

#### 3.2.1 Base Year 2025: Peak Loading Summer with Sanctioned Load in Service

Power flow analysis has been performed on the peak loading summer (June) 2025 case of NAL network. This base case included a detailed representation of the NAL transmission and distribution system in the study area.

The steady state results, depicts that the power flows on all the NAL distribution line branches are within their normal loading limits. There is no capacity constraint in terms of load flow or voltage ratings around the study area. Result of the power flow analysis is attached in **Figure B-1**.

#### 3.3 Power Flow Assessment with NAL PP

Power flow study of NAL solar project was conducted with sanctioned load (in service and out of service) to determine the reliability impact of the 500kW NAL solar project on the NAL distribution system. This includes the performance of load flow analysis to identify any facility overload or voltage condition that violates the NEPRA planning criteria. Any such violation that is either directly attributable to this project or for which it will have a shared responsibility is included in this report.

The results of the project power flow analysis are plotted in Annexure-B.

#### 3.3.1 Base Year 2025: Peak Loading Summer with Sanctioned Load In Service

A base case has been developed with sanctioned load in service at NAL solar for peak loading summer (June) 2025 that allow us to judge the impact of NAL solar project on the NAL network. Project power flow analysis has been performed after the connection of the project with the NAL distribution system. This includes the detailed representation of the power plant.

The steady state result, with sanctioned load in service at NAL solar depicts that the power flows on all the transmission line branches are within their normal loading limits. There is no capacity constraint in terms of load flow or voltage ratings around the study area.

Result of the power flow analysis is attached in Figure B-2.

The results of the project bus voltages analysis are attached in Annexure-C.

### 3.4 Conclusion

Steady state power flow assessment has been performed. Power flow study was conducted without solar Project with sanctioned load in service to analyze the magnitude and phase angles of bus voltages, line loadings and power flows under steady-state conditions. Power flow analysis was also conducted



with sanctioned load in service after the interconnection of the Solar project with the NAL distribution system. The power flow results for the system intact shows that the power flows on all the NAL distribution line branches are within their normal line loading limit. There is no capacity constraint in terms of power flow or voltage ratings within the study area.

a gran see soonale



### 4 CONCLUSION

#### 4.1 Steady State Assessment

Steady state power flow assessment has been performed. Power flow study was conducted without NAL solar with sanctioned load in service, to analyze the magnitude and phase angles of bus voltages, line loadings, and power flows under steady-state conditions. Power flow analysis was also conducted with NAL solar and with sanctioned load in service with NAL distribution system. Power flow results showed that the power flows on all the NAL distribution branches are within their normal loading limit. There is no capacity constraint in terms of power flow or voltage ratings within the study area.

The steady state results found no capacity constraint in terms of power flow and voltage ranges.

Hence, it is concluded that based on the study results the Interconnection Assessment for 500kW New Akram Line solar PV system with NAL Transmission and Distribution Network, meets the NEPRA grid code planning criteria.



### LIST OF ANNEXURES

Annex A: Project Specific Data.

Annex A-1: Project Site Map.

Annex A-2: Power Plant Data.

Annex B: Power Flow Steady State Analysis Result

Figure B-1: Base Year 2025 - Peak loading summer without NAL solar and Sanctioned load in service.

Figure B-2: Base Year 2025 - Peak loading summer with NAL solar and Sanctioned load in service.

Annex C: Assessment of Bus Voltages.

Annex C-1: Withour NAL solar and with Sanctioned Load In Service.

Annex C-2: With NAL solar and with Sanctioned Load In Service,

## Annexure-A

Project Specific Data

.

## Annexure-A-1

÷

Project Site Map

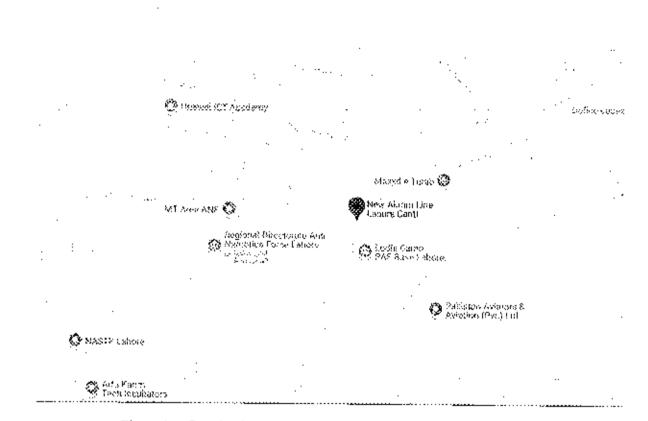
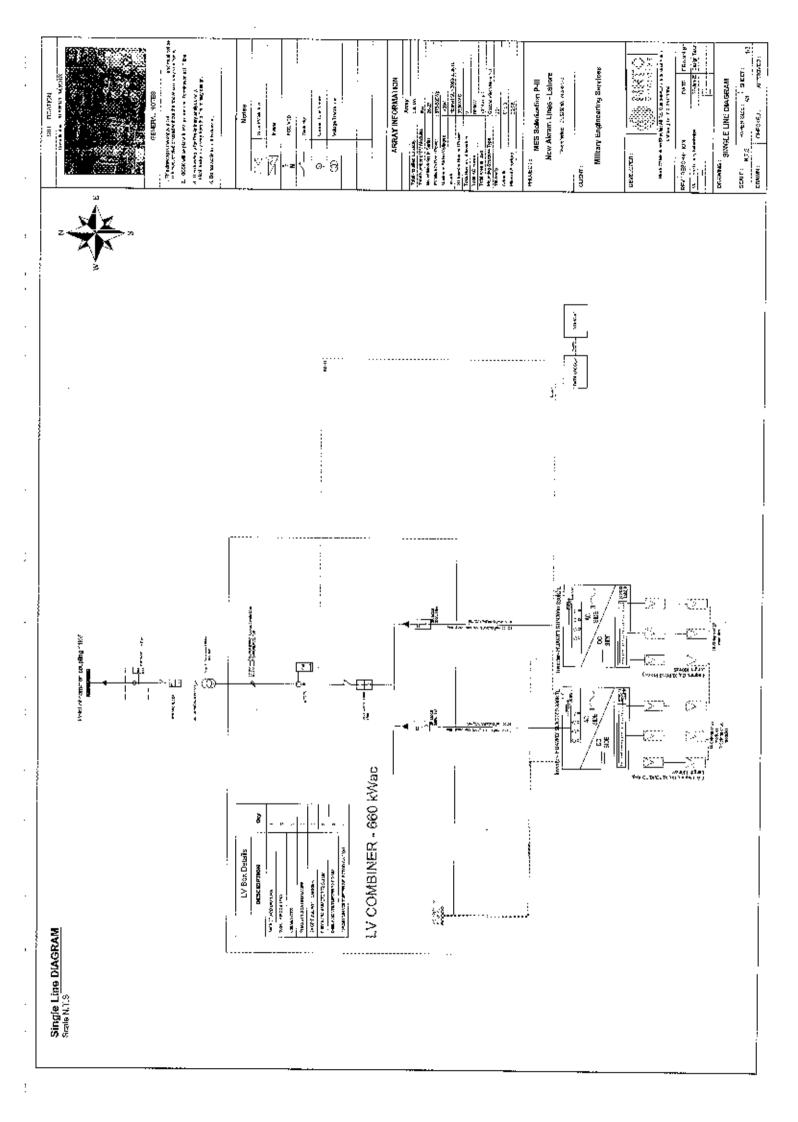
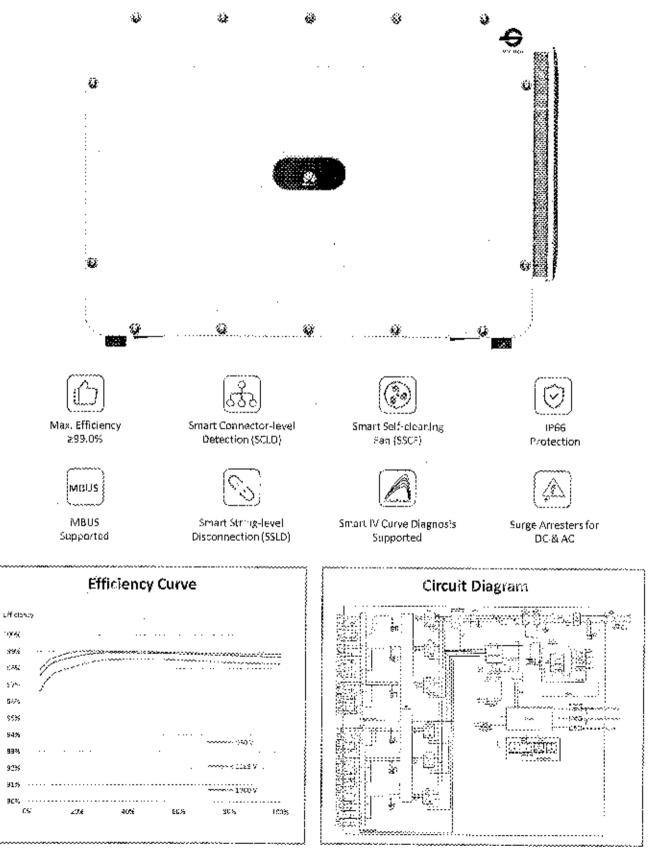




Figure 1.1: Google Site Map of the Solar PV Power Generation Project.

## Annexure-A-2

Power Plant Data




2				
		7760		
PV Placement DIAGRAM Scele N.T.S	1			

.

## SUN2000-330KTL-H1 Smart String Inverter

i

:

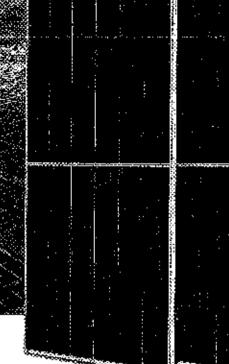


SCLAB UGAWED, COM

## SUN2000-330KTI-H1 Technical Specifications

	Efficiency	
	Max, Efficiency	299.0%
•	European Efficiency	2.98.8%
•	Input	· · · · · · · · · · · · · · · · · · ·
	Max. Input Voitage	1,500 V
	Number of MPP Trackers	5
	Max. Current per MPPT	65A · · · · · ·
	Max, Short Cristin Content per IMAPT	115 A
	Max. PV inputs per MEPT	
	Start Vellage	4/5/5/4/5/3
	MPPT Operating Voltage Bange	550 V
	Nominal Input Voltage	500 V ~ 1,500 V
	···· ···· · · · · · · · · · ·	1,080 V
••••	Output	
	Norninal AC Active Power	300,000 W
	Max. AC Apparent Power	350,000 VA
	Max. AC Active Power (cosh=1)	Back and a second s
	Nemtral Output Voltage	800 V. 09V + 75
	Roled AC Grid Frequency	50 Hz / 60 Hz
	Nominal Oulput Current	215.5 4
•	Max, Oulgue Current	238.2 A
	Adjustable Power Factor Range	0.8LG 0.8.D
	Total Harmonic Distorition	<1%
	Protection	
	Smart StGing-Level Disconnector(SSLD)	Yes
ļ	Anti-is anding Protection	Yes
	AC Overcurrent Protection	ves
	DC Reverse-polarity Protection	Yes
	PV-array String Fault Monitoring	Yes
	DC Surge Arroster	Туре II
•••	AC Surge Arrester	Τνρεί
	DCInsulation Resistance Detection	Yes
	AC G/ounding Fault Protection	Yes
	Residual Curran' Monitoring Unit	Yes
	Communication	
	Display	LED Indicators, WLAN + ASP
	JSB	Yes
	MBUS	řes
		Yes
	General	
	Dimensions (Wix High)	1,048× 732× 095 mm
	Weight (with occurting place)	≤11.° m
• •	Operating Temperature Range	-25 °C ~ 60 °C
	Cooling Method	
	Max. Operating Altitude without Derating	Smart Air Cooling 4 000 m (13 133 ft )
	Relative Humicity	4,000 m (13,123 ft.)
		0 100%
	· · · · · · · · · · · · · · · · · · ·	erproof Connector + CT/DT Terminal
<u>.</u>	Protection Degree	F 66
	Topology	Transformerless
		·

## Harvest the Sunshine


## **PE**EPBLUE4.0

## 580W n-type Bifacial Double Glass High Efficiency Mono Module JAM72D40 555-580/GB 555

### Introduction

Mono

Power by the testest SMBB in typic solar cell, ball cell, configuration and deplese finder charaction technology. Dave moracle have higher subject your, lower LID, better weak illuntituation response, and hetter componante configuration.





#### Higher power generation better LCOE



h-type with very Lower LID.



Setter weak illumination response



### Botter Temperature Coefficient

. . .....

- Superior Warranty
- 12-year product warranty
- S0-year linear power output warranty.

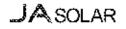


 n-type Bitabial Doublo Glass Models Linear Performance Warranty



Standard Modelle Linear Performance Warrenty

### Comprehensive Certificates


- < iEC 61215, IEC 61700
- ISO 5001: 2015 Quality management systems
- ISO 14001: 2015 Environments) management systema
- ISO 450011 2018 Occupational health and astety manaparient systems
- IEC 62961, 2018 Terrestrial photovolisic (PV) modules -Quality system for PV module manufacturing



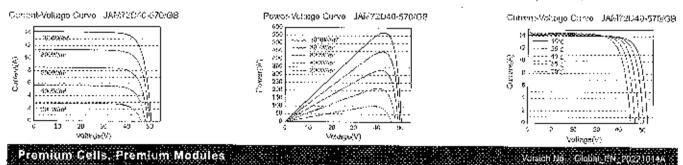


WWW.j6360[81.from CWWW.j6360[81.from CWWW.j6360[81.from Construction of the construction of the construction of the construction Construction of the const





#### MECHANICAL DIAGRAMS


## JAM72D40 555-580/GB



Mathem     Mathm     Mathem     Mathem     Mathem <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>							
Image: Control of the second secon		<u>1.96</u>		H _{38≡} ,	Cell		Monc-1886
Image: Section Size       Amm ² (EC), 42,4WG(UL)         Image: Section Size       Amm ² (EC), 42,4WG(UL)         Image: Section Size       Amm ² (EC), 42,4WG(UL)         Image: Section Size       Image: Size Section Size         Image: Section Size Section Size       Image: Size Section Size         Image: Size Section Size Section Size       Image: Size Section Size Section Size Amm ² (EC), 42,4WG(UL)         Image: Size Section Size Section Size Amm ² (EC), 42,4WG(UL)       Image: Size Section Size Amm ² (EC), 44,55243         Image: Size Section Size Amm ² (EC), 42,4WG(UL)       Image: Size Section Size Amm ² (EC), 42,4WG(UL)         Image: Size Section Size Amm ² (EC), 42,4WG(UL)       Image: Size Section Size Amm ² (EC), 42,4WG(UL)         Image: Size Section Size Amm ² (EC), 42,4WG(UL)       Image: Size Section Size Amm ² (EC), 42,4WG(UL)         Image: Size Section Size Amm ² (EC), 52,5       Image: Size Section Size Amm ² (EC), 52,5         Image: Size Section Size Amm ² (EC), 52,5       Image: Size Section Size Amm ² (EC), 52,5         Image: Size Section Size Amm ² (EC), 52,5       Image: Size Section Size Amm ² (EC), 52,5         Image: Size Section Size Amm ² (EC), 52,5       Image: Size Section Size Amm ² (EC), 52,5         Image: Size Section Size Amm ² (Size A					Weight		Ji.8kg
Image: Section of Sectin Sectin of Section of Section of Section of Section of Section		24-3	'	∥ . ∣	Olmonational	22701878	: 1841-04420)×80851.50
Image: Section of the sectin the sectin the sectin the sectin the section of the					Cable Cross Section Size	4ភេណ	* (IEC), 42,AWG/QL)
Advice from the analysis of the second		- 022			No. of colls		'44(8×24)
Image: Start Start       Start Start       Connector       CC 4.10-357/ MC 1-EV02A         Image: Start Start       Image: Start Start       Image: Start Start       Start Start         Image: Start Start       Image: Start Start       Image: Start Start       Start Start         Image: Start Start       Image: Start Start       Image: Start Start       Start Start         Image: Start Start       Image: Start Start       Start Start       Start Start         TYPE       JAM 72DAC		20.1 nding rolas		. ส่ฏ	Junction Slox		1968, 3 diades
Image: Interview       Image: Interview       Image: Image	다 그는 김 옷 김 옷 다 가지?	ssfär ∕il ! I I		Strant frame	Connector	QC 4.	10-351/ MC 1-EV02A
FLACE         Issue from         Decksoging Costiguration         Steposifyedial, 720008/04HQ Container           ELECTRICAL PARAMETERS AT STC           TYPE         JAM72020         JAM72040		r.nkpy holes Suzes			*		
Packaging Configuration         Packaging Configuration         Separation         Separation           ELECTRICAL PARAMETERS AT STC         JAM720A0		airne Irba			Front Glass/Back/Class.		2.6mw/2.0mm
TYPE         JAM 720-00 -550/08         JAM 720-00 -550/08         JAM 720-00 -570/08         JAM 720-00 -570/08 <thjam 720-00<br="">-570/08         JAM 720-00 -570/08<td>interaction of the state of the</td><td>line in the second s</td><td><u></u>.</td><td>   Long frame</td><td>Packaging Coefiguration</td><td>720</td><td></td></thjam>	interaction of the state of the	line in the second s	<u></u> .	Long frame	Packaging Coefiguration	720	
TYPE         -station         -580/08         -580/08         -580/08         -570/08         -570/08         -500/08         -500/08         -500/08         -500/08         -500/08         -500/08         -500/08         -500/08         -500/08         -500/08         -500/08         -500/08         -500/08         -500/08         -500/08         -500/08         -500/08         -500/08         -500/08         -500/08         -500/08         -500/08         -500/08         -500/08         -500/08         -500/08         -500/08         -500/08         -500/08         -500/08         -500/08         -500/08         -500/08         -500/08         -500/08         -500/08         -500/08         -500/08         -500/08         -500/08         -500/08         -500/08         -500/08         -500/08         -500/08         -500/08         -500/08         -500/08         -500/08         -500/08         -500/08         -500/08         -500/08         -500/08         -500/08         -500/08         -500/08         -500/08         -500/08         -500/08         -500/08         -500/08         -500/08         -500/08         -500/08         -500/08         -500/08         -500/08         -500/08         -500/08         -500/08         -500/08         -500/08         -500/08 <th< td=""><td>ELECTRICAL PARAMETER</td><td>SAT STC</td><td></td><td></td><td></td><td></td><td></td></th<>	ELECTRICAL PARAMETER	SAT STC					
Roled Maximum Power(Prink) (W]         558         560         502         570         579         580           Open Clint, & Volkage(Volo) [V]         50.55         50.70         50.85         61.00         61.45         61.30           Maximum Power Volkage(Volo) [V]         42.24         42.40         42.55         42.40         42.85         43.03           Shen Cincuit Current(kc) [A]         14.02         14.09         14.16         14.23         -4.30         -4.36           Maximum Power Qurrent(kop) [A]         13.14         13.21         13.20         13.35         13.42         13.48           Medule Efficientry [%]         21.5         21.7         21.9         22.1         22.3         22.5           Power Tolerature	TYPE						
Maximum Power Vallage(Vorp) [V]         42.24         42.40         42.65         42.40         42.85         43.03           Shint Circuit Current(lac) [A]         14.02         14.09         14.16         14.73         54.30         14.36           Maximum Power Qurss of (kep) [A]         13.14         13.21         13.29         13.35         13.42         13.48           Medule Efficienter (%)         21.5         21.7         21.9         22.1         22.3         22.5           Power Tolerature         0-450V         -0.0480%***C         -0.0480%***********************************	Roled Meximum Power(Pmax) (W]	558	560	506			
Short Oricel Consequences (Mark) (M)       14.02       14.09       14.16       14.73       14.00       14.03         Short Oirouit Content(Roc) (A)       13.14       13.21       13.20       13.35       13.42       13.48         Measimum Power (Surrant(Roc) (A)       21.5       21.7       21.9       22.1       22.3       22.5         Power Toleration       0~+5W       -0.948/5/°C       -0.948/5/°C       -0.948/5/°C       -0.948/5/°C         Temperature Conflictent of Not(Roc) (Sc)       -0.948/5/°C       -0.948/5/°C       -0.948/5/°C       -0.948/5/°C         Temperature Conflictent of Pressly, Prop)       -0.948/5/°C       -0.948/5/°C       -0.948/5/°C       -0.948/5/°C         Temperature Conflictent of Pressly, Prop)       -0.948/5/°C       -0.960/5/°C       -0.960/5/°C       -0.960/5/°C         Temperature Conflictent of Pressly, Prop)       -0.960/5/°C       -0.	Optin Circ. 3 Volktge(Voc) [V]	50.55	50,70	50.88	61.00	51.15	51.30
Maximum Power (Content(Copp) (A)     13,14     13,21     13,28     13,35     13,42     13,48       Module Efficientay (%)     21,5     21,7     21,9     22,1     22,3     22,5       Power Tolerance     0~+5W     -0.948%/*C     -0.948%/*C       remporature Coefficient of bac(a, las)     -0.260%/*C     -0.260%/*C       Tormwrature Coefficient of Prink(y, Prink)     -0.366%/*C     -0.936%/*C       STC     Irradiance 1000Wink, ce8 temperature 26*C, AM: 5G       Reme kill senders the ceales do net the temperature trif thay are roligen of the effectivity only serve for physicility and the organization types.     OPERATING CONDITIONS       TYPE     JAM78E45     JAM72D40     JAM72D40     JAM72D40     JAM72D40	Maximum Power Voltage(Verp) (V)	42.24	42.40	42.65	42.40	42.85	43.03
Medule Efficient on plane quipping     ?1.5     ?1.7     ?1.9     ?2.1     ?2.3     ?2.5       Power Tolerature     0~+5W       femperature Coefficient of lac(n_lac)     +0.948%/*C       Temperature Coefficient of Prinacly_Prip)     -0.260%/*C       Tomperature Coefficient of Prinacly_Prip)     -0.360%/*C       STC     timation of 1000Winf, cell temperature 25**C, AM2.5C       Remis & Stepdale risks callege do bet micritic a single merule and trag are roligent of the cell temperature 25**C, AM2.5C       ELECTRICAL CHARACTERISTICS WITH 10% SOLAR IRRADIATION RATIO     OPERATING CONDITIONS       TYPE     //AM72D40_JAM/72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40_JAM72D40	Shen, Oircuit Cortent(lac) [A]	14,02	14,09	14,16	14.78	h4.30	14.36
Power Toleration     0++5W       Perpenditure Coefficient of be(a_fec)     -0,048%/*C       Temperature Coefficient of Voc(β_Voc)     -0,260%/*C       Temperature Coefficient of Pinaxly_Prop)     -0,360%/*C       STG     trradiance 1000Winit, cell temperature 25*C, AM2.5G       Remis & Steaded rate of the cells of a single mercule and the assingle mercule of the cells of the	Maximum Power Correol(Jop) [A]	13.14	13.21	13.28	19.35	:3.42	13.48
femperature Coefficient of loc(a_loc)     -0.948%/*C       Temperature Coefficient of Voc(β_Voc)     -0.280%/*C       Tomperature Coefficient of Prinacly_Prop)     -0.366%/*C       STC     -0.366%/*C       Remis & Senderal rate of Dissocretary do not main to a single memory and panel the effection of the effective server for one particle and the organization of panel.     -0.260%/*C       BELECTRICAL CHARACTERISTICS WITH 10% SOLAR IRRADIATION RATIO     OPERATING CONDITIONS       TYPE     ////78745_0_/AM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72040_JAM72	Nodule Efficientry [%]	21.5	21.7	21.9	22.1	22.3	22.5
Temperature Coefficient of Vec(β_Vec)     0.260%/°C       Temperature Coefficient of Prink(y_Prink)     0.300%/°C       STC     Irradiance 1000Win/, ce8 temperature 26°C, AM2, 5G       Renic K % edited rate of this scaled do bit their to a single merute and they are roligient of the start and they are roligient of they are roligient of they are roligient of the start of the star	Power Tolerance				0~+5W/		
Tomperature Coefficient of Princip/       0.300%/C         STC       Irradiance 1000Win/, cell temperature 25°C, AM: 150         Remit & Settical rate of this occales do bet the to a single merule and tray are colored of the effective volg save for physelesis anicity different notice types.         ELECTRICAL CHARACTERISTICS WITH 10% SOLAR IRRADIATION RATIO       OPERATING CONDITIONS         TYPE       J/0878E49       JAM72D40       JAM72E40       JAM7	(emperature Coviliaium) of Isc(a_lisc)				+0.948%/*C		
STC     Irradiance 1000Win7, ce8 temperature 26°C, AM2, 5G       Renie & 9 edited rate of this scales do not menus and menus and integers of the site. They are not part of the site is a single menus and integers of the site. They are not part of the site is a single menus and they are not part of the site. They are not part of the site is a single menus and the site is a single menus and they are not part of the site. They are not part of the site is a single menus and they are not part of the site. They are not part of the site is a single menus and the site is a site is a single menus and the s	Temperature Coefficient of $Vec(\beta_{1},Vec)$				-0.280%/°C		
Remise in Second reliance of the second reliance	Tomperature Coefficient of Pinaxly_Pinp	ΰ			-0.360%/°C		
Remise is Sendered rate or Diss detailing do not their to a single menute rind it ay are not part of the otion. They only serve for preparison among different residue types.         ELECTRICAL CHARACTERISTICS WITH 10% SOLAR IRRADIATION RATIO       OPERATING CONDITIONS         TYPE       JAM78E 40       JAM72D40	STC			trradjanos 100	0W/m², ceÿ temperature 28°	C, AM2.50	
TYPE J/0078E40 JAM72D40 JAM72E40 JAM72E40 JAM72E40 JAM72E40 JAM72D40 Meximum Sustain Boline 15000 Fre	Roma & Stepiscal riske in Busicetalog do natire	ver to a single menute and they	are not part of lite offer				••
TYPE 3/2672040 JAW72040 JAW72040 JAW72040 JAW72040 JAW72040 Meximum Susters Solitans 15000 Fre	ELECTRICAL CHARACTERI	STICS WITH 10% S	OLAR IRRAD	IATION RATIO	O OPERATI		DITIONS
REFIGE SEMAR ARE/23 ETO/CE SERVER REPORT FRANKING SEMARATE	TYPE			JAN72E46 JA	upapan i		1500V DC

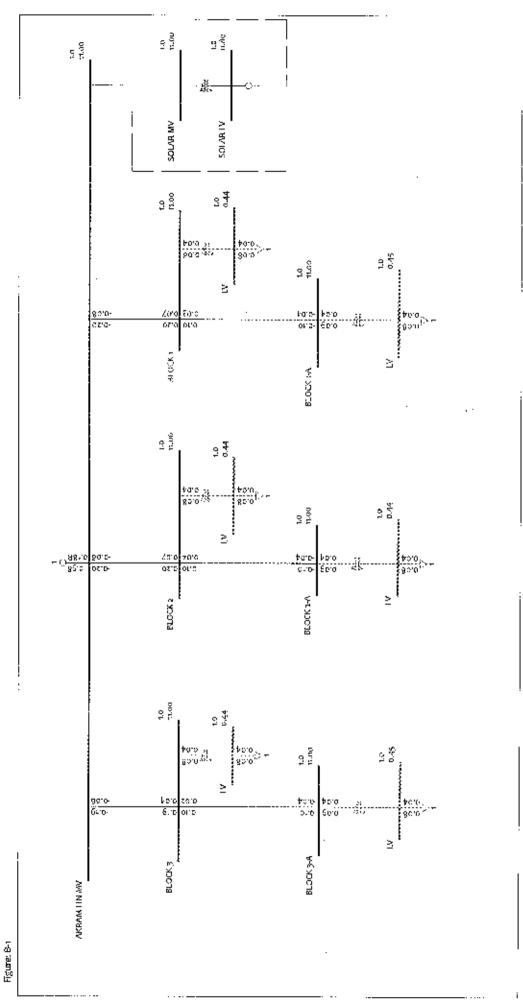
J/0372040 -555/GB	#AM72040 -960/GB	JAW(72D40) -585/G8	JAM72040 4570/GB	JAM72046 575/08	JAM?2040 -560/0jb	Meximum System Voltage	1500V DC
590	605	មាម	616	621	626	Operating Temperature	-40°C~+8540
50.68	50.73	50.28	51.03	55,16	\$1.30	Maximum Sarles Fase Rating	39A
42.94	42,09	42.55	42.70	42,86	43,92	Maximum Static Lead Front* Maximum Static Lead,Back*	5400Pə(112 lb/t²) 2400Pə(50 :b/t²)
15.14	15.22	16.29	16,37	15.44	16.51	NOCT	451210
14.19	14.27	14,34	14.42	14.49	14.56	Biferciality**	00%±10%
		10%				Fire Portomisanos	UL Type 29
	-555/69 590 50.56 42.94 15.14	-665/69 -666/68 590 605 59.66 60.73 42.24 45,39 15.14 16.22	-655/63         -660/68         -545/68           590         608         610           59.68         50.73         50.28           42.24         42.09         42.55           15.14         16.22         16.29           14.19         14.27         14.34	-655/63         -660/68         -545/38         4570/68           590         608         610         616           59.58         50.73         50.28         51.03           42.24         42.09         42.36         42.70           15.14         15.22         16.29         16.37           14.19         14.27         14.34         14.42	-555/GB         -560/GB         -545/GB         -570/GB         -570/GB         -575/GB           590         605         610         616         621           59.56         50.73         50.28         51.03         51.13           42.24         42.39         42.35         42.70         42.86           15.14         15.22         16.29         15.37         15.44           14.19         14.27         14.34         14.42         14.49	-655/63         -660/68         -5/5/68         -570/68         -575/68         -570/68           590         605         610         616         621         626           59.68         50.73         50.28         51.03         51.16         61.33           42.24         42.39         42.55         42.70         42.86         43.02           15.14         15.22         16.29         15.37         15.44         16.51           14.19         14.27         14.34         14.42         14.49         14.56	-655/63         -660/68         -545/38         -570/68         -570/68         -580/68         Meximum System validate           590         605         610         616         621         626         Operating Temperature           59.66         90.73         50.88         51.03         51.18         91.30         Maximum System validate           42.94         42.99         42.55         42.70         42.86         43.02         Maximum Static Lose France           15.14         16.22         16.29         16.44         16.51         NOCTT           14.19         14.27         14.34         14.42         14.49         14.56         Bifaciality**

#### **CHARACTERISTICS**



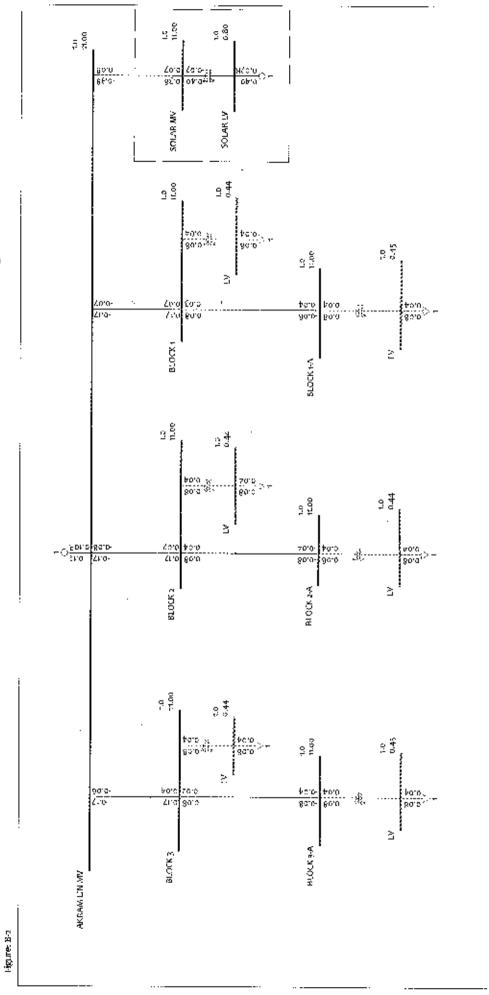
## Annexure-B

. .


:

ł

Steady State Analysis Results


Load Flow Analysis of 500kWp Solar PV System at New Akram Line (NAL)





Load Flow Analysis of 5ookWp Solar PV System at New Akram Line (NAL)





## Annexure-C

1.15

۰.

Assessment of bus voltages

.

## Annexure-C-1

.

## Without NAL PP and With Sanctioned Load In Service

			ļ				-									1		ł		
Sances .		rvrs		1.0	0.i	0.0		-0,1	0.0	0°C		0.0.		-0.0	0°0		-0.0		-0.1	0.0
1.7:14 Gauss Andorre		jelec		0.2	0.2	0.2		-0.2	U.1	C.1		-0-		-0,1	Ċ.1				-0.2	Ú.1
L D 25 L	×	NAL CKT		ب ب	۲ ۲	4 1		.: u	. I J	é l		4 T		 1-2	.: •4		۲ ب		4 J	 F
32. F35 15 3477 708 7 3 5 504 6		X BASNA ARRA UKT		000'II	11.000	1.1000		00011.70	0.460	000111		17.000		300.11	01/400		000-11		000.11V	C.4400
SXSTEM SIGULATORDS3(R)E	SJE OL	673# X XAME		41001 BLOCK 1	41905 BLOCK 2	5 NOCIS 63016		4130 AKRAN LIN NV'I.000	AI ZCDIĐ	41003 JUCK 1-A		. XOOTH LOOIP		41001 FLOCK 1	41004 IV		41000 BLCCN 1-A		4100 AKEAN LEN AVIL 000	41036 EV
SINUATO	SHUNT X-		0.1	0.0	4	Ŧ	C. 0	J.C	41	Ŧ	0.1	0.0	с. О. Л	3-0-C	ŝ	0.0	0-0 40	- O,D	0.0	~1
	1.070	IN/NVAR 30	0.0	0.0			0.0	0.C			0.1	0.0	0.0	0.0		0.1	0.0	0.0	C.O	
	. NO15	MM/MV/R MM/MVAR 300/MVAR	3.6	0.23			0.0	0.0			0.0	0.0	0.0	0.0		0-C	0.0	0.0	0.0	
. LNTHRACTIVE		ANGLK 1	0 <b>.</b> C				0.0-				2.0-		0-0-			-0.2		-0°		
TOS <u>ONIT</u> MURNU T.T.J	VOLT	PL/84	4 1.3000	010'II I			1.0000	11, 200			7.365.0	(1,4354	0.9993	509'CI		1.,0243	0.4307	6666°0 y	10,539	
· · · · · · · · · · · · · · · · · · ·	JSX AREA	MERURALE RAUTING 3USH X NAMEX BASKY ZONG IO ANGLE & SUT A		г			11.000	. 1	1		6.4400 4	و ک	v000 ∉	1.1	د، د	0.44 	6 2 1	71.30C A	1	6 2
	E E	THANSECHMER BUSH X NEME SATIO ANGLE 3	4200 AKRAN LLN MV1'.000	2 16			019	2	000	01	÷	1,0030%	41003 BLOCK 1-A	0. 1	976.	41004 LV	1,0000A	\$1005 PROCK 2	2 .0	1.00055

.

.

.

.

.

.

									}										
·	0.0		0.0-		-0.0	0.0		-0'0-		-3.1	0°C	0.C		U.O.		0°0-	0.0		-0.0
:	0.1		-0.1		-0.1	0.1		-C.1		-0-2	1.5	0.1		 6		-0-	0.1		-0.1
	1		1-1 141		 2	. I .sir		 N		í i	4 l	4 I		- 		1 1	Ē		ар • 1
	11,300				21.300	3.4400		00011.		VII.060	0.4400	C00.II		11.020		11.600	0.4400		11,000
	41007 BLOCK 2-R	3.0	0.0 41035 ELOCK 2	J.C	3.C (1C33 ALOCK 2	41 SCJ1+	J.C.	0.6 41007 9000 2-A	0.U	0.0 4100 AKSAM EIN KVIL.000	AT 012015	8-6 XOOTE TICOTA	0.ùt.	0.0 41005 BLCCA 3	0°,0	U.O. 41008 BLOCK 3	410012 IV	0.0	3.0 420011 FLOCK 3-R
• • :		C.1	0.0	3.6	J.C		1-1	0.G	0.0	0.3			0.1	0.0	0.0	0.0		[-]	a. 6
		0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.3			. C	0.0	0-0	0-0		0.0	0.0
		-0.2		-0.0			-0.2		-0.0-				-0.2		-0.0			÷0.1	
		¢ C.9535	. G.4334	9638.J 🖡	2 10.999		5120'I ¥	1 0.4450	9699-1 1	V 10,999			4 0.98E	1.0.1394	4 0.0909	1 IC.998		4210,122	. C,4€ol
		0.4403	<i>i</i> e 0	2-A 11.000		ۍ ۲	0.4400	с	3 11.000		۲ م	2	6.4400	~1	3-A 11,000			0.0	en ch
		AT 30017 .	i.0000M	41037 BLOCK 2-A	0.	11882. 11882.	41038 5V	N:000.1	5 NOCIE 60015	<	1001		1 10 410010 LV	1.0COUN	30054 [[[0]])	1	N. 998-1N	41,0012 EV	1.0001N

.

.

.

.

:

÷

## Annexure-C-2

## With NAL PP and With Sanctioned Load In Service

.

CD e	PTT AKRAN LINE SOL	INTERAC Al 2V SY	CTIVE DOG (STIN	RER SYSTE	7. A. J. S. W	FTI INTERACTIVE POWER SYSTEM STEULATOR255(R)E Solah av system		387, 535 8778 20 8 - 20	C, FEB 15 2025 (7:15 Weve for transfourels % - vok non-transformer branches	17+15 Maeas Mororker	BRANCHES
XKR3M BJSK ANEA missinganyan	AREA VOLT		<b>JEN</b>	0.A.D.	SULUT	X	TO 348	S	X		
RACING RANKX RASKV E & SET A	NM/II EKCE	ANGLE	MW/MVAR NW/NVAR		NAVN'NK	1878 X-	- 3872	X BASKV	AREA COF	Xí	KVRR
4100 REAM LIN RVII.000	4 1.0000	0.0	0.7	0.0	0.0						
10	1 11.030		0.13	0.0	C.D	4.00; NI	NDCX 7	0CD.II	L F	0.2	0.1
ct						41.60015	BLOCK 2	11,200		5.0	0.1
e.						an enally	S NOOTE	21.200		0.2	0.0
						V10013 S0	SOLAR MV	11,002	 .e	-0.4	-0,1
41601 3LOCK 1 11.000	4 1.000	-0°C-	0'C	0.0	0.0						
10	11,000		0.0	0.0	0.0	MARXE COIP	á Li	MV11.000	Ч Т	-0.2	, .0 -
2 5 2. CUOLK 5						41002 IV		0.4430	4 I	0.1	0.0
						410U3 BD	BLOCK I-A	11.300	е1 41	0.1	0.0
41072 LV 0.4400	4 0.9987	-0.2	0.0	1,1	0-0						
1.000UN 6 2	1 0.4394		J.C	0.0	0.3	41301 320	BLOCK 1	0011	4 1	-0.1	-0.0
42003 NFOCK 1-A 21.000	ę 0,3959	-0-0	0.0	0.0	0.0						
0.	065'NI V		0.0	0.0	3.0	410C1 BIA	BLOCK 1	11,300	۔ ۲	-0.1	-0.0
0.9751.K 6 2 41204 IV 6 4700	-	-	:			VI PCOLÈ		3.4400	. I NI	0.1	0.0
	1,0040	T '0-	0.6	0	с. С						
. 2 3 X1000X	1 0.45C7		а <b>г</b> о.	0.0	0.0	41003 вноск 1-8	ocx 1-A	020'II	Т Р	1,1-	ŋ.C-
(1005 BLOCK 2 11.000	6636-0 🤉	-0.0	0.0	0.0	0.0						
10	\$66°01 [°] 7		0.0	J.C	0'C	4130 ANJ	4100 ANJAN L'N KVILJOC	300°117A)		5°0-	-0.1

. .

N1C30.1	ہ ت						41006 IV	0.4400	г Ŧ	1.0	<b>J.</b> 6
60							4.00/ BLOCK 2-M	11.010	4 1	1.0	0.0
41006 JV	0.4400 	4 0.3537	-0.2	0.0	0.1	- 0 <b>-</b> у .					
1.000.N	гч Ф	56 <b>CF</b> 10 (		0.0	0'0	0-0 1	41000 PLOCK 2	11,000	:-। य	-0.1	0°0×
41037 BLOCK 2-A	000111	4 0.9395	-0-0-	C.O	0.0	0.0					
1 10		1 <u>10,399</u>		0°C	0.0	C.O	41005 BIOCK 2	000-11	ן. די	-0,1	-0.0
, 963 410	ξ 2 3.440C	ę 1.0113	-0.2	0.3	0.1	- 0.0	47(00) IV	0.4430		0.1	0.0
	ہ ا	2 6.4450		.0.0	0.0	0'5	41607 RIOCK 2-3	11.300	- 1 -42	1-0-	-0.0-
\$ NOOLE 20014	11.030	1 3,9999	-0,0-	Ú°U	0.0	0.0					
2 10		1 i0.999		J.C	0.0	C.O	000 HIAN NIT MEENE 00:7	000.11VI	4 1	-J.2	-0-0
000.	5 C					÷	VI3013 ZV	0.4430	μ	0.1	0.0
1. 20 ATODIA TO	6.JK7 (C		2 2	0			410011 BLOCK 3-2	11.000	.ा च	0.1	0.0
	1	± 4.9900 1 3.6391	1	0.0	0.0	- - - - - -	41909 TROOK 3	C 20. 11	4 I	-0.1	
1.00000 Alford: Bizers 3_r	οι ο Γ Έ		0 0	=	- - -	:					1
	Í	5555°0 V	P-0-	0.0	0.0	- 0,0					
0: T		10.538		0.0	0'0	0 7	(1009 PLOCK 3	1.100	ei V	1.0.	-0.0
0.980LK 416312 LV	у 3 С,4£00	/ L-311/	-D.1	9.0	0.1	e − 0.0	\$10012 I.V	01.400		C.1	0-J
cucta	ю П	1 0.4452		0.0	0.0	C.0 4	C.0 413011 BLOCK 3-8	1000	Г Ŧ	: "0-	-0.3
410013 SCIRS KV	11,000	100011	0.0	0.0	0 ⁻⁰	- 0'C					
4 1C		T 11-007		0.0	0.0	0.0	ACLE NATA NAL MARANA OCLE	300°TTA	 7	0.4	0.1

.

.

.

.

. i

e - 1

;

.

.

:

:

.

.

-

!

•

	1
	्र न म
	90 11
410014 30148 LV	WE KETOS EICDI C.D
. c	
: : 70 L	
. ट्रि	1 0.8012
0 1.1001.1 1.1001.2	1.00.00K

:

.

,

:





## SYSTEM STUDY ANALYSIS OF MIAN MIR LINE (MML) 500kW SOLAR PV SYSTEM

Report

ARCO Energy

PAKISTAN Tel: +92-300-8827101



## CONTENTS

	TIVE SUMMARY
1 UN1	TRODUCTION
<b>1</b> .1	Project Description
1.2	Interconnection Arrangement
1.3	Objective of System Study Analysis
1.4	Study Components
2 S <b>T</b> U	DY METHODOLOGY
2.1	Study Criteria
2.2	Steady State Analysis
2.2.	1 System Intact Analysis
2.2.	2 Transmission Line Loading Analysis
2.2.	3 Voltage Analysis
3 STF	RADY STATE ANALYSIS
3.1	Model Development
3.2	Power Flow Assessment Without MMD PP and with Sanctioned Load In Service 8
3.2.	1 Base Year 2025: Peak Loading Summer with Sanctioned Load in Service
3.3	Power Flow Assessment with MML PP
3.3.	1 Base Year 2025: Peak Loading Summer with Sanctioned Load In Service
3.4	Conclusion
4 CO)	NCLUSION
4.1	Steady State Assessment
UST OF	ANNEXURES





### EXECUTIVE SUMMARY

This report provides the 'documentation of an assessment that has been performed for the interconnection of a 500kW Solar PV Power Generation project at Mian Mir Line (MML) distribution system at 11kV project of "Military Engineering Services" (MES). The project will be a Grid tied 500kW Solar PV based system connected with the power network of MML. The '500kW MML solar PV Power Generation project' is located at Ground of 17 NLI / HQ 106 Bde North Mian Mir Line, Shami Rd, Cantt, Lahore, Pakistan.

The integration of solar power generation at the MML premises pecessitates a comprehensive system study analysis to ensure optimal operation of the electrical network. MML currently receives a single point supply from LESCO with a sanctioned load of 1.918MW. The introduction of solar power generation will influence the flow of electricity within the premises, impacting both consumption and injection dynamics.

The existing sctup includes transformers, switchgear, and distribution panels to distribute electricity throughout the premises. The sanctioned load of 1.918MW is the maximum load that can be drawn from LESCO's grid.

The entire solar generation within the MML premises will be consumed internally without exporting any power to the grid. To ensure the safe and efficient integration of solar power, a load flow study is required to analyze the impact of this interconnection on the existing electrical network. This study will assist in obtaining solar generation concurrence and ensuring compliance with relevant technical and regulatory requirements.

The analyses have been carried out in following scenarios;

- Without 500kW MML solar PV with sanctioned load in service.
- With 500kW MML solar PV with sanctioned load in service.

Steady state power flow assessment has been performed using the network data of MML. Power flow study was conducted without Solar Project with sanctioned load in service to analyze the magnitude and phase angles of bus voltages, line loadings and power flows under steady-state conditions. Power flow analysis was also conducted with sanctioned load in service after the interconnection of the Solar project with the MML distribution system. The power flow results for the system intact shows that



the power flows on all the MMI, transmission and distribution line branches are within their normal line loading limit. There is no capacity constraint in terms of power flow or voltage ratings within the study area.

This systems study is a critical step in obtaining solar generation concurrence for MMT. By ensuring the stability and teliability of the electrical system, the study facilitätes seemless solar power integration while maintaining compliance with MML and regulatory requirements.

Based on the study results, it is concluded that proposed generation interconnection assessment for 500kW MML solar PV Power Generation project meets the NEPRA grid code planning criteria.



## 1 INTRODUCTION

### 1.1 Project Description

This report provides the documentation of an assessment that has been performed by ARCO Energy in response to a request made by Mian Mir Line (MML) ("Project Owner" or "PO") for the interconnection of a 500kWp Solar PV Power Generation project ("Project") to the MML power System at 11kV.

The '500kW MML solar PV Power Generation project' is located at Ground of 17 NL / HQ 106 Bde North Mian Mir Line, Shami Rd, Cantt, Lahore, Pakistan, Figure 1.1 shows Google site map of the project.

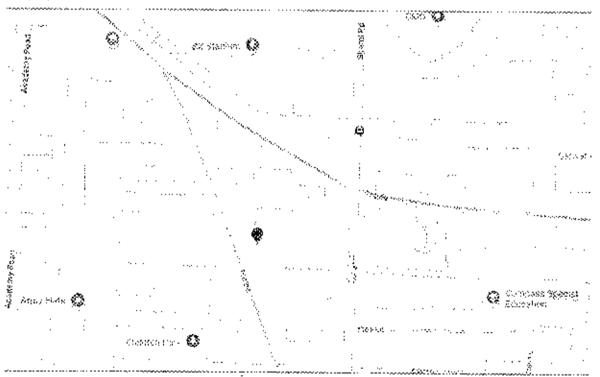



Figure 1.1: Google Site Map of the Solar PV Power Generation Project.



#### 1.2 Interconnection Arrangement

MML aims to integrate solar power generation into its existing electrical infrastructure. MML currently receives a single-point power supply from LESCO with a sanctioned load of 1.918MW. The entire solar generation within the MML premises will be consumed internally without exporting any power to the grid. The objective of the analyses is to evaluate the impact of the solar power plant on the MML transmission and distribution system.

### 1.3 Objective of System Study Analysis

The primary objectives of the load flow-study are: 1999 we

- To evaluate the impact of solar power injection on the voltage levels and power distribution within MML premises.
- To determine the changes in power flow patterns resulting from the integration of solar generation.
- To ensure that the existing electrical infrastructure can support the additional solar power without causing instability or operational issues.
- To verify compliance with regulatory requirements for solar power interconnection and obtain concurrence for solar generation.

### 1.4 Study Components

500kW solat PV system is modelled into the MML distribution system by ARCO Boergy. Technical analysis includes:

- i) Data gathering and modelling
- ii) Steady state analysis
- iii) Conclusion

The above scope of work involved in the technical analysis has been carried to demonstrate that connection assessment of this PV system meets the National Electric Power Regulatory Authority (NEPRA) distribution code.

The analyses have been carried out in following scenarios;

- Without 500kW MML solar PV with sanctioned load in service.
- With 500kW MML solar PV with sanctioned load in service.



This report documents the results of the steady state analyses. The principal objective of these analyses is to evaluate the impact of 500kW solar PV system to the distribution system of MML and vice versa.

5



## 2 STUDY METHODOLOGY

### 2.1 Study Criteria

The study has been carried out based on the National Electric Power Regulatory Authority (NEPRA) Grid Code planoing criteria. Key parameters and their corresponding limits have been summarized in table below.

Para	uncter	Range
Voltage Level	Normal Condition	±5 % p.u at 132kV and below 18%,-5% p.u at 220kVand above
	Contingency	±10 % p.u
T/Line Loading j	Normal Condition	100%
Capacity	Contingency	100%
	Nominal	50 Hz
Frequency	Normal Variation	49.8 Hz - 50.2 Hz
·.	Contingency Band	49.4 Hz - 50.5 IJz
Power Factor	Lagging	0.95
1.00001.001	Leading	0.95

#### 2.2 Steady State Analysis

The purpose of steady-state analysis is to analyse the impact of the proposed solar power plant on distribution system facilities under steady-state conditions. It involves two distinct analyses: line loading analysis and voltage analysis. Power flow solutions using the PSS/E® program (Version 33.4) has been performed.

A "study area" was defined to represent the areas of interest within MML.

#### 2.2.1 System Intact Analysis

The incremental impact of the project on substations and transmission line loading under normal conditions was evaluated by comparing transmission and distribution system power flows through different scenarios for the project.

#### 2.2.2 Transmission Line Loading Analysis

11kV and 0.4kV rated transmission and distribution facilities in the study area have been monitored for line loadings.



### 2.2.3 Voltage Analysis

Voltages at buses inside the study area have been monitored for possible for voltage violations in accordance with NEPRA Grid Code guidelines.



## 3 STEADY STATE ANALYSIS

#### 3.1 Model Development

Froject specific data was provided by the plant owner and it has been compiled and presented in **Annexure-A**. The steady state model of the power plant is presented in *t*able below:

Generator	
No. of Collector Units	<u> </u>
Genetation size of each collector (kVA)	421
Active Power of each collector Pgen. (kW)	400
Power Factor	0.95 lagging, 0.95 leading
Qruin, Qmax (kVAR)	-0.1315, 0.1315
Rated Frequency	50 Hz
Generation Voltage	0.8V
Xsource	χ
Gener	ation Step Up Transformer
No of Transformer	
kVA Capacity of each GSU	630
% Reactance (X)	5%
	Mian Mir Line
Sanctioned Load (LESCO)	1918 kW

Steady state power flow assessment has been performed using the network data of MML.

## 3.2 Power Flow Assessment Without MML PP and with Sanctioned Load In Service

Power flow study without MML solar and with sanctioned load in service, was conducted to analyze the magnitude and phase angles of bus voltages, line loadings and power flows under steady-state conditions.

The result of this power flow analysis is in Annexure-B.



# MIAN MIR LINE

#### 3.2.1 Base Year 2025: Peak Loading Summer with Sanctioned Load in Service

Power flow analysis has been performed on the peak loading summer (June) 2025 case of MML network. This base case included a detailed representation of the MML transmission and distribution system in the study area.

The steady state results, depicts that the power flows on all the MML distribution line branches are within their normal loading limits. There is no capacity constraint in terms of load flow or voltage ratings around the study area. Result of the power flow analysis is attached in **Figure B-1**.

#### 3.3 Power Flow Assessment with MML PP

Power flow study of MML solar project was conducted with sanctioned load (in service and out of service) to determine the reliability impact of the 500kW MML solar project on the MML distribution system. This includes the performance of load flow analysis to identify any facility overload or voltage condition that violates the NEPRA planning criteria. Any such violation that is either directly attributable to this project or for which it will have a shared responsibility is included in this report.

The results of the project power flow analysis are plotted in Annexure-B.

#### 3.3.1 Base Year 2025: Peak Loading Summer with Sanctioned Load In Service

A base case has been developed with sanctioned load in service at MML solar for peak loading summer ([une) 2025 that allow us to judge the impact of MML solar project on the MML network. Project power flow analysis has been performed after the connection of the project with the MML distribution system. This includes the detailed representation of the power plant.

The steady state result, with sanctioned load in service at MML solar depicts that the power flows on all the transmission line branches are within their normal loading limits. There is no capacity constraint in terms of load flow or voltage ratings around the study area.

Result of the power flow analysis is attached in Figure B-2.

The results of the project bus voltages analysis are attached in Annexure-C.

#### 3.4 Conclusion

Steady state power flow assessment has been performed. Power flow study was conducted without solar Project with sauctioned load in service to analyze the magnitude and phase angles of bus voltages, line loadings and power flows under steady-state conditions. Power flow analysis was also conducted



.1 .7

# MIAN MIR LINE

with sanctioned load in service after the interconnection of the Solar project with the MMI, distribution system. The power flow results for the system intact shows that the power flows on all the MMI, distribution line branches are within their normal line loading limit. There is no capacity constraint in terms of power flow or voltage ratings within the study area.



# MIAN MIR LINE

### 4 CONCLUSION

#### 4.1 Steady State Assessment

Steady state power flow assessment has been performed. Power flow study was conducted without MML solar with sanctioned load in service, to analyze the magnitude and phase angles of hus voltages, line loadings, and power flows under steady-state conditions. Power flow analysis was also conducted with MML solar and with sanctioned load in service with MML distribution system. Power flow results showed that the power flows on all the MML distribution branches are within their normal loading limit. There is no capacity constraint in terms of power flow or voltage ratings within the study area.

The steady state results found no capacity constraint in terms of power flow and voltage ranges.

Hence, it is concluded that based on the study results the Interconnection Assessment for 500kW Mian Mir Line solar PV system with MML Transmission and Distribution Network, meets the NEPRA grid code planning criteria.



# MIAN MIR LINE

### LIST OF ANNEXURES

Annex A: Project Specific Data.

Annex A-1: Project Site Map.

Annex A-2: Power Plant Data.

Annex B: Power Flow Steady State Analysis Result

Figure B-1: Base Year 2025 - Peak loading summer without MML solar and Sanctioned load in service.

Figure B-2: Base Year 2025 - Peak loading summer with MML solar and Sanctioned load in service.

Annex C: Assessment of Bus Voltages.

Annex C-1: Without MML solar and with Sanctioned Load In Service.

Annex C-2: With MML solar and with Sanctioned Load In Service.

# Annexure-A

Project Specific Data

# Annexure-A-1

Project Site Map

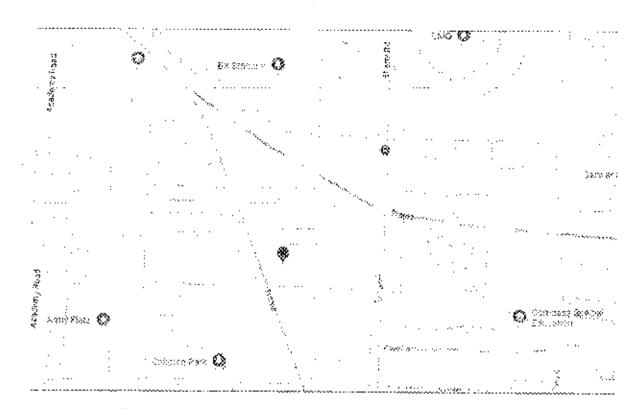
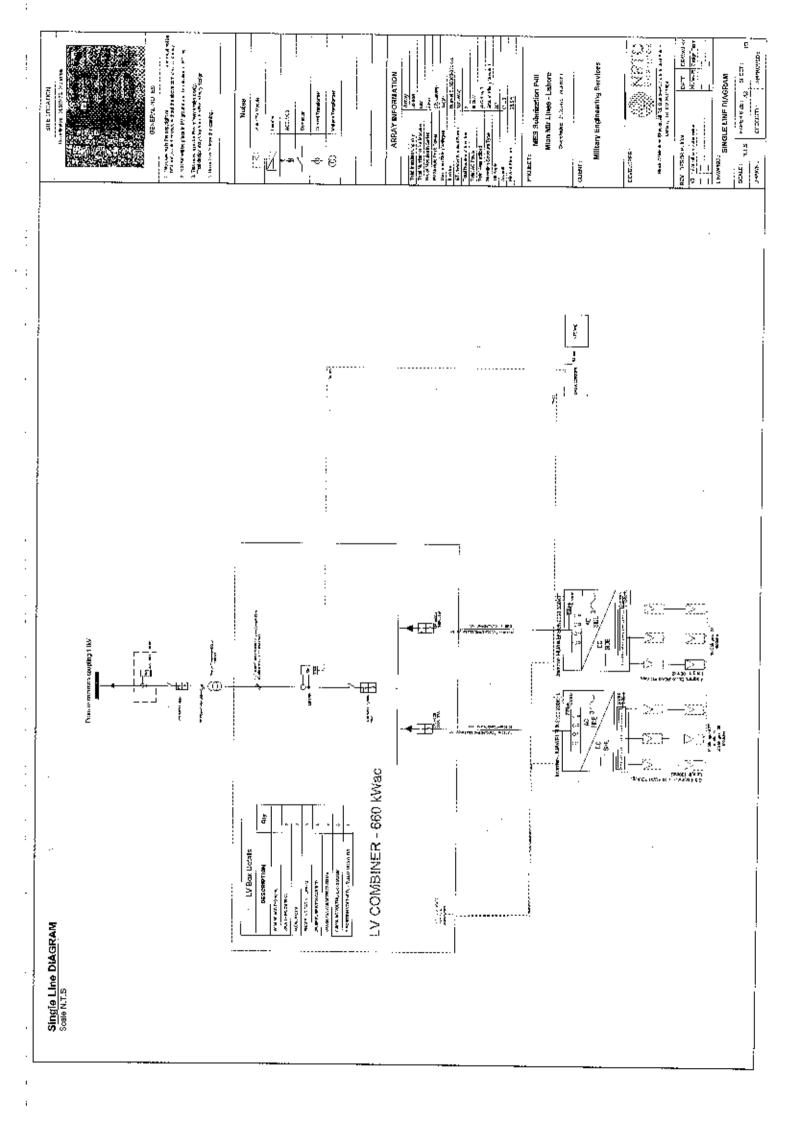
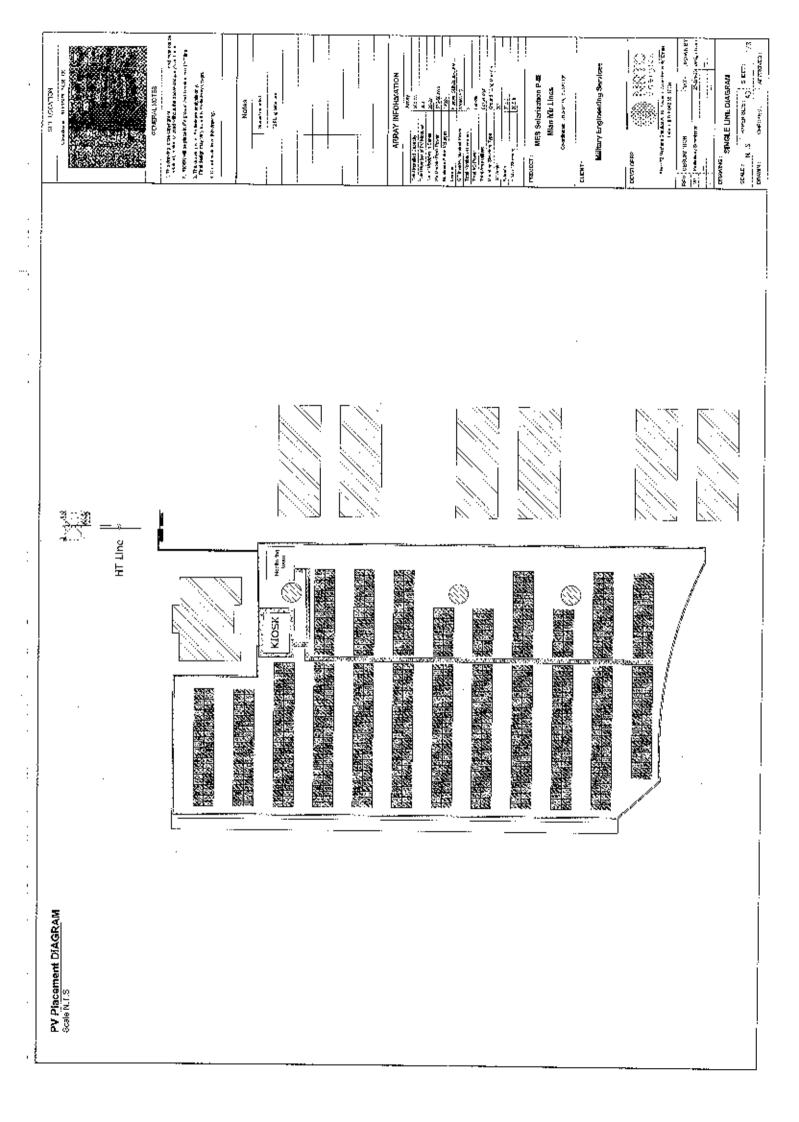
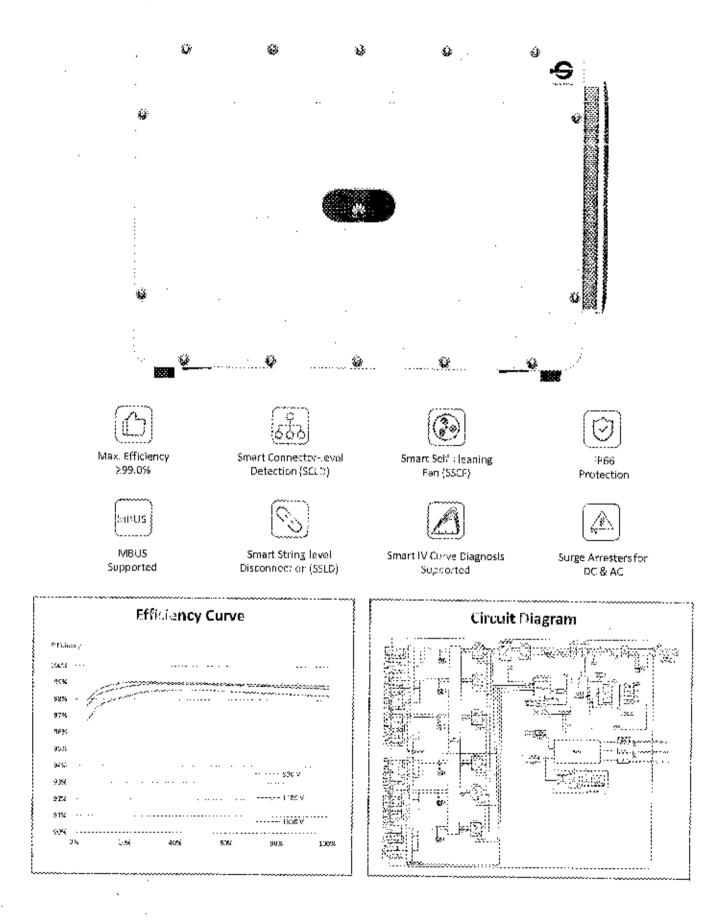





Figure 1.1: Google Site Map of the Solar PV Power Generation Project.

# Annexure-A-2


Power Plant Data





# SUN2000-330KTL-H1 Smart String Inverter

÷

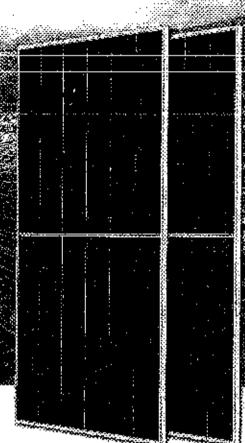


/ OLAK, RUAWFILCO 4

# sun2000-330ктьна Technical Specifications

	Efficiency		
≪ax. t.fflciency		≽99.0%	· · · · · · · · · · · · · · · · · · ·
Furopean Efficiency	· · · · · · · · · · · · · · · · · · ·	*98.8%	• • • • • • • • • • • • • • • • • • • •
	input		·
ivius, nput voitage		1,500 V	· · ·
Number of MPP Trackers		6	
Max. Current per MPPT	··· -···	 65 Λ	•••••••••••••••••••••••••••••••••••••••
Max. Short Circuit Current per MPPT	•	115 A	
Max. PV Inputs per MPPT		4/5/5/4/5/5	
Start Voltage	· · · ·		· ····· · ····
MPPT Opereting Voltage Kango	······	500 V ~ 1,500 V	
Nominal Input Voltage		1.080 V	
	Output		
Vortinal AC Active Power		300,000 W	
Max. AC Apparent Power		330,000 VA	
Max. AC Active Power (ccsib=1)	· - ·	330,000 W	
Nominal Only: 6 Voltage		800 V, 3W + PE	
Bated AC Stid Frequency		50 Hz / 50 Hz	
Manifal Output Current	· · · · · · · · · · · · · · · · · · ·	216.6 A	····· ·· ·· -·
Max. Output Current	· · · · · · · · · · · · · · · · · · ·	238.2 A	
Adjustable Power Factor Range		J.81.S 0.8 :D	· · · · · · · · · · ·
Teta, Harmonic Distortion	•••••••••••••••••••••••••••••••••••••••	<1%	
	Protection		····· · · · · ·
Smart String-Level Disconnector(SSLD)		¥ <del>a</del> s	
Anti-islanding Protection	• • • • • • • • •	- ··· ^{···} ·· ····· Yes	· •····
AC Overcurrent Protection		Yes	
DC Roverse-ac arity Protection	·····	····· ··· ··· ··· ··· ··· ··· ··· ···	
PV-a may String Fault Monitoring	· ····· ···		
DCS lage Arrester		ї≕ Турс I	······ ·····
AC Surge Arrester	· · · · · · · · ·	Υγρειί	··· <b>·</b> ····· · · · · · ·
DCInsulation Resistance Detection		Ýes	
AC Grounding Fault Protection		Yes	······
Residual Carrent Monitoring Unit			··· ··· · · · · ·
	Communication		
Disolay		.HD indicators, WSAN + APP	
_5B	·	Yes	···· ··· ··
MB05		Yes	
R5465		VG	
	General		
Dimensions (W × D x D)		0.048 x 732 x 395 mm	
Weight (with mounting place)		<112 kg	
Operating Temperature Range	······	-25°C~ey°C	···· <b>·</b> ···· ··
Cooling Method		Smart Air Cooling	
Max. Operating Actitude without Derating	·	4,000 ~ (13,123 ft.)	· · · ·
R≑lative Humidity	· · · · · · · ·	4,000 * (13,125 m.) C ~ 100%	
AC Connector	Wistow	roof Connector + OT/DT Te	erele si
Prolociion Degree	· · · · · · · · · · · · · · · · · · ·		111 Kud]
Тэроюду	······	P 65	
		l ransformerless	

# Harvest the Sunshme


# DEEPBLUE4.0

## 580W n-type Bifacial Double Glass High Efficiency Mono Module JAM72D40 555-580/GB 200

#### Introduction

Mono)

Power by the testes: SINBB n-type splar cell, half velicionitiquiation and gapiess about connection technistagi, these modules have higher adjust power, lower LID, better work Illuminiation response and better temperature discriticient.

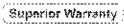




#### Higher power generation better LCOE



n-type with very Lower LID.




## Better weak illumination response



#### Better Temperature Coefficient

.



- 12-year product werranty.
- 30-yoar linear power output warranty.

---- ....



 n-type Bifacial Double Glass Module Linear Performance Womanty

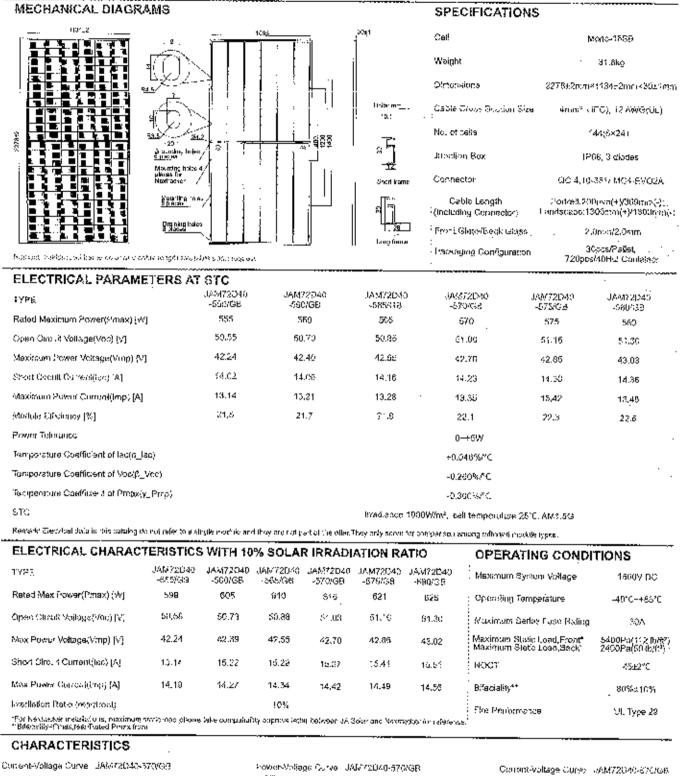


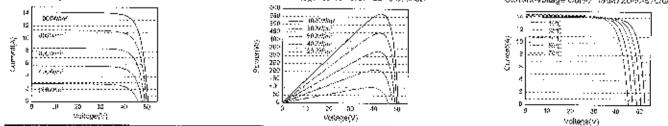
Standard Modula Great
 Parlonmance Warranty

### Comprehensive Certificates

- 350 61215, ISO 61730
- 350 800 (; 2015 Quality management systems)
- ISO 14001; 2015 Environmentel management systems
- ISO 46000; 2018 Occupational health and safety management systems
- IEC 62241: 2019 Perrostrial photovo(take (PV) modules -Quality system for PV module manufacturing




ମେଟେ ଅପରେ (ଏମର ) ଜନ୍ମ ମନ୍ଦ୍ର ଅପରେ ଅପରେ ସେପରେ ଅପରେ






# **JA**SOLAR

JAM72D40 555-580/GB





Premium Cells, Premium Modules

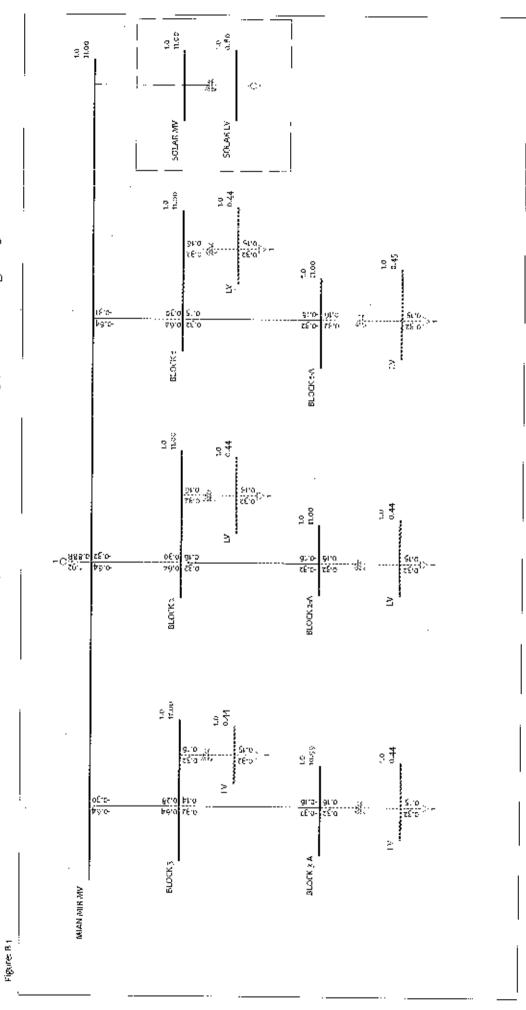
# Annexure-B

--

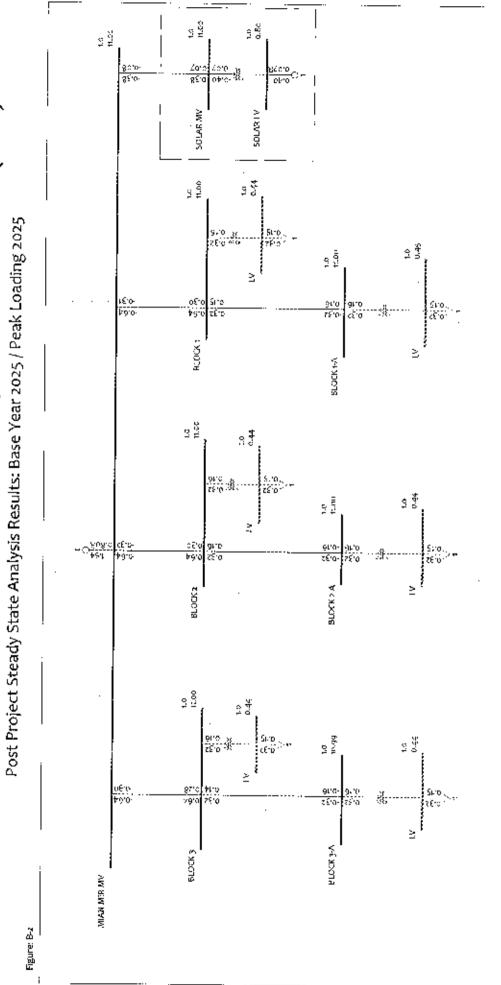
.

÷ ..

i


ł

.


Steady State Analysis Results

Load Flow Analysis of 500kW Solar PV System at Mian Mir (MM)





Load Flow Analysis of 500kW Solar PV System at Mian Mir (MM)



# Annexure-C

. . . .

Assessment of bus voltages

# Annexure-C-1

# Without MML PP and With Sanctioned Load

.

In Service

<pre>ER SYSTEM SIGUL LUAD STURT MW/MVAN MPP/EVAR 6.0 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0</pre>	C. C	ТИТЬ. ЛАСТТИК РОМЕR SYST FV SYSTEM АКЕЦЕ ММ/КУАЗ ММ/КУАЗ О.0 1.9 С.0 0.0 1.9 С.0 -0.0 0.0 -0.0 0.0 -0.6 0.0 0.0 -0.0 0.0 -0.0 0.0 -0.0 0.0 -0.0 0.0 -0.0 0.0		POWER SYST POWER	MER. SYST LUAD C. D C. D C. D C. D D C. D D C. D D C. D D C. D D C. D D C. D D C. D C C C C D C C D C C D C C D C C D C C D C C D C C D C C D C C D C C D C C D C C D C C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D D C D D C D D C D D C D D C D D C D D C D D C D D C D D D D D D D D D D D D D D D D D D D D	ER SYSTE NW/FVAS 6.0 0.3 0.3 0.3 0.3 0.3 0.0 0.3 0.3	SYSCEM V V V V V V V V V V V V V V V V V V V	10000000000000000000000000000000000000		03F53 (B) E BJS: X NV BJS: X NV BJS: X NV BJS: X NV BJS: X NV BJS: ALOCK BJS: ALOCK BJ	23 23 23 23 23 23 23 23 23 23 23 23 23 2	<pre>380., Even 15 %EVA FOR 1 % FCR 1 % FCR 1 .* FCR 1 .* ERSKY AXE 11.000 11.000 11.000 11.000 11.000 11.000 11.000 11.000 11.000 0.4400 0.4400</pre>	3AL, M. N. IS 2025 IVIIT         *EVA FOR THANSHOTMERS         *EVA FOR HOW-TRANSHOTMERS         * FCR BOW-TRANSHOTMERS         * ILLOUS       4         * ILLOUS       4         * ILLOUS       4         * ILLOU       4         * * 4000       5         * * 4000       6         * * 4000       6         * * 4000       6         * * 4000       6         * * 4000       6         * * 4000       0         * * 4000       0		тут. импаза мися симпаза мися симпаза мися симпаза мися симпаза мися симпаза мися симпаза мися симпаза мися симина мися сими
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	------------------------------------------	--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	--	-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	------------------------------------------------------------------------------------	-------------------------------------------------	----------------------------------------	--	----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	------------------------------------------	------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	--	---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

÷

•

.

:

·	0.2		< 1-		-0.2	0.2	د. ال: ا		-0-3	0.2	C.1		-0.2		-6.2	2.2	-0.2
			м 10- 1		с. 0-	0.3	- 6 - 0 -		э. -	0.3	C.3		Р, О- -		8-0- 1	0.3	-0.J
	.− <del>×</del>		. 1 N		Т Ŧ	Ч Т F	el QI		구	 7	ы ч		[ म		י. יט	4 1	∵1 10
	11,000		11.ÅCA		11.1000	C,4400	000-Li		000-11/	0.4400	11.000		11.000		11.000	0.4460	11,200
	4:007 RJOCK 2-A	3,0	2 X2012 30014 0.0	0.0	0.0 41005 BLOCE 2	410US ZV	2.0 41007 3100K 2-8	C.O	C.O 1100 MEAN MEER WULLCOO	A1 0:0010	M-C NOCLE 1.00.0	0.0 c.o	0.0 42005 BLOCK 3	3.0	OCK 3	(10312 LV 0.0	410011 NJOCK 3-3
	:	n. n	0.2	0.0	0.0	<b>ب</b>	 0.2	0.0	0.0			0.3	0.2	0-3	0.1	0.5	6 - D
	c c	0.0	0.0	ŋ.c	0.0	. 0.0	0.0	D.C	0.0			0.0	0.0	0.0	0.0	0.0	0.0
	ر ن	а. - О		-3,6		9 . 0 -		-J.C-				-0.6		0.0-		<b>F</b> ,0-	
	9800 V X	0 <b>7</b> 77,0 a	1 0,4377	4 0.9957	1 10,997			4 J.0306	309.AL I			4 0.9346	1 0.4376	\$656.0 \$	C66'), I	< 1.0089	1 0.4439
			2 2%	: 2-2 11.000		22 2 0.4460	22	: - - -		22 2		0.44.30	22 2	3 A 11.000		12 3 0.2400	
	4 - 20 A 100 A 100		N0000.I	41207 R.OCK 2-A	£ 1C	С.9381K 01018 ТV		41009 320CK 3		. 630	3 10	410010 TV	1.0000	410011 BLOCK	4 10	A. 21001 <del>1</del> Aleg.0	

•

.

•

.

# Annexure-C-2

# With MML PP and With Sanctioned Load In Service

2	MIAN NEER	ET LATERACTIVA PORAR SYSTEM SIMILATOR-F53(F)E Solar pu system	SYSTEM	Í				* 1 TOR B	TOR NON-TRANSFORMERS	A ALLA TATAN 1 KANSFORMERS HOS-TRANSFORMER ARANCHES	HONELE
X 2ROM RESX MIRANGRAZE PROFINE	ALLA	Theorem	æ	662	LOAD	SHUAT	XS	308	X		
NVWI E		915NA VX/74		N AVVA	ert/nvar mu/aumr	MA/MA/NK	RUSH X XHAN		asea cst	Sile	SAVA3
4.00 MIRN REEN RVII.000	ন্দ	1.0000 0.0		ī.5	0-0	0.0					
10	1 1.	000	0	0.SK	0-0	0'0	ALOGI BLOCK 1	111.500	Ţ ŗ	0.6'	0,3
0.7							2 MD02a 20013	300-11	7	1919 1	0.3
10							4100% RCCX 3	11-000	4 J	1.6	E'C
							410013 SOLAR MV	000101	4 1	-0.4	1.6-
4100. MUCK I 11.000	ნბტნ ე პ	0.0- 699		0.0	с.o	0°0,					
	10.	969	0	0-0	3.6	J.C	4100 MIRA RANG	000°17A4		-U. Ó	· • • • • • • • • • • • • • • • • • • •
1.0001K 22 2							41302 LV	0.4400	ب ب	0.U	0.2
							41003 BLOCK 1-A	0001.1	Г Ŧ	0.9	0.2
A'002 EV 0.6400	5°0'7	3.0- <u>0</u> ∔9		0.0	0.3	0 0					
1.300UN 22 2	810 0	820	5	0.0	0.2	0.6	1 XCOTE 10017	1.005		τ.υ-	6- <u>9</u> -
41003 BLOCK 1-A 21.000	4 0.3	933 -0°C		0.0	0.0	0.0					
-0 -	FCT T	598	C	0.0	0.3	0.0	£10018-100K-1	21.000	<b>-</b> ا יקי	-0.3	-0.2
0.975LK 22 2400 41004 LV 2.4400	4 1.32C£	2CS -J.6		0.0	0.3	0.0	41004 LV	3, 4403		0.3	G.2
1,8000M 22 2	10;4:01	103	C	0.0	5.5	0.0	41003 BUOCK 1-3	11.1000	L Å	-0.3	-0.2
41005 NLOCK 2 11.690	4 3.9397	0.0 <b>.</b> −C.0		0.0	0.3	0-0-					
	1 10.397	101	C	0.C	0.0	0.0	100 11292 NEW 9015	2011-004			:

·

÷.

.

.

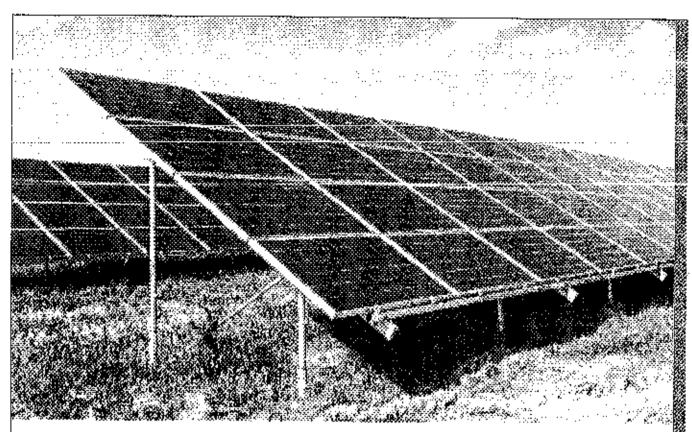
.

ć

.

.

	5.5	Z'D		-0.2		-0.2	G.7	-0.2			-0.3	C.7	Ú.1		-0.2		-0.2	0.2	-0.2		1.5
· ··	 0.3	C.3		.0.3		-0.3	с Г. С.				-D,6	£.3	510		с. о-		-0.3	0.3	ю <b>.</b> 0-		0, ¢
		- -		۲ ټ		7	. I V	- - -			 121	ר ל	<del></del>		4 J		۲ ۲	4 1	• 1 •8*		4 I
	J. €462	CD0.LI		11.030		000°1;	0.460	11.000			11.400	0.7460	030.II		000-11		11.0CJ	0.4430	.1.JOC		CC0.II
	41605 LV	4100/ 3700K Z-M		4100% N DOX 3		5 NOOLE SUOT	41008 IV	41(0)/ BLCCX 2-A			4100 MINN NEER MULLAGO	AT 0100.7	ALOUN RECONSERVENCE		41003 BLOCK 3		41005 BTACK 3	419012 _V	410011 BLOCK 3-A		COONTRAC MARK AVIL COO
		4 - 1	- 0.0	c.o	- 0':	J.C	۰ د			c.o	0'C	7		0'J	0.5	0.0	0.0	0.0 1	J.C 42	- c.0	0-0
		, (	5-0	0,0	0.0	0-C	n c	0.2		0.0	0.0			0.3	U.2	0.0	0.0	6.5	5.2	0.0	0.0
:			5-5	0.0	0.0	0.0	0 5	3 2 5 7 6		0.0	0.0			0-0	0-0	0.0	0.0	0.0	0.0	J.C	0.0
			9.7- -		0°0-		بر ح ا	2		-0.3				9.0-		0-0-		۳. ۱		0.0	
•			4 V.Y4X	1 0.4377	1990.0 2	10.937	31UJ . K			< 0.9996	362,01 1			4 Ù.3948	1 6.4376	4 0.9994	1 10.993	<pre>0.0039</pre>	1.8.4439	4 1.300;	100.11 I
	5 55			22 2	-A 11.000		22 2 0.4440	1	22 2	11.300		22		0,4400 	33	-7 11.000		12 3 0.4400	12 J	000111	
	1,0061.8	11 11 11 11		1.00003	41007 BLOCK 2-A	0.	- 388 410			42009 BLOOK 3	0: -	1.0001.K	31. E	41CJIC 14	1, COOCN	410011 BLOCK 3-7	A 10	U,9885K 410012 IV	HD:000 - 1	AN HW108 210015	ćI è


. .

5			
		-	
	0 4		
 +	<del></del> ' *		
 	000		· .
AE SOLAR SULAR	NR 342-00		
, 410014 , 0	0.6 4100.3 307AK MV		
0 2	0.0		
- -	ит.о		
°,0			
97 00'' 1	0 		
. L . L	-		
1.00016 SOLAR 2V 0	( ຟີ		
DS FLOCT MINUC			

.

.

:





# Mehfooz Shaheed Garrison

# SYSTEM STUDY ANALYSIS OF MEHFOOZ SHAHEED GARRISON (MSG) 500kW SOLAR PV SYSTEM

Report

ARCO Energy

**PAKISTAN** Tel: =92-300-8827101



## CONTENTS

	TIVE SUMMARY
1 IN.	TRODUCTION
1.1	Project Description
1.2	Interconnection Atrangement
1.3	Objective of System Study Analysis
1.4	Study Components
2 S17	DY METHODOLOGY
2.1	Study Criteria
2.2	Steady State Analysis
2.2.1	1 System Intact Analysis
2.2.2	2 Transmission Line Loading Analysis
2.2.3	3 Voltage Analysis
3 STE	ADY STATE ANALYSIS
3.1	Model Development
3.2	Power Flow Assessment Without MSG PP and with Sanctioned Load In Service
3.2.3	Base Year 2025: Peak Loading Summer with Sanctioned Load in Service
3.3	Power Flow Assessment with MSG PP
3.3.3	Base Year 2025: Peak Loading Summer with Sanctioned Load In Service
3.4	Conclusion
4 CO3	NCLUSION
4.1	Steady State Assessment
LIST OF	ANNEXURES



### EXECUTIVE SUMMARY

This report provides the documentation of an assessment that has been performed for the interconnection of a 500kW Solar PV Power Generation project at Mehfooz Shaheed Garrison (MSG) distribution system at 11kV project of "Military Engineering Services" (MES). The project will be a Grid tied 500kW Solar PV based system connected with the power network of MSG. The '500kW MSG solar PV Power Generation project' is located at GCWM+2G5, Aziz Bhatti Town, Lahore, Pakistan.

The integration of solar power generation at the MSG premises necessitates a comprehensive system study analysis to ensure optimal operation of the electrical network. MSG currently receives a single point supply from LESCO with a sanctioned load of 2.690MW. The introduction of solar power generation will influence the flow of electricity within the premises, impacting both consumption and injection dynamics.

The existing setup includes transformers, switchgcar, and distribution panels to distribute electricity throughout the premises. The sanctioned load of 2.690MW is the maximum load that can be drawn from LESCO's grid.

The entire solar generation within the MSG premises will be consumed internally without exporting any power to the grid. To ensure the safe and efficient integration of solar power, a load flow study is required to analyze the impact of this interconnection on the existing electrical network. This study will assist in obtaining solar generation concurrence and ensuring compliance with relevant technical and regulatory requirements.

The analyses have been carried out in following scenarios;

- Without 500kW MSG solar PV with sanctioned load in service.
- With 500kW MSG solar PV with sanctioned load in service.

Steady state power flow assessment has been performed using the network data of MSG. Power flow study was conducted without Solar Project with sanctioned load in service to analyze the magnitude and phase angles of bus voltages, line loadings and power flows under steady-state conditions. Power flow analysis was also conducted with sanctioned load in service after the interconnection of the Solar project with the MSG distribution system. The power flow results for the system intact shows that

1



the power flows on all the MSG transmission and distribution line branches are within their normal line loading limit. There is no capacity constraint in terms of power flow or voltage ratings within the study area.

This systems study is a critical step in obtaining solar generation concurrence for MSG. By ensuring the stability and reliability of the electrical system, the study facilitates scencless solar power integration while maintaining compliance with MSG and regulatory requirements.

Based on the study results, it is concluded that proposed generation interconnection assessment for 500kW MSG solar PV Power Generation project meets the NEPRA grid code planning criteria.



## **1** INTRODUCTION

#### 1.1 Project Description

This report provides the documentation of an assessment that has been performed by ARCO Energy in response to a request made by Mehfooz Shaheed Gatrison (MSG) ("Project Owner" or "PO") for the interconnection of a 500kWp Solar PV Power Generation project ("Project") to the MSG power System at 11kV.

The '500kW MSG solar PV Power Generation project' is located at GCWM+2G5, Aziz Bhatti Town, Labore, Pakistan. Figure 1.1 shows Google site map of the project.

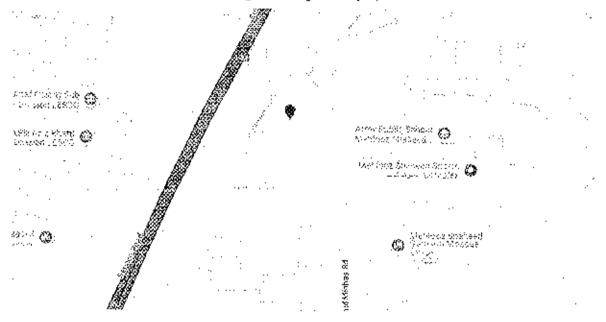



Figure 1.1: Google Site Map of the Solar PV Power Generation Project.



#### 1.2 Interconnection Arrangement

MSG aims to integrate solar power generation into its existing electrical infrastructure. MSG cuttently receives a single point power supply from LESCO with a sanctioned load of 2.690MW. The entire solar generation within the MSG premises will be consumed internally without exporting any power to the grid. The objective of the analyses is to evaluate the impact of the solar power plant on the MSG transmission and distribution system.

### 1.3 Objective of System Study Analysis

The primary objectives of the load flow study are:

- To evaluate the impact of solar power injection on the voltage levels and power distribution within MSG premises.
- To determine the changes in power flow patterns resulting from the integration of solar generation.
- To cosure that the existing electrical infrastructure can support the additional solar power without causing instability or operational issues.
- To verify compliance with regulatory requirements for solar power interconnection and obtain concurrence for solar generation.

#### 1.4 Study Components

500kW solar PV system is modelled into the MSG distribution system by ARCO Energy. Technical analysis includes:

- i) Data gathering and modelling
- it) Steady state analysis
- iii) Conclusion

The above scope of work involved in the technical analysis has been carried to demonstrate that connection assessment of this PV system meets the National Electric Power Regulatory Authority (NEPRA) distribution code.

The analyses have been carried out in following scenarios;

- Without 500kW MSG solar PV with sanctioned load in service.
- With 500kW MSG solar PV with sanctioned load in service.



This report documents the results of the steady state analyses. The principal objective of these analyses is to evaluate the impact of 500kW solar PV system to the distribution system of MSG and vice versa.



### 2 STUDY METHODOLOGY

#### 2.1 Study Criteria

The study has been carried out based on the National Electric Power Regulatory Authority (NEPRA) Grid Code planning criteria. Key parameters and their corresponding limits have been summarized in table below.

Par	ameter	Range
Voltage Level	Normal Condition	±5 % p.u at 1.32kV and below +8%, 5% p.u at 220kVand above
	Contingency	10 % p.u
T/Line Loading	Normal Condition	100%
Capacity	Contingency	
	Nominal	50 112
Frequency	Normal Variation	49.8 Hz - 50.2 Hz
	Contingency Band	49.4 Hz - 50.5 Hz
Power Factor	Lagging	0.95
Tower Pactor	Leading	0.95

#### 2.2 Steady State Analysis

The purpose of steady-state analysis is to analyse the impact of the proposed solar power plant on distribution system facilities under steady-state conditions. It involves two distinct analyses: line loading analysis and voltage analysis. Power flow solutions using the PSS/E® program (Version 33.4) has been performed.

A "study atea" was defined to represent the areas of interest within MSG.

#### 2.2.1 System Intact Analysis

The incremental impact of the project on substations and transmission line loading under normal conditions was evaluated by comparing transmission and distribution system power flows through different scenarios for the project.

#### 2.2.2 Transmission Line Loading Analysis

11kV and 0.4kV rated transmission and distribution facilities in the study area have been monitored for line loadings.



### 2.2.3 Voltage Analysis

Voltages at buses inside the study area have been monitored for possible for voltage violations in accordance with NEPRA Grid Code guidelines.

• · · · • · · · ·



### **3 STEADY STATE ANALYSIS**

#### 3.1 Model Development

Project specific data was provided by the plant owner and it has been compiled and presented in **Annexure-A**. The steady state model of the power plant is presented in table below:

	Generator
No. of Collector Units	<u> </u>
Generation size of each collector (kVA)	421
Active Power of cach collector Pgen. (kW)	400
Power Factor	0.95 lagging, 0.95 leading
Qinin, Qinax (kVAR)	0.1315, 0.1315
Rated Frequency	50 Hz
Generation Voltage	0.8V
Xsource	
Genera	tion Step Up Transformer
No of Transformet	1
kVA Capacity of each GSU	630
% Reactance (X)	5%
Mehf	fooz Shahced Garrison
Sanctioned Load (LESCO)	2690 kW

Steady state power flow assessment has been performed using the network data of MSG.

## 3.2 Power Flow Assessment Without MSG PP and with Sanctioned Load In Service

Power flow study without MSG solar and with sanctioned load in service, was conducted to analyze the magnitude and phase angles of bus voltages, line loadings and power flows under steady-state conditions.

The result of this power flow analysis is in Annexure-B.



### 3.2.1 Base Year 2025: Peak Loading Summer with Sanctioned Load in Service

Power flow analysis has been performed on the peak loading summer (June) 2025 case of MSG network. This base case included a detailed representation of the MSG transmission and distribution system in the study area.

The steady state results, depicts that the power flows on all the MSG distribution line branches are within their normal loading limits. There is no capacity constraint in terms of load flow or voltage tatings around the study area. Result of the power flow analysis is attached in Figure B-1.

#### 3.3 Power Flow Assessment with MSG PP

Power flow study of MSG solar project was conducted with sanctioned load (in service and out of service) to determine the reliability impact of the 500kW MSG solar project on the MSG distribution system. This includes the performance of load flow analysis to identify any facility overload or voltage condition that violates the NEPRA planning criteria. Any such violation that is either directly attributable to this project or for which it will have a shared responsibility is included in this report.

The results of the project power flow analysis are plotted in Annexure-B.

### 3.3.1 Base Year 2025: Peak Loading Summer with Sanctioned Load In Service

A base case has been developed with sanctioned load in service at MSG solar for peak loading summer (June) 2025 that allow us to judge the impact of MSG solar project on the MSG network.

Project power flow analysis has been performed after the connection of the project with the MSG distribution system. This includes the detailed representation of the power plant.

The steady state result, with sanctioned load in service at MSG solar depicts that the power flows on all the transmission line branches are within their normal loading limits. There is no capacity constraint in terms of load flow or voltage ratings around the study area.

Result of the power flow analysis is attached in Figure B-2.

The results of the project bus voltages analysis are attached in Annexure-C.

#### 3.4 Conclusion

Steady state power flow assessment has been performed. Power flow study was conducted without solar Project with sanctioned load in service to analyze the magnitude and phase angles of bus voltages, line loadings and power flows under steady state conditions. Power flow analysis was also conducted



## Mehfooz Shaheed Garrison

with sanctioned load in service after the interconnection of the Solar project with the MSG distribution system. The power flow results for the system intact shows that the power flows on all the MSG distribution line branches are within their normal line loading limit. There is no capacity constraint in terms of power flow or voltage ratings within the study area.

Sector Contractor

10



### 4 CONCLUSION

### 4.1 Steady State Assessment

Steady state power flow assessment has been performed. Power flow study was conducted without MSG solar with sanctioned load in service, to analyze the magnitude and phase angles of bus voltages, line loadings, and power flows under steady-state conditions. Power flow analysis was also conducted with MSG solar and with sanctioned load in service with MSG distribution system. Power flow results showed that the power flows on all the MSG distribution branches are within their normal loading limit. There is no capacity constraint in terms of power flow of voltage ratings within the study area.

The steady state results found no capacity constraint in terms of power flow and voltage ranges.

Hence, it is concluded that based on the study results the Interconnection Assessment for 500kW Mehfooz Shaheed Garrison solar PV system with MSG Transmission and Distribution Network, meets the NEPRA grid code planning criteria.



### LIST OF ANNEXURES

Annex A: Project Specific Data.

Annex A-1: Project Site Map

Annex A-2: Power Plant Data.

Annex B: Power Flow Steady State Analysis Result.

Figure B-1: Base Year 2025 - Peak loading summer without MSG solar and Sanctioned load in service.

Figure B-2: Base Year 2025 - Peak loading summer with MSG solar and Sanctioned load in service.

Annex C: Assessment of Bus Voltages.

Annex C-1: Without MSG solar and with Sanctioned Load In Service.

Annex C-2; With MSG solar and with Sanctioned Load In Service.

## Annexure-A

Project Specific Data

## Annexure-A-1

. .

Project Site Map

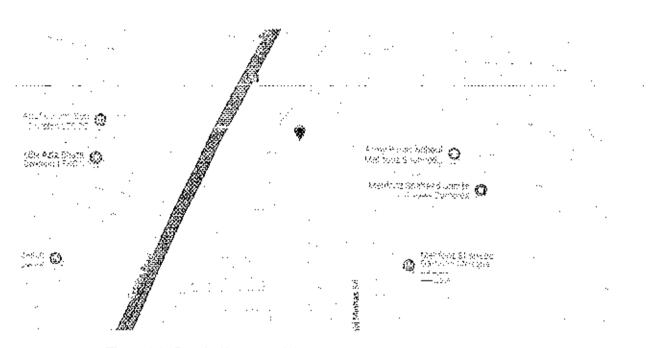
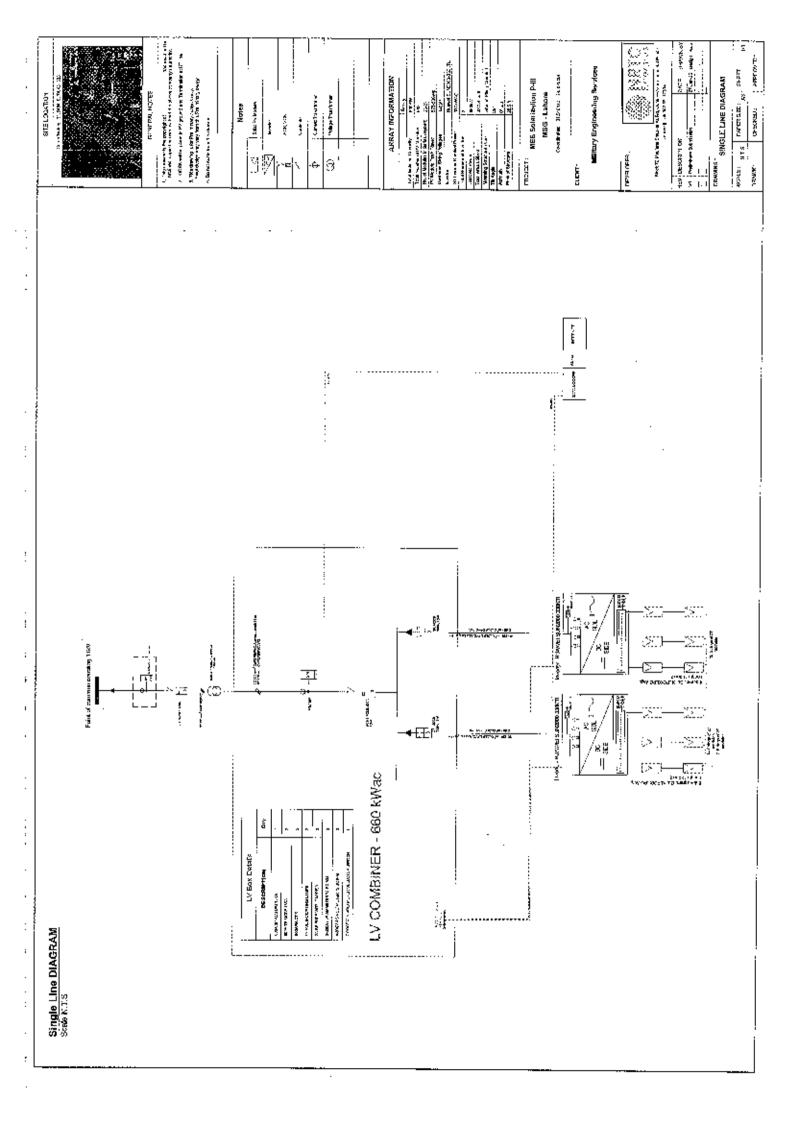
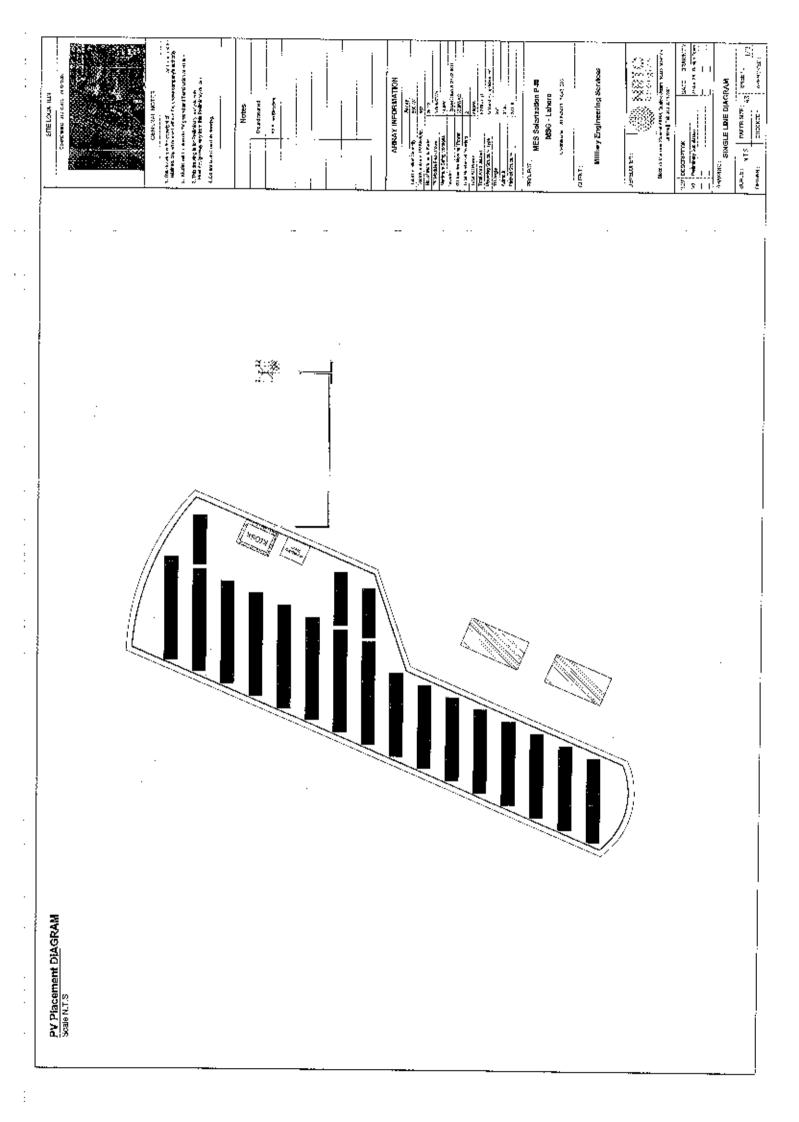



Figure 1.1: Google Site Map of the Solar PV Power Generation Project.

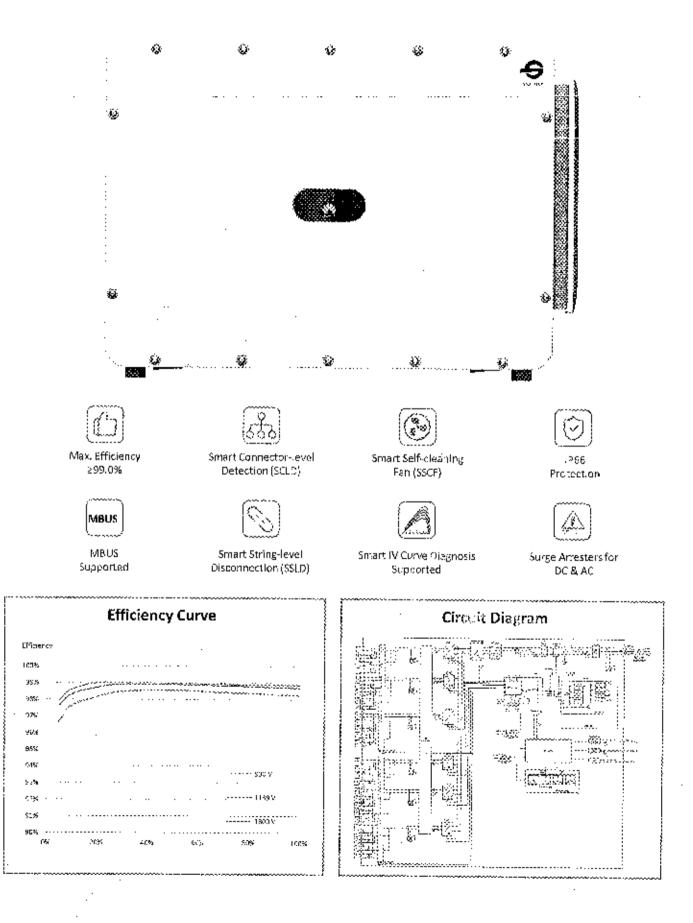
•

## Annexure-A-2


-


-

i


. .

Power Plant Data





### SUN2000-330KTL-H1 Smart String Inverter



SOLAR HUAWS LCOV

### sun2000-ззоктьна Technical Specifications

	Efficiency		
Max. Efficiency	· · · · · · · · · · · · · · · · · · ·	3\$9.0%	
European Hiffolondy		253.8%	• •
······	Input		···· • ·
Mox, Inpu: Voltage		1.500 V	
Number of MPP Trackers			
Мах Сиггелт рег МРР"		• •• • •••	•••
· · · · · · · · · · · · · · · · · · ·		- 65 /	
Miss, Short Certair Carren, per MPPT		: 15 A	
Msx. PV inputs per MPPT		4/5/3/4/%/2	
Start Voltage		550 Y	
MPPT Operating Voltage Range		500 V ~ 1,500 V	
Vominal riput Vollage		1.080 V	
•	Oulput		
Nominal AC Active Power		300,000 W	•••••••••••
Max, AC Apparent Power		330,000 VA	
Max. AC Active Power (content)		530,000 W	· · · · · · · · ·
Nominal Output Vollage		300 V, 3W ÷ PE	
Rated AL Grid Frequency			
Nomina: Output Current		50 - x / 60 Hz	· · · · · · · ·
		216.6 A	
Max. Output Current		238-2 A	
Acjustable Power Factor Range		08LG 08LD	
Total Hardronic Distortion		<1%	
	Protection		· · · · · ·
Smart String-Level Disconnector(SSLD)		Yes	
Anti-Islanding Protection		Yes	
AC Overcorrent Protection		⁹ ся	
DC Reverse polarity Protection		Yes	· ····· ···· ··· ···
PV-array String , ault Monitoring		Yes	····· · · · · · · · · · · · · · · · ·
DC Surge Arrestor		Type I'	
AC Surge Arrester			· · · · · ·
DC Insulation Resistance Detection		Type II	
AC Grounding Fault Protection		¥25	
· ··· · · · · · · · · · · · · · · · ·		Yes	
Residual Current Monitoring Unit		Yes	
	Communication	·	
С ярау		ED Indicators, WIAN + AP;	s · · · · · · · · · · · ·
		Yes	
MBUS		¥cs	
K\$485		Yes	
	General		
Dimensions (Wix Hix #)		1.048 × 732 × 395 mm	
Weight (with mounting plate)		5112 kg	
Operating Temperature Range		-25 °C ~ 60 °C	
Cooling Method			
në e nënë e e sa		Smart Air Cooling	
Mox. Operating Altitude without Derating		4,000 m (13,123 ft.)	<b>.</b>
Relative Humidity		C ~ 100%	
AC Connector	Walerp	toof Connector + CT/DT Te	
Protection Degree		IP 65	
· · · · · · · · · · · · · · · · · · ·			

:

• :--

.

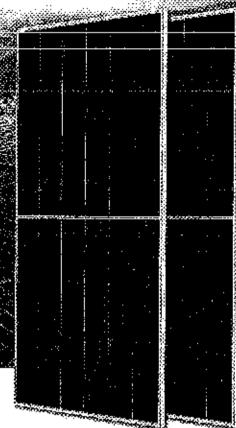
:

:

:

i

### Harvest the Sunshine


## DEEP BLUE 4.0

Nono

80W n-type Bifacial Double Glass High Efficiency Mono Module JAM72D40 555-580/GB

### Introduction

Power by the lastest SMBG n-type solar cell, heli-cell configuration and hapless ubbah connocativitechnology, these control have higher cellput power, lower EHD botte: waak illuminetion response? and better temparature preficient.





Higher power generation better £COE



n-type with very Lower LID.



Better weak illumination response



Better Temperature Coefficient

### Superior Warranty

- 12-year product wasterity.
- 30-year linear power cuppt warrany.



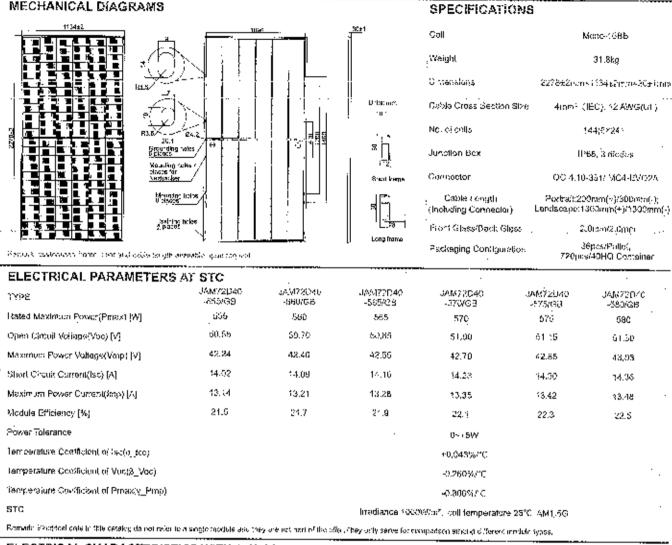
- n-type Briecial Double Glass Module 25 Under Performance Warrapty
- Standard Module Lines; Pedomatics Wairanty

### Comprehensive Certificates

- (ED 81245, ED 61793)
- ISO 9001; 2015 Quality management systems.
- ISO 14001: 2015 Etw)commental management systems.
- ISO 45001: 3018 Occupational health and satety management eystems
- #EC 62943: 2018 Terrestriel photovolfals (PV) motivies -Quality system for PV module manufacturing

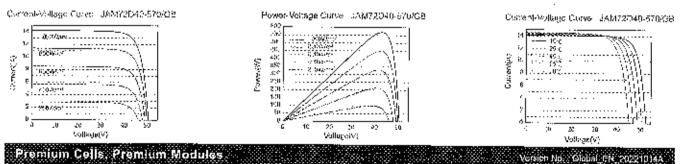





WWW. asolation



### **JA** SOLAR


#### **MECHANICAL DIAGRAMS**

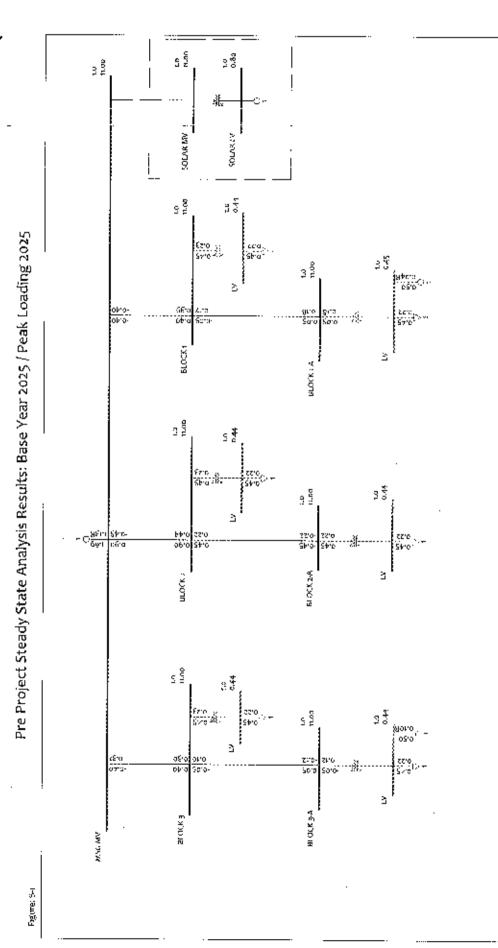
JAM72D40 555-580/GB



ELECTRICAL CHARAC	TERISTICS	S WITH 10	1% SOLA	R IRRADI	ATION R/	атю	OPERATING COND	ITIONS
TYPE	JAW872540 -555/GB	34M/2D40 -860/68	↓AM72つ40 +665/GB	JAM72D40 -570/GB	JAM72D40 575/33	JAN(72040 -580/GB	Maximum System Voltage	1500V DC
Rated Max Power(Perax) [W]	509	805	e10	616	621	628 -	Operating Temporature	-40°C~+85°C
Open Circuit Voltage(Ves) (V)	50.58	30.75	50,68	51.03	51.16	51,80	Maximum Sories Fusa Rating	ACK.
Max Power Vollage(Vorpi (V)	42.24	42.3\$	42.55	42.70	42.88	53.0Z	Maximum Static Losd, Fresh Maximum Static Coad, Back	5400Pe(112 lb(9) 2400Pe(50 lb(9)
Sheri Ginad Garen((so) [A]	5.14	16,23	15.29	15.37	15 44	15.51	NOOT	46-300
Max Power Correns(Imc) [A]	14.19	14.27	54.86	14/42	14.42	\$4.56	Séarciali(y**	80%±10%
Interligition Ratio (rear/front)			10%				Fite Performance	UL 1990-29
"For Nexima or Instatelions, costic un ""Difecicily: "Pous, cost-Reicel Proce, ac	i susko koad pierrok XI	lavo serges (d	išy opulova lato	e between JA S	Soliar qha Nextr.	seker für jofenen.		ore yar ga

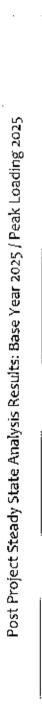
#### **CHARACTERISTICS**

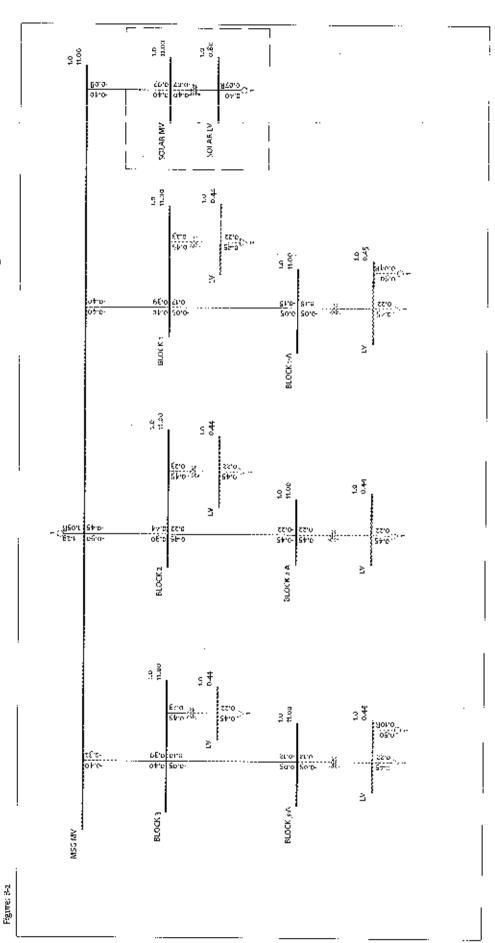



### Annexure-B

. .

.


Steady State Analysis Results


Load Flow Analysis of 500kW Solar PV System at Mehfooz Shaheed Garrison (MSG)



-

Load Flow Analysis of 500kW Solar PV System at Mehfooz Shaheed Garison (MSG)





F

## Annexure-C

Assessment of bus voltages

### Annexure-C-1

. .

_.

.

.

-

..

.

## Without MSG PP and With Sanctioned Load In Service

2

SAT, FEATE 2025 17:20 SMVN FOR TRANSFORMERS % I FOL NOA-TRANSTORMER' BRANCHES 9 ° ¢ J. 4 0.0 0.2 7.5 9 C.2 --0.13 -0.2 9 0.2 -0,2 NVAR 9°6 6.6 9°€ 0,4 4.0--0.1 0.5 ¥-0. -0° 0.4 -0.1 5 h OKT - -1 ÷ н . _ . × NRME --- X RANNA ARAN <del>st</del> ÷ ÷ ъ. ., . T শ ., ÷ - . . 42  $\sim$ 000.11 11.000 11.600 11.1000 0.4400 000111 11.000 0.6460 11.000 11.030 11,300 3.4400 İ 202,02 ¢1003 3DOCK 1-A 0.0 42003 81.00% .-8 ıH 41005 BLCCX 2 75 . . н 4100 NSG MV 4100 PSG W PTI INTERACTIVE PONEM SYNTHM SIMULATOR--PSS(R)E NSO SOLAR IV SYSYEN 0.0 41001 BLCCK 4.003 PROCX MOCIE (CUT) BLOCX | |×| 41032 IV AI \$COLY 41000 I.V 3U3# 41001 į × 1 i ł 0.0 0.0 MW/NYAR MW/WAR MW/MVAR. 0.J 3 0.0 0.0 о.с 0.0 0.0 0.0 SERVIT 0.0 0.0 0.0 0.0 0.2 0. 0 ۲. 0 ې 0 0.0 с С 0.0 4.0 0.000 JII. I 10.04 1.7 0.5 0.0 0'0 0.0 9-12 0-12 0.0 0.0 0.0 0.0 GEN. ENERG 0 0 0.0 9'U-1.5 с. Р 0.0-BUS# X-- NAMM --X NASKV ZONE PU/XV 4 0.9999 4 1.0000 4 0.9329 00011.1 9856.0 5 4 0,9596 1 10.998 L 0.4369 4610.1 b 10.596 VCLT 10.990 1 0.4483 ·····X AREA 11.600 0,4400 21,300 11.000 0,4430 11.003 с (  $\sim$ ¢? (N οı A 1120 M CNITAR 3 넑 r-i Fri 엌 ģ Z----- 2ROM 2D2 55 41003 NLOCK 1-A . 41001 NUCCE 1 οı 4100 KSC MV FIGLE 41005 BLOCK TTEMNSPORMUR 41002 LV 41004 LV R Н, e, Ц Э 0 X100011 S 1.00.00% 0.9751.K 1,00001 1.00CLK ! RATIO 3 Ê φ ŝ ى N \$

:

:-

. 1

¢.	ų		9		5	0.2		ц.		en en	7	г		N.			-	÷
	•		č.0-		-0.2	õ		13 12 1		e.0-	0.2	0.1		-0.2		0-1	1.0	1-0-
5 1			ў.С-		-0.4	•••		-0.4		0. ć	0.4	-0.1		-0,4		0.7	0 -	0.1
- -			4 I		ד	ľ V		~		4 I	і т	 घ		•		4	4 J	. I V
000 11	000-11		11.000		0001.1	0.4400		100.11		000.11	0.47.00	11.600		1.300		11,030	0,440	00011.
47 (AT BLOCK 2-2			6.0 4'005 RUDCY 2	ι.,Ω	U.O 410U3 BLOCK 2	VI 80019	J.C	0.0 41007 3300K 2-A	0.3	VA 250 00.7 0.0	410010 IV	410011 BLOCK 3-A	n.0	0.0 41039 PIOCK 3	0.8	0.0 41105 BLCCK 3	413012 JV 5.6	0.6 410011 BIOCK 3-A
		0.4	0.2	0°0	0.0		3.6	a. 2	0.3	0.0			C.J	2.5	0.0	0.0	С. З	0.2
		0.1	0.3	0.0	0.0		0.0	0-0	0°0	3.5			0.0	0.0	0.0	0.0	0.5	U, IR
		-0.9		0.0-			-0.8		-6. C				-0.8		-6.0		0.1	
		4 0,3926	1 0,4367	4 0.399 <i>8</i>	1 1C.506		£ 1.0033	÷	4 3.5996	1 10.39£			0.9627	: C.1368	4 3.9996	1 10.995	é 1.0099	에 역 역 10 20
		ח. קוסה. 	er Tř	0.2-A 11-000		r Tr	() ¢4	31 2	3 12,030			5 T	0.4400		3~5 12.000		4 3 0.4463	
	5 10	41006 LV	1.00007	41007 BLOOK 2-A	5 10	0.998 <u>5</u> 8	41033 LV	NL-30C.1	41009 3LOCN			1, 100 March	ر 10014 v	NF005'T	ALOCIL ALOCK 344	1 10	6,988_K 410012 5V	1. 300 UR

.

. .

.

•

### Annexure-C-2

## With MSG PP and With Sanctioned Load In Service

:

								İ											
2HONFE		M/AR		C. A	6.4	0.3			1.0	0.2	0.2		2'R		-0-2	0.2	-0.2		-0.5
- 		1915		0.4	6-0	0.A	ÿ°C-		-0.4	٥.٦	-0.1		5.0.		0	-0.1	C. 1	!	0°C-
2025 24757 (84-1167	×X	EN CKT		. 7	en su	÷.	4 1		Ц т	Г Ŧ	1-1 121		ŕ		Ч Т		ا ، ال		4 1
АА <i>Р, -</i> КА 15 КАР, - КА 15 КОМ - Т		NAKK HEX BASAV AREA CKT		:T.000	11,000	C00'II	11,000		11,000	0,4400	00C'L.		11.0CD		11, 000	C.440C	11.000		11.030
NECSAHOLWICKIS WELSAS ENGOD ANLLOVMART FLA	S09 05	EUS# X NAMK ···		[ 300 € 10017	41005 RIGOK 2	41000 3TOOK 3	410013 SOLAR MV		VM 400 COLV	4:002 FW	41003 BLOCK 1-7		410(4 300CK 1		1001 BLOCK ;	¢1.004 i.V	41003 BLOCK 1-0		VM 82M 0019
LYTICIS (	SHUNT X-	R/MVBR	0'C	0.0	~	~	12	0,0	0.0	~	4	0.0	0.1 4	0,0	C.O 4	0.0 	0.J 4	0.0	0.0
ABTEVE ST	LORD	ai/nurr n	0.C	3.5				0.0	0.0			j.t	0.2	0.0	0-0	2.4	0.2	Û-Û	0.0
	(ULL)	ra/war ra/wer ra/wer	1.3	1.1R				0.0	0.0			0.0	0.0	0.0	0.0	5' J	U, GR	0.0	0.0
MELSAS AL OVERLAT TLA		A' ĐKV	0.0					-0.0				8-0- -0-		-0,1		1.'U		0.0-	
S AL ACIOS SSN Tha	SAOV AE	NE PO/KV	4 1.000C	1, 11,000				6068.0 F	1 IC.998			4 8,9920	1 J.4369	4 0.3958	1 IC.998	4 1.0139	1 J.(483	€ 0.3958	556'JI [
595	1308X AKSA RATING	NUSL Y NAMEX BASKY CONE 210 ANGLEX BASKY CONE	11,003					1, 300		Ŀ.		0.4450	ž: 2	I-A 21,500		12 2 0.4400	12 2	1.300	
	X FROM 2US TRANSFORMEN	NUS, Y NM RATIO ANGLE	4130 KSS MV	- - -	c	-	0 T C	41201 BLCCK 1		000	· · ·	10	MU200.1	41003 Bu(XCK 1-3.	2 10	27.5	1.000Uk	41005 BIOCK 2	0T Q.

. .

.

: .

. .

	0.2	с. Ц	-0.2	2	0 9		6.0-	0.2	0.1	-0.2		-0.1	[.]	0.5		0.1
· ·	. <b>4</b> . . 4	י. דייק - דייק -	 		0.1	-	F-0-	5.4	• n. 1	. <b>テ</b> ゙i)-		0.1	-0.1	J.J		0.4
	ાન પ્ ચાર્યો	rei VI	 		1 1		 7	. 1 21	يد 	- ~		21 24	. ا. الا	4 1		<del></del> च
	0.4400 11.300	21.003	011.050 0440		11,000		11.000	0.€403	11.000	12.600		11.300	n. 4460 	11,000		11.000
	41635 LV 41637 Alock 2-A	0.0 41605 3200K 2	0.3 41305 BLCCX 2 47609 577		0.0 40007 BLOCK 2-R	3.6	0.C 4100 MSG MV	A1 000.5	(1001) TOOTK 3-A	0.0 41008 BLOCK 3	G.C	J.C 41039 BLOCK 3	¢.0	. v-£ ⊁0079 IL001€ 0°0	C.Ū	n.o 4100 NGC MV
		د. م.م م.م	0.0	0.4	0.2	0.0	0°C		0.4	0.2	0.0	0'C	0.4	0.2	0.0	0.0
!	0	0.0 0.0	J.C	0.0	0.0	0.0	0.0		3.6	0.0	0.0	0.0	3,5	0.14	0.0	0.0
	e	ບ ລັ ວິດ 		-0 <b>.</b> 8		0.0-			-3.0		0.0		0.1		0.0	
:		1 0.436/ 1 0.436/ 4 0.496	1 10.396	4 1.0053	1 (.4424	4 C.9996	10.096		4 0.937	1 0.4368	< 0.9996	10, 995	4 I.3099	1 0.44/4	1.00J1 4	100,11 2
-	7 500 0 15	17		31 2 0.4400	31. 2	× 3 11.000		31 2	00,4400	31 2	К 3-№ 11.00С		€ 3 C,4€00	(1	NV 11.000	
	1.000TX 50	1.0000N 3400K 2-A	0F . u:	л.9881.К VI BOUL <del>A</del> 	1.00001	41003 NLOCX 3	ې : د	. JOC -	1 10 €10010 LV	1.000UX	410011 Nr.CCK 3-A	0:	0.3881K 410U12 LV		412013 SOLAR MV	ा . । स

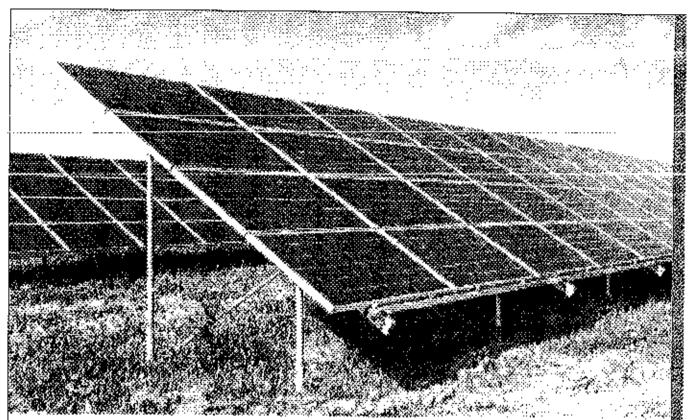
.

.

:

.

!


	· · · · · · · · · · · · · · · · · · ·
	न र
C.308.0	
	VA 1.912 SC101 0.0
0.0	
9. D	0 T K
0.5	
¢ 1,0015	1 G. SF '2
. <u>64</u> 1 V 8000	ت. ت
יאי איז איז איז איז איז איז איז איז איז	NDOUU"
	·

.

.

÷

Annex - J





## **Okara Cantt**

## SYSTEM STUDY ANALYSIS OF OKARA CANTT (OC) 999kW SOLAR PV SYSTEM

Report

ARCO Energy

PAKISTAN Tel: +92-300-8827101



### CONTENTS

EXECUTIVE SUMMARY
1 INTRODUCTION
1.1 Project Description
1.2 Interconnection Arrangement
1.3 Objective of System Study Analysis
1.4 Study Components
2 STUDY METHODOLOGY
2.1 Study Criteria
2.2 Steady State Analysis
2.2.1 System Intact Analysis
2.2.2 Transmission Line Loading Analysis
2.2.3 Voltage Analysis
3 STEADY STATE ANALYSIS 8
3.1 Model Development
3.2 Power Flow Assessment Without Okara Cantt PP and with Sanctioned Load In Service8
3.2.1 Base Year 2025: Peak Loading Summer with Sanctioned Load in Service
3.3 Power Flow Assessment with Okara Caott PP
3.3.1 Base Year 2025: Peak Loading Summer with Saoctioned Load In Service
3.4 Conclusion
4 CONCLUSION
4.1 Steady State Assessment
LIST OF ANNEXURES





### EXECUTIVE SUMMARY

This report provides the documentation of an assessment that has been performed for the inverconnection of a 999kW Solar PV Tower Generation project at Okara Canit (OC) distribution system at 11kV project of "Military Engineering Services" (MES). The project will be a Grid fied 999kW Solar PV based system connected with the power network of OC. The '999kW OC solar PV Power Generation project' is located at Q943+J56, Okara Cantonment, Okara, Pakistan.

The integration of solar power generation at the Okara Cantt premises necessitates a comprehensive system study analysis to ensure optimal operation of the electrical network. Okara Cantt currently receives a single point supply from LESCO with a sanctioned load of 4.5MW. The introduction of solar power generation will influence the flow of electricity within the premises, impacting both consumption and injection dynamics.

The existing scup includes transformers, switchgear, and distribution panels to distribute electricity throughout the premises. The sanctioned load of 4.5MW is the maximum load that can be drawn from LESCO's grid.

The entire solar generation within the Okara Caritt premises will be consumed internally without exporting any power to the grid. To ensure the safe and efficient integration of solar power, a load flow study is required to analyze the impact of this interconnection on the existing electrical network. This study will assist in obtaining solar generation concurrence and ensuring compliance with relevant technical and regulatory requirements.

The analyses have been carried out in following scenarios;

- Without 999kW Okara Cantt solar PV with sanctioned load in service.
- With 999kW Okara Cantt solar PV with sanctioned load in service.

Steady state power flow assessment has been performed using the network data of Okara Cantt. Power flow study was conducted without Solar Project with sanctioned load in service to analyze the magnitude and phase angles of bus voltages, line loadings and power flows under steady-state conditions. Power flow analysis was also conducted with sanctioned load in service after the interconnection of the Solar project with the Okara Cantt distribution system. The power flow results for the system intact shows that the power flows on all the Okara Cantt transmission and distribution



line branches are within their normal line loading limit. There is no capacity constraint in terms of power flow or voltage ratings within the study area.

This systems study is a critical step in obtaining solar generation concurrence for Okara-Cantt. By ensuring the stability and reliability of the electrical system, the study facilitates scamless solar power integration while maintaining compliance with Okara Cantt and regulatory requirements.

Based on the study results, it is concluded that proposed generation interconnection assessment for 999kW Okara Cantt solar PV Power Generation project meets the NEPRA grid code planning criteria.



### **1** INTRODUCTION

#### 1.1 **Project Description**

This report provides the documentation of an assessment that has been performed by ARCO Energy in response to a request made by Okara Cantt (OC) ("Project Owner" or "PO") for the interconnection of a 999kWp Solar PV Power Generation project ("Project") to the OC power System at 11kV.

The '999kW Okara Cantt solar PV Power Generation project' is located at Q943+J56, Okara Cantonment, Okara, Pakistan. Figure 1.1 shows Google site map of the project.

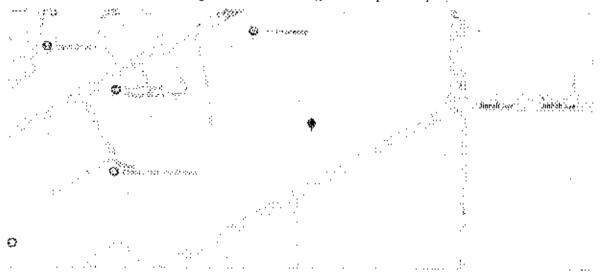



Figure 1.1: Google Site Map of the Solar PV Power Generation Project.



### 1.2 Interconnection Arrangement

Okara Cantt aims to integrate solar power generation into its existing electrical infrastructure. Okara Cantt currently receives a single-point power supply from LESCO with a sanctioned load of 4.5MW. The entite solar generation within the Okara Cantt premises will be consumed internally without exporting any power to the grid. The objective of the analyses is to evaluate the impact of the solar power plant on the Okara Cantt transmission and distribution system.

### 1.3 Objective of System Study Analysis

The primary objectives of the load flow study are:

- To evaluate the impact of solar power injection on the voltage levels and power distribution within Okara Cantt premises.
- To determine the changes in power flow patterns resulting from the integration of solar generation.
- To ensure that the existing electrical infrastructure can support the additional solar power without causing instability or operational issues.
- To verify compliance with regulatory requirements for solar power interconnection and obtain concurrence for solar generation.

### 1.4 Study Components

999kW solar PV system is modelled into the Okara Cant distribution system by ARCO Energy. Technical analysis includes:

- i) Data gathering and modelling
- ii) Steady state analysis
- iii) Conclusion

The above scope of work involved in the technical analysis has been carried to demonstrate that connection assessment of this PV system meets the National Electric Power Regulatory Authority (NEPRA) distribution code.

The analyses have been carried out in following scenarios;

- Without 999kW Okara Cantt solar PV with sanctioned load in service.
- With 999kW Okara Cantt solar PV with sanctioned load in service.



This report documents the results of the steady state analyses. The principal objective of these analyses is to evaluate the impact of 999kW solar UV system to the distribution system of Okara Cantt and vice versa.

...

and the second second

5

.



### 2 STUDY METHODOLOGY

### 2.1 Study Criteria

The study has been carried out based on the National Electric Power Regulatory Authority (NEPRA) Grid Code planning criteria. Key parameters and their corresponding limits have been summarized in table below.

Patz	aineter	Range					
Voltage Level	Normal Condition	±5 % p.u at 132kV and below +8%,-5% p.u at 220kVand above					
	Contingency	±10 % p.u					
T/Line Loading	Normal Condition	100%					
Capacity	Contingency	100%					
	Nominal	50 IIz					
Frequency	Normal Variation	49.8 Hz - 50.2 Hz					
	Contingency Band	49.4 Hz - 50.5 Hz					
Power Factor	Lagging	0.95					
Tower Pacifin	Leading	0.95					

#### 2.2 Steady State Analysis

The purpose of steady-state analysis is to analyse the impact of the proposed solar power plant on distribution system facilities under steady-state conditions. It involves two distinct analyses: line loading analysis and voltage analysis. Power flow solutions using the PSS/E® program (Version 33.4) has been performed.

A "study area" was defined to represent the areas of interest within Okara Cantt.

#### 2.2.1 System Intact Analysis

The incremental impact of the project on substations and transmission line loading under normal conditions was evaluated by comparing transmission and distribution system power flows through different scenarios for the project.

#### 2.2.2 Transmission Line Loading Analysis

11kV and 0.4kV rated transmission and distribution facilities in the study area have been monitored for line loadings.



### 2.2.3 Voltage Analysis

Voltages at buses inside the study area have been monitored for possible for voltage violations in accordance with NEPRA Grid Code guidelines.

7



### 3 STEADY STATE ANALYSIS

### 3.1 Model Development

Project specific data was provided by the plant owner and it has been compiled and presented in **Annexure-A**. The steady state model of the power plant is presented in table below:

	Generator
No. of Collector Units	<u> </u>
Generation size of each collector (kVA)	. 841
Active Power of each collector Pgen. (kW)	799
Power Factor	0.95 lagging, 0.95 leading
Qmin, Qmax (kVAR)	- 0.2626, 0.2626
Rated Frequency	50 Hz
Generation Voltage	0.8V
Xsource	<u> </u>
Genetati	ion Step Up Transformer
No of Transformer	1
kVA Capacity of each GSU	1250
% Reactance (X)	5 %
	Okara Cantt
Sanctioned Load (LESCO)	4500 kW

Steady state power flow assessment has been performed using the network data of OC.

### 3.2 Power Flow Assessment Without Okara Cantt PP and with Sanctioned Load In Service

Power flow study without Okara Cantt solar and with sanctioned load in service, was conducted to analyze the magnitude and phase angles of bus voltages, line loadings and power flows under steady-state conditions.

The result of this power flow analysis is in Annexure-B.



#### 3.2.1 Base Year 2025: Peak Loading Summer with Sanctioned Load in Service

Power flow analysis has been performed on the peak loading summer (June) 2025 case of Okara Cantt network. This base case included a detailed representation of the Okara Cantt transmission and distribution system in the study area.

The steady state results, depicts that the power flows on all the Okara Cantt distribution line branches are within their normal loading limits. There is no capacity constraint in tenns of load flow or voltage ratings around the study area. Result of the power flow analysis is attached in **Figure B-1**.

#### 3.3 Power Flow Assessment with Okara Cantt PP

Power flow study of Okara Cantt solar project was conducted with sanctioned load (in service and our of service) to determine the reliability impact of the 999kW Okara Cantt solar project on the Okara Cantt distribution system. This includes the performance of load flow analysis to identify any facility overload or voltage condition that violates the NEPRA planning criteria. Any such violation that is either directly attributable to this project or for which it will have a shared responsibility is included in this report.

The results of the project power flow analysis are plotted in Annexure-B.

#### 3.3.1 Base Year 2025: Peak Loading Summer with Sanctioned Load In Service

A base case has been developed with sanctioned load in service at Okara Cantt solar for peak loading summer (June) 2025 that allow us to judge the impact of Okara Cantt solar project on the Okara Cantt network.

Project power flow analysis has been performed after the connection of the project with the Okara Cantt distribution system. This includes the detailed representation of the power plant.

The steady state result, with sanctioned load in service at Okara Cantt solar depicts that the power flows on all the transmission line branches are within their normal loading limits. There is no capacity constraint in terms of load flow or voltage ratings around the study area. Result of the power flow analysis is attached in **Figure B-2**.

The results of the project bus voltages analysis are attached in Annexure-C.



### 3.4 Conclusion

Steady state power flow assessment has been performed. Power flow study was conducted without solar Project with sanctioned load in service to analyze the magnitude and phase angles of bus voltages, line loadings and power flows under steady state conditions. Power flow analysis was also conducted with sanctioned load in service after the interconnection of the Solar project with the Okara Cantt distribution system. The power flow results for the system intact shows that the power flows on all the Okara Cantt distribution line branches are within their normal line loading limit. There is no capacity constraint in terms of power flow or voltage ratings within the study area.

10



## **Okara** Cantt

#### 4 CONCLUSION

#### 4.1 Steady State Assessment

Steady state power flow assessment has been performed. Power flow study was conducted without Okara Cantt solar with sanctioned load in service, to analyze the magnitude and phase angles of bus voltages, line loadings, and power flows under steady-state conditions. Power flow analysis was also conducted with Okara Cantt solar and with sanctioned load in service with Okara Cantt distribution system. Power flow results showed that the power flows on all the Okara Cantt distribution branches are within their normal loading limit. There is no capacity constraint in terms of power flow or voltage ratings within the study area.

The steady state results found no capacity constraint in terms of power flow and voltage ranges.

Hence, it is concluded that based on the study results the Interconnection Assessment for 999kW Okara Cantt solar PV system with Okara Cantt Transmission and Distribution Network, meets the NEPRA grid code planning criteria.



## **Okara Cantt**

#### LIST OF ANNEXURES

Annex A: Project Specific Data.

... Annex A-1: Project Site Map.

Annex A-2: Power Plant Data.

Annex B: Power Flow Steady State Analysis Result

Figure B-1: Base Year 2025 - Peak loading summer without Okara Cantt solar and Sanctioned load in service.

Figure B-2: Base Year 2025 - Peak loading summer with Okara Centt solar and Sanctioned load in service.

Annex C: Assessment of Bus Voltages.

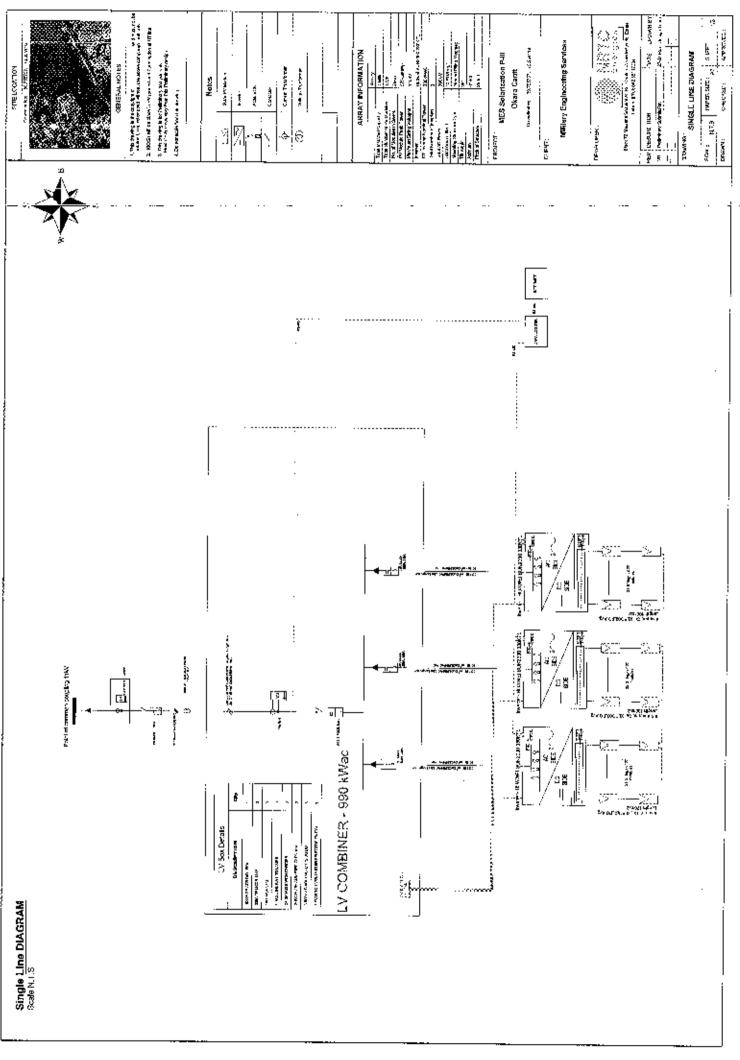
Annex C-1: Without Okara Cantt solar and with Sanctioned Load In Service.


Annex C-2: With Okara Cantt solar and with Sanctioned Load In Service.

## Annexure-A

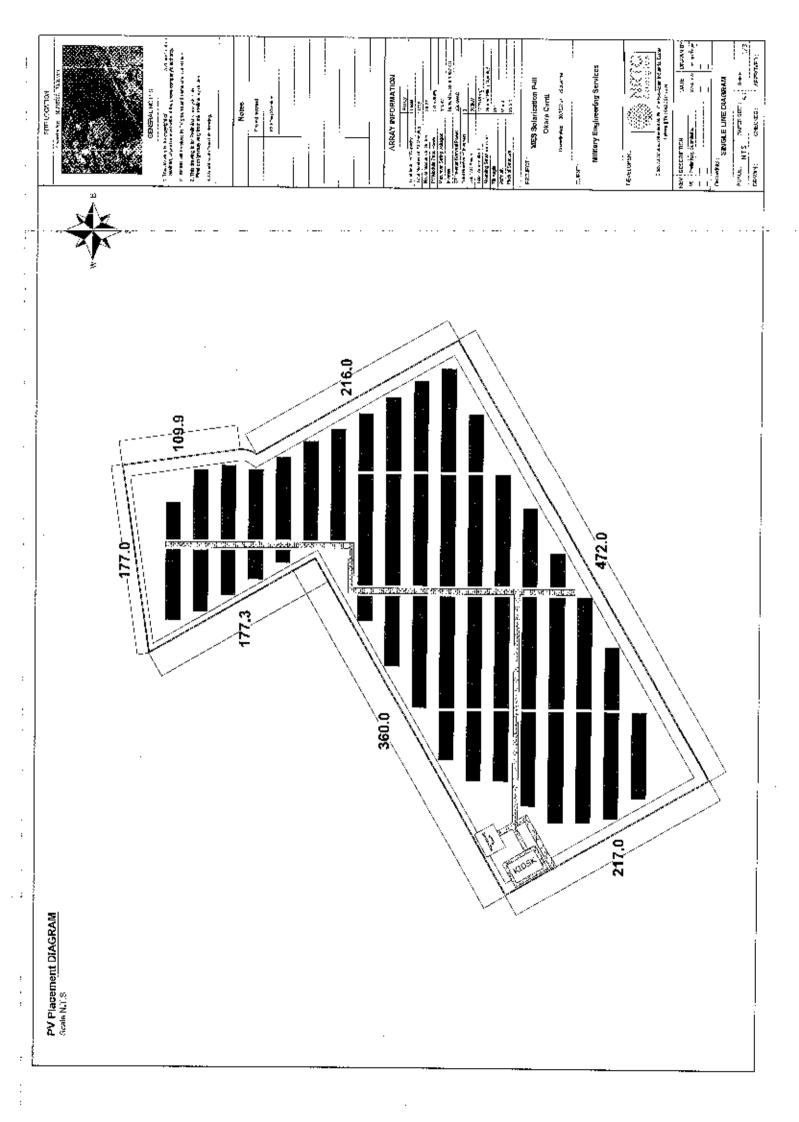
Project Specific Data

## Annexure-A-1


Project Site Map






## Annexure-A-2

Power Plant Data




i

:



### SUN2000-330KTL-H1 Smart String Inverter



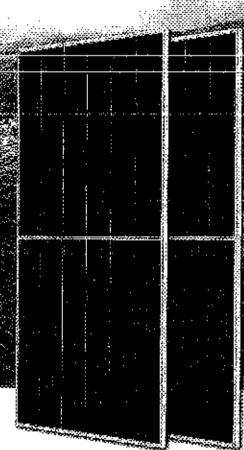
SOLAR HUAWELCOM

#### SUN2000-330KTL-H1

## **Technical Specifications**

299.0%
×98.8%
but
1,500 V
55 A
135A
4/5/5/4/3/5
500 V ~ 1,500 V
1.080 V
put
330,000 VA
800 V, 3W - PE
50 · · 2 / 60 /- 2
236.EA
238.2 A
en en la servició de la servició de la servició de la servició de la servició de la servició de la servició de
0.8LS 0 BIC
<1%
sticn
¥25
Yes
Yes
Yes
Τγρο ΙΙ
Type I
Yes
Yes
Yes
ication
LED Indicators, WLAN + A2P
Yus
Yes
ral
1.048 x 732 x 395 mm
<11.2 kg -25°C ~66°C
Smart Air Cooling
4.000 m (13,123 ft.)
··· ··· ··· ·· · · · · · · · · · · · ·
G ~ 1:00%
··· ··· ··· ·· · · · · · · · · · · · ·

## Harvest the Sunshme


### and a second DEEP BLUE 4.0

Mono

580W n-type Bifacial Double Glass High Efficiency Mono Module JAM72D40 555-580/GB

#### Introduction

Power by the basicst SivEB n-type solar cell, holf-coll configuration and gopless dbbm connuction technology, these modules have higher subput power, lower LHD, better week illumination responde and batter temperature section in .





#### Eligher power generation better LCOE



n-type with very Lower LID

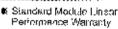






Better weak illumination response




Better Temperature Coefficient

#### Superior Warranty

- 12-year product warranty
- 30-year linear power output warranty.



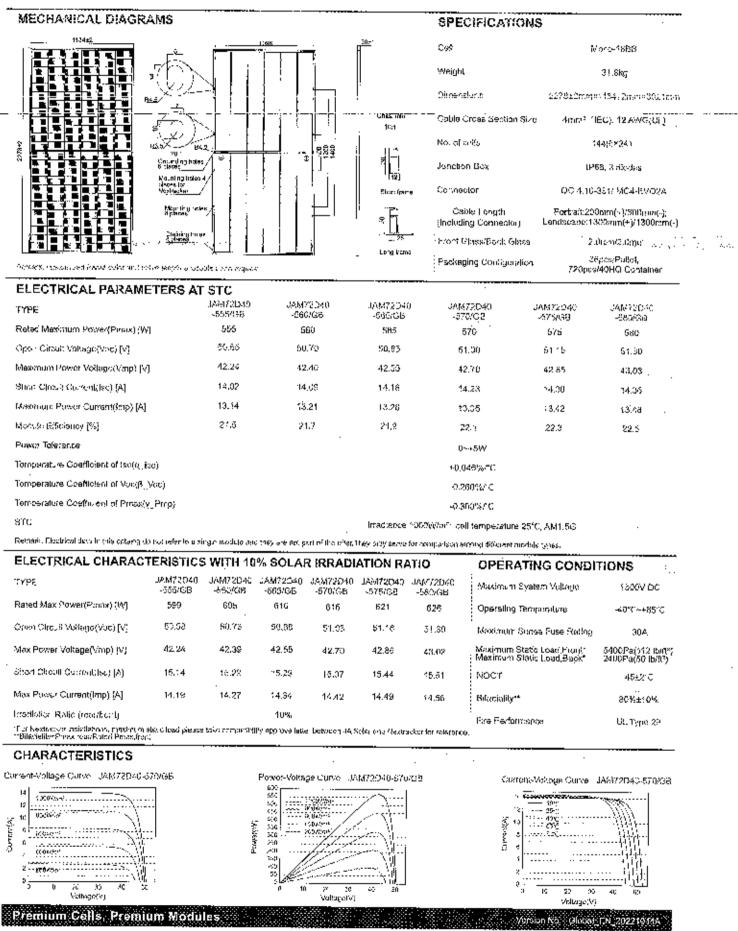
in-type Bitadial Ocuble Glass Modulo × Linsar Performance Warranty



#### Comprehensive Certificates

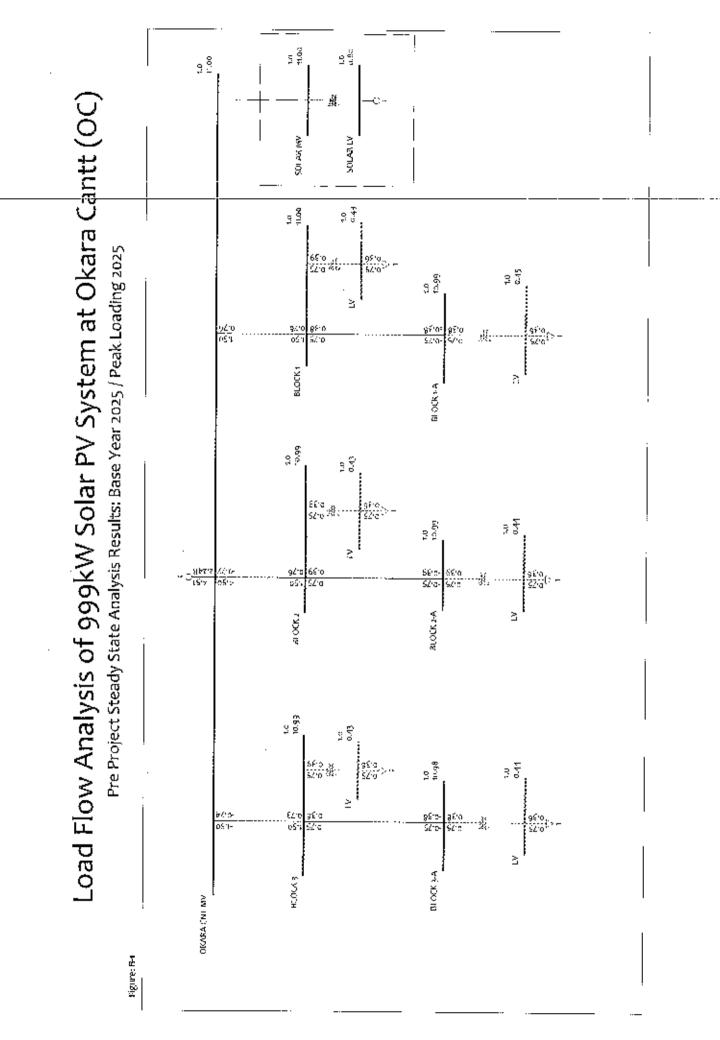
- IEC 81215, IEC 81739.
- ISO 9001: 2015 Quality management systems.
- ISO 14691; 2016 Environmental management systems.
- ISO 45001; 2018 Occupational health and safety manugement svetavns
- 85.0 62241: 2019 Terrestrial photovoltaio (PV) modulos -Quality system for PV modulo menufacturing

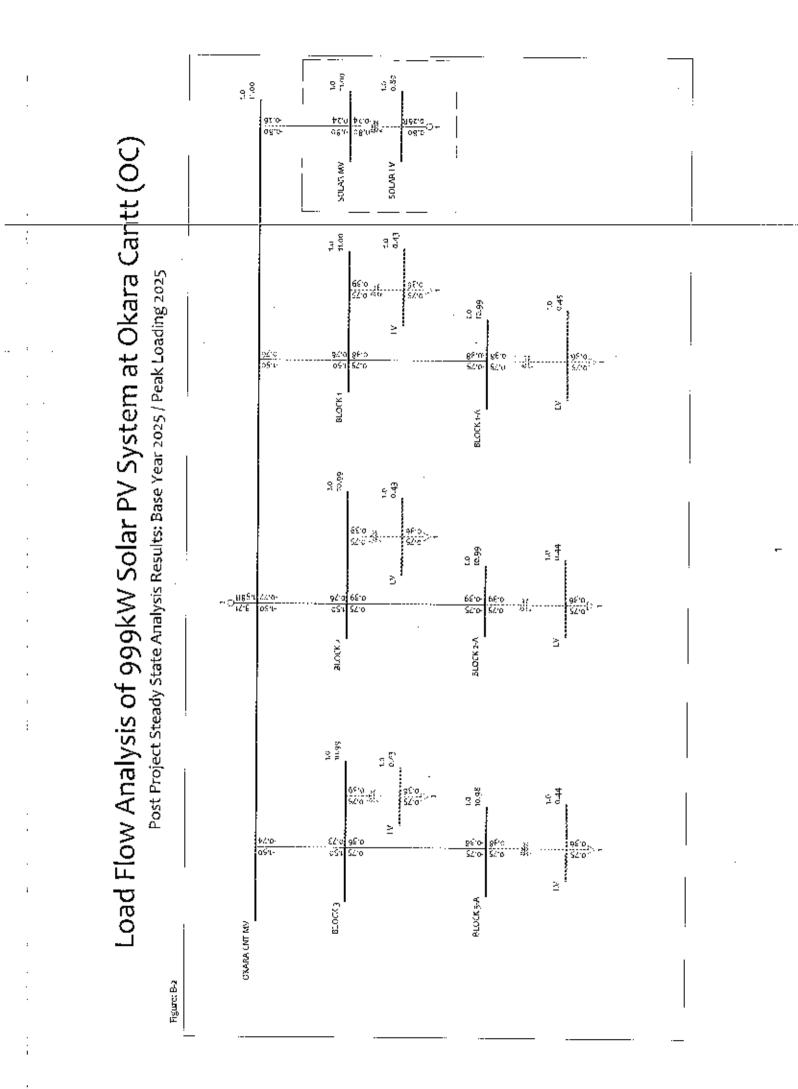



WWW.Jazolat.com









#### JAM72D40 555-580/GB



## Annexure-B

Steady State Analysis Results





## Annexure-C

. ..

Assessment of bus voltages

## Annexure-C-1

## Without Okara Cantt PP and With Sanctioned Load In Service

X 5000 NUSX RRAA URABORARR 220160	1.10V A.45		950	1.0/1	INTHS	X TO 3US		X		_
LAMA	AN/UG ENCE	NGLE	MA/MULK	NW/MVAR OW/OVAR OW/MVAR	antal/me	BUSÉ XAH ARAN H	X BASKV A	BASKV AREA CAF	NIC.	VEAM
4100 OKARA CMT MVC1.000	é 1.0630	0.0	4.5	0.0	Ú°)					
10	2 II.600		2.2R	0.0	0.0	CIOCI BLOCK 1	11,000	L Ŀ	1.5	0.8
10						41005 3000K 5	1.300		1.5	0.S
. [						41005 BL00K 3	11.060		1.5	6-3
41301 BLOCK 1 11,300	4 0.9997	-0.0	0.0	0.0	0.0					
0.	1 IC.596		0.0	0.0	0.0	ALDA OTARA CNT	CNE NATI COO	4 1	-1-2	-0.8
1.300LS 53 7						V1 20015	0.4400	i I V	0.7	0,4
2						41003 PJOCK 1-A	11.060	. I N	0.1	Ç.4
41202 LV C.4600	4 0.9873	÷.	<b>D.C</b>	0.8	. C.O					
1-03003 52 2	1 0.4348		0.0	<b>6</b> .0	C.O	4:00, PLOCX :	11.CAÚ	4 7	C.0-	<b>+</b> 0 -
(1003 BLOCK 1-A 11,000	4606°D \$	-0.0	0.0	J.C	. ງ <b>ໍ</b> ເ					
10	1 10.394		0-0	0.3	0.0	41301 3JCCK 1	1,000	 7	-0.1	й ^н 0-
6.9755K 53 2 41064 TV 514400	6 1,0136	-1.3	0.0	8.0	. 0. J	41004 V4 20014	0.4400	4 1	Ľ.	0.4
1.00000 52 2	1 01446		0.0	5.6	0°C	4-1 NOOLE 20015	11.200	-1 V	-0.7	-i),4
41005 BLOCK 2 11.000	4 0.0393	-3.0	J.C	0.0	0.1-					
0.	1 1C.992		0.0	0.0	0.0	4100 DKNFR CNT MV11.000	000.11vE	4 l	ил 	B.U
1.3007.7 53 2						AT 30016	6.4400	4 J	0.7	ų.4

:

:

•

.

: .

;

:

;

. .

;

:

i

· . · · · · -

.....

.

.

.

.

					-								.		ł		i			
		0.4		÷-0		₽'Û-	9.6	-0.4		-0.7	0.4	6,4		-Ú.4		<b>F</b> .0-	0.4	.ŭ.		
: .	•	. ສຸ ດ		. r.c-	· 4-	ອີງ -	с. С.С.			-1,5	0.7	C.7	. !	· É'0-		-0.7	 8''0	 6.0-		
•		с. 519		-		: 5	4 I			- 5				.T. 72		4 I		н ъ		
		1, JOC		CCO.II		11.000	0.4400	JOC'T:		1010	C.440C	11.003		000,111		11.000	c_4100	11,000		
		21037 BIOCK 2-A	0.3	0.0 41005 BLOCK 2	ü.ü	0.0 41005 3100K 3	42008 I.V	0.0	c.o	0.0 4100 OX3RA CMC AV1000	410010 LV 0	I W-£ XDOTE IIC(),Y	0.0	0.0 41009 BLOCH 3 1	0.0 C.O	0.0 41009 BLOCK 3 1	450012 LV 3 0.0	C.O 113011 BLOCK 3-A 1		
			0.8	0.4	0.0	0.1	4	8 ~ 6 6	0 U	0.0			ŋ.8	C.4	0.0	0.0	0.8	0.4		
			0.0	0.0	0.0	0-D	:	0,0	<u>р.с</u>	0.0			0.0	0.0	3.6	0.0	0-U	0.1		
i					-0.0		-	+ _ 	-3.1				-1.4		-0.1		6.0-			
•	·		4 0.9874	1 0.4345	0699.0 s	1 10.932	2000 F 10	- C.4401	4 J.5360	EU0,01 I			4 0.387L	1 0,4343	4 0.985	1 10-983	4 1,0038	1 0.4427		
			0.4400	52 2	2-A 11.000		53 2	 2 2 2	) II.000		53 2		C.4400	52 2	3-A 11.000		28 J 0.4400	. 28		
:		а 10	41006 LV	1,000X	41037 BLOCK 2-A	6 IC .	С.9894К АГООТ - 27	MC00C-1	41009 BLOCK 3	17 20	1001	8 10	41CAIC JA	ND000.;	V-S NOOLE IIOOLE	B 1.1	0.5381.5 LV 410015 LV	1,00013		

: .

i .

.

. .

.

.

.

## Annexure-C-2

. .

.

.

. . . . . . .

: -

. .

## With Okara Cantt PP and With Sanctioned Load In Service

$K^{*}_{1000}$ $K^{*}_{1000}$ $K^{*}_{10000}$ $K^{*}_{1000000000000000000000000000000000000$	ž	FTT INTERACTIVE P UKARAR CANTI SULAR PV SYSTEM	FTI INTER UT SCHAR P	ACTIVE POO	TR SYSTE	ALUMLS X	INTERACTIVE POWIR SYSTEM SIMULATORFS3(F)E Mar PV SYSTEM	341, F7F 15 1873 202 18 I. FOR 1	ZU25 FRANSEC VON-FRANSEC	17:33 BRERS MSFORMER	BILANCING
	FROM BUSX		•	GEN	d.vo.t	SHUNT	OL		Х		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	BJS# X XAMEX BASK BJS# X XAMEX BASK TTO ANGLE & RET A				NK/W/M	AM/MUAR	CMARX	X BASKV A	ANA CKI	NIN.	EVA4
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	4100 OKARA CNT NVIL.000	÷			0.0	0.0					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	IC		ų v	7.0R	J.C	J.C	41001 BLOCK 1	1,300		1.5 [.]	0.8
	1						BLOCK	C)0.II		- 5 - T	0.8
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	9						BLOCK	000.11		5.5	0.7
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Ų.,						41.0013 SCLAR PV	11.000		: ::::::::::::::::::::::::::::::::::::	-0.3
$n_{10}$ $1$ $10.996$ $3.0$ $0.1$ $u.3$ $3.06$ $3.06$ $3.06$ $3.10$ $1.0$ $1.0$ $1.0$ $1.0$ $1.0$ $1.0$ $1.0$ $1.0$ $1.0$ $1.0$ $1.0$ $1.0$ $1.0$ $1.0$ $1.0$ $1.0$ $1.0$ $1.0$ $1.0$ $1.0$ $1.0$ $1.0$ $1.0$ $1.0$ $1.0$ $1.0$ $1.0$ $1.0$ $1.0$ $1.0$ $1.0$ $1.0$ $1.0$ $1.0$ $1.0$ $1.0$ $0.0$ $1.0$ $1.0$ $0.0$ $1.0$ $0.0$ $1.0$ $0.0$ $1.0$ $0.0$ $1.0$ $0.0$ $1.0$ $0.0$ $1.0$ $0.0$ $1.0$ $0.0$ $1.0$ $0.0$ $1.0$ $0.0$ $1000$ $1.0$ $0.0$ $0.0$ $0.0$ $0.0$ $1.0$ $1.0$ $1.0$ $1.0$ $1.0$ $1.0$ $1.0$ $1.0$ $1.0$ $1.0$ $1.0$ $1.0$ $1.0$					9.6	0.0					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	13		U	0.0	0.0	0.0	ADDE CRARA CMT	000-117M		- 5° ].	9°C-
$ \frac{110}{52} = \frac{110}{52} + \frac{1100}{52} + \frac{11000}{52} + \frac{1100}{52} + \frac{11000}{52} + \frac{11000}{52} + \frac{11000}{52} +$	53						AT 200.4	0.4430	1	0.7	0.4
$\frac{1V}{52} = \frac{0.4230}{52} + \frac{3.8378}{10.4326} -1.4 + \frac{0.0}{0.0} + \frac{0.0}{4.300} + \frac{0.0}{10.000} + \frac{10.030}{4} + \frac{10.03}{4} + \frac{10.030}{4} + \frac{10.03}{4} + \frac{10.030}{4} + \frac{10.030}{$							41003 BLOCK 1-A	11.000		0.7	0.4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		é		0.0	Ó.R	0.0					
DIJOCK 1-A       11.060       1 6.993       -0.0       0.0       0.1       0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -0.1       -1.1       -1.5       -1.1       -1.5       -1.5       -1.5 <td>52</td> <td>0</td> <td>ve</td> <td>0.1</td> <td>0.4</td> <td>0.0</td> <td>REGER</td> <td>11-030</td> <td></td> <td>- 1, 1, -</td> <td>÷-0-</td>	52	0	ve	0.1	0.4	0.0	REGER	11-030		- 1, 1, -	÷-0-
1       1       0.1994       0.0       0.0       41001 BLCCK 1       11.000       4       -0.7         LV       53       2       41.0°36       -1.3       0.0       6.8       41064 IV       0.4930       4       1       0.7         LV       53       2       1       1.0°36       -1.3       0.0       6.8       3.0       41064 IV       0.4930       4       1       0.7         52       2       1       1.450       6.0       0.8       3.0       4103 BLCCK 1       1.003       4       1       0.7         52       2       1       1.450       0.0       0.0       0.0       6.0       4100       4       1       0.7         51       2       1       0.0       0.0       0.0       6.0       4100       4       1       -0.7         51       2       10.592       0.0       0.0       6.0       4100       0.0       2       -0.7         51       2       10.2       0.0       6.0       6.0       4100       2       -0.7       -1.5       -0.7         51       2       0.0       6.0       6.0       4100       0.1				0.0	3.6	С.С.					
53       2       41064 :/v       0.4930       4 1       0.7         LV       0.4403       41.0°36       -1.3       0.0       0.8       9.0          50       1.0.450       0.0       0.8       9.0            50       2       1.0.450       0.0       0.6       0.6       0.0       4103 ±-000       4.1       -0.7         6LOCK 2       11.000       4       0.3       0.0       0.0       0.0       4100       4.1       -0.7         0       2       10.9       0.0       0.0       0.0       4.1       -1.5       -0.7         0       2       10.992       -0.0       0.0       0.0       4.1       -1.5       -0.7	10	0.	ᆌ	0.0	0.0	0.0	BLOCK	11.0CD		- - - -	÷.5
50     2     1.0.450     0.0     0.0     41003 ±0000 ± 1.000     2     -0.7       BLOCK 2     11.000     € 0.3993     -0.0     0.0     0.0     6.0     -0.7       0     0     0     0     0     0     4100 02460 CMT 1.000     4     1     -1.5	53 TA			0.0	0.8	0.5		0.4430		0.7	0.4
2 11.000 € 0.3993 -0.0 0.0 0.0 6.0		3.6	_	0'0	0.£	0.0		000'II		-0.7	-0.4
2 10.892 0.0 0.0 0.0 4100 03340 CWZ AVILLOO 4 1 -1.5 -	C.	6.0		0.3	0.0	· 0· 0					
	10	10,992	~	0.0	0.0	0.0	4100 0338A CBT	WTL.COO		- 1-2	-0.3

-

-

.

.

!

•

:

:

. . ;

i

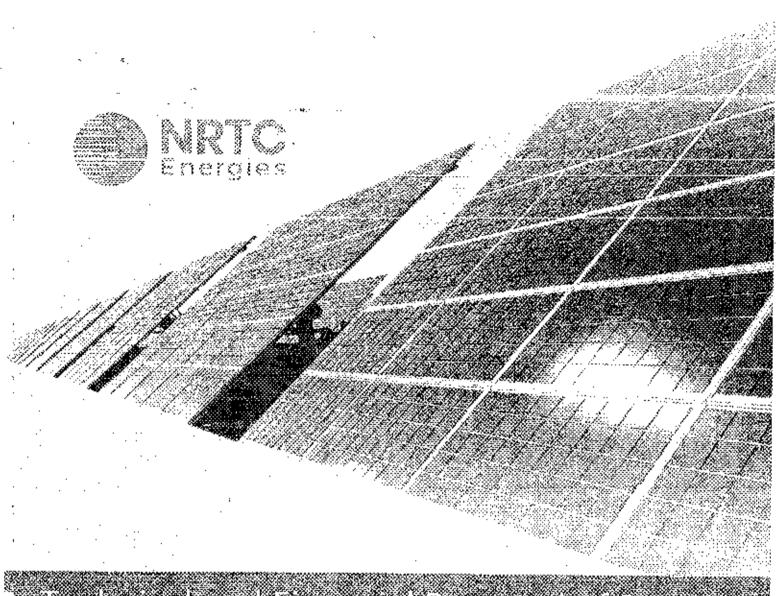
.

1, JOGLA 52 3					41008 TW		004400	ר ד	0.7	0.4
					41007 BLOOK 2-A		1, 1000	ų l	. 8.0	0.4
1005 LV 0.44U	4 C.9374	-1.4	0.0	9'B	J.C					
1.000mu 52 2	1 3,4345		0.0	0.≰	0.6 410.05 3.00K	c.		. 1 7	1-4-	-0.4
41307 BIOCK 2-A 11.030	4 (1,9993	-3,6	J.C	0.0	ú.J					
15	1 10,992		0.0	0.0	0.0 41005 8LOCK	Ň	11,000	4 1	. 8'C-	-0.4
0.988.4K 53 2 2.009 - 27 0 7400		-		6	41.008 TV	ċ	0.4430	1 1	. 7.0	0.4
	5 T.UCUA	-T-J	0.0	8 5						
1,300'IN 52 2	1090'N .		0.0	9 C	D.C. CICCT BLOCK	2-3	:1.300	 	 ()−	-0,4
41009 BLOOK 3 11.000	4 D.996A	-0.1	0.0	0.0	0.0					
10	1 10.989		3,6	0.0	0.0 4100 OKAR	CKARA ONT WVLL (000	, 000	4 L		-0.7
1.0001K 53 2					AT CIONTR	Û.	Ú-443Ú	4 T	0.7	0.6
					410011 BLOCK 3-A		0001.1	μ	6.0	0.4
4010 EV 0.4400	é C.9871	-1,4	0.0	63	3.C					
1.0000N \$2 2	1 3,4343		0'0	2°4	0.0 41039 3400K	10	30011.	. 1 7	-0-7	-0,4
410311 BLOCK 3-A 11,000	4 0.3965	-0,1	0.0	0.0	0.00.0					
07	1 10,983		0.0	0.0	0.0 4',009 BLOCX	m	000-11	4 1		-0.4
36 76					A10012 W	с С	00%F.0		0.8	0.4
0.44	4 1.0033	e'0-	0°0	0.0	0.0					
1.00005 28 3	1 0.4415		J.C	0.4	0.0 VICTL BLOCK	.स. 	1,000	.। च	8-0- -	6-j
412013 SOLAR WV 1.30C	€ 1.0033	0.0	0.0	0.0	0.0					
-0	800°.E E		0.0.	0.0	C.O 4103 OSERA CN2 NV11.030	CNP NV13.	000-	4 1	0.8	0.2

.

.

÷ į


.

:	-0.2		
	8°.0-	 ع ب	
	-	า 	
	3.800C	2007 T	
	40014 SOLAR LV 0.0	0.0 £10012 SOLAR MV	
		0 . 0	
	ш г)		
1	5'U	· .	
	A 1.0053		
	1.0001K 57 5 410014 SOLAR LV 0.8020	۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲	

.

• ;

,



## Technical and Financial Proposal of Stativity

Head Office:

72 Block, PECO Road, Lahore – Pakistan

**Regional Offices:** 

Islamabad i Karachi i Peshawar i Quetta i Multan

#### TECHNICAL PROPOSAL

#### Project Rationale:

The Military Engineering Services (MES) in Pakistan has a rich history dating back to the British colonial era. After the independence of Pakistan in 1947, the MES was reconstituted to serve the Pakistan Army. The MES is responsible for providing engineering support to the Pakistan Armed Forces, including construction, maintenance, and repair of military infrastructure.

Apart from the strategic importance of activities carried out by MES and their requirement of reliable electric power, MES is committed to play a notable role in reducing carbon footprints of Pakistan. To achieve the endeavor, MES is determined to meet their electric power demand through Solar energy. For aforementioned purpose, MES engaged NRTC Energies ("The Applicant Company") and their team conducted surveys to the sites of Military Engineering Services (MES) Pakistan and keeping in view their annual energy consumption, a 3.5 MWp Solar PV Solution at five sites (CM11 Lahore, MM Lines Lahore, Akram Lines Lahore, Mahfooz Shaheed Garrison – MSG Lahore and Okara Cantt) in Punjab is proposed. It is anticipated that the project will serve a projected annual production of 5,110,000 kWh/year.

#### Business Model:

The Applicant Company intends to sell electricity to Military Engineering Services (MES) that utilizes electricity for a wide range of functions, primarily powering their operations and infrastructure. This includes tasks like construction, maintenance, and support for military installations, as well as the design and development of electrical and electronic equipment for military use. NRTC Energies ("The Applicant Company") will provide electricity to MES through its own complete on-grid solution of electricity based on solar power (Generating Facilities) under the long-term Energy Purchase Agreements (EPAs).

In this regard, the Applicant Company has conducted financial analysis and found this model to be financially workable if there are long term contracts involved. The Company will therefore, plan, design, procure material, construct, install, operate and maintain Generating l'acilities at sites of the MES Pakistan ("the Buyer"). The NRTC Energies and MES shall be collectively referred as "Parties" herein after.

The Applicant Company shall provide product of the Generation Facilities to the Buyer on terms and conditions as agreed between the Parties so as to recover the cost of investment, working capital, operation and maintenance cost with reasonable rate of return on basis of actual delivery of electricity while taking the risk of shortfall in generation on account of reduction in solar irradiation at its own.

The Applicant Company will install various Generation Facilities at the sites of the Buyer and understands that the activity of generation and sale of electricity shall take place within the same premises (for each site) without crossing any other property or requiring the use of transmission or distribution lines.

The electricity generated through the Generation Facilities of the Applicant Company shall be fed directly into the distribution panel of the Buyer and in no case shall be fed or exported to the distribution system of utility company.

The electricity generated through the Generation Facilities of the Applicant Company shall be less than the total demand of the Buyer, hence, it will not be a replacement for the relevant utility company but only a partial augmentation.

#### Technical Overview:

#### Technology:

2

and the straight of the state

The electricity shall be generated by use of PV Panels to be installed at the premises of the Buyer and will be supplied directly to the Distribution Panel of the Buyer (s). The Solar PV system will operate in grid interactive / grid tied mode. The grid-tie inverter will be used that will convert direct current (TX electricity into alternating current (AC with built in ability to synchronize with a utility line to supplement the electricity required by the buyer from the distribution company.

Grid-tie inverters are also designed to quickly disconnect from the grid if the utility grid will go down and it will ensure that in the event of interruption of electricity from utility, the grid tie inverter will shut down to prevent the energy flow back in the distribution system of the utility. Grid interactive system will supplement utility supplied energy to building or facility. The PV System output will be designed in a manner that it will always be less than the premises load and there will be no export to the utility company's grid.

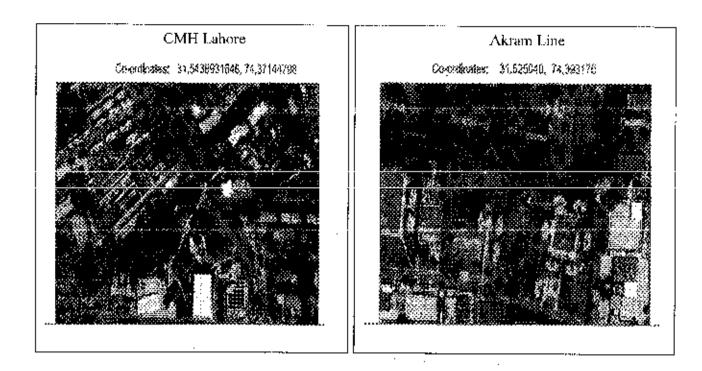
In case the Buyer subject to NEPRA's permission and agreement with the utility company, opts to export excess electricity to the distribution system through net metering arrangement, then the Applicant Company, on behalf of the Buyer, may provide requisite services.

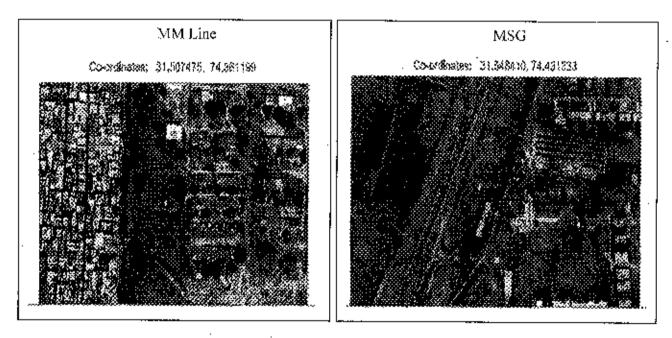
The PV Panels shall convert the solar irradiation into DC electricity and by using inverters, DC supply will be converted into 3-Phase AC supply of 400/11,000 Volts. In the process, the Applicant will use equipment including:

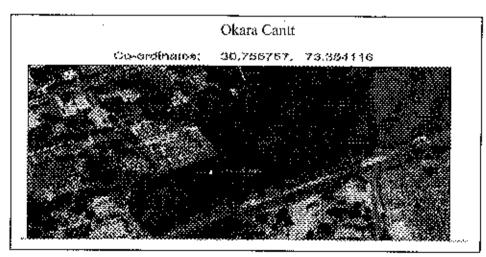
- PV Modules
- DC, AC Cables

- Mounting structure
- Meters
- Invertors
- Data loggers for Monitoring;
- Surge arrestors
- Internet devices
- Junction Boxes
- Water Network
- Transformer
- Steel Structure
- LV, MV Switchgear
- Screws, Nuts/Bolts

Technical details, Single Line Diagram and flow diagram for each site is attached herewith.


Before the Distribution Panel and after the PV AC Electrical Board there shall be installed the Meter for reading of the actual energy delivered through Generation Facilities of the Applicant Company to the Buyer. DC PV Generation from Modules will be converted to both Single and three Phase AC supply (220V and 400V) by specified inverters. Single and Three phase AC supply will further be transformed to MV system (II kV) by using specified Transformer. The whole capacity of PV plant will fully be utilized by the facility, so there is no need of Net-Metering and export of power to national grid studies and regulations. Further, standardized PV-DG operational technology along with IEC standardized protection schemes will be adopted to control the flow of power towards the national grid system.


#### Capacity:


The Applicant Company will deploy Solar PV facilities totaling 3.5 MWp at Buyer sites.

#### Site:

The Generation Facilities to be offered by the Applicant Company shall be at the site premises of the Buyer and therefore the Applicant Company does not require purchasing or acquiring a particular site / land. Moreover, since the electricity generated by the Generation Facilities of the Applicant will not be sold to any electricity utility i.e., DISCO hence it would not require any evacuation by the National Grid Company (NTDC) therefore the mentioning of a particular site is not relevant in this case. However, details of sites are as under;







#### Interconnection:

Since the Generation Facilities of the Applicant Company shall be installed at the sites of the Buyer and shall provide electricity to that premises in order to supplement the electricity requirement of the Buyer therefore, the interconnection point shall also be within the premises of the Buyer at the point as identified by the Buyer. The Applicant Company shall deliver electricity to the Buyer's distribution box/panel at 11 kV level.

#### Commissioning & Expected Life:

The terms as to commissioning shall be as per terms of EPA. However, the average expected life of the Generation Facilities shall be 25 Years.

#### **Operation & Maintenance:**

The Applicant Company shall also provide the operation and maintenance, including periodical washing of the PV modules, of the Generation Facilities installed at the site of the Buyer. Detailed O&M Manual is attached herewith.

#### Monitoring Facilities:

The Applicant Company shall develop, install and maintain a remote monitoring facility at its premises for overall monitoring of the Generation Facilities to be installed at various sites of the Buyer. The Applicant will hire trained staff to carry out maintenance activities on the installed facilities at the Buyer's sites. The Applicant also has a team of qualified engineers to plan and supervise the routine / regular maintenance needs.

#### Eligible Site / Buyer:

The Applicant Company declares the following eligibility criteria for the site / buyer for whom Generation License is required.

- i. Generation Facility to be setup should be within the site of the buyer.
- ii. Electricity generated through the Generation Facility should not be provided to any premises other than the buyer's premises / site where the Generation Facility is installed.
- iii. Electricity from the Generation Facility should be in addition and supplemental to the electricity being obtained from the electric utility company.
- iv. Interconnection point should be within the premises / site where the Generation Facility is installed.
- v. Generation Facility installed should ensure no back flow of electricity to the distribution system of the utility.
- vi. The delivery of electricity from the PV Modules to the distribution Switchgears of the buyer should not require crossing of any public road / area and the distribution network

of the electric company.

÷

.

vii. The buyer should not be a defaulter of dues of electricity obtained from electric utility company.

.

#### Capital Cost:

The Capital cost shall include the cost borne by the Applicant Company on completion of feasibility, planning, designing, material, construction and installation of the Generation Facilities.

The cost of switchgear protection and interconnection with distribution system of utility is included in this case.

The Applicant Company aims to provide the Generation Facilities up to 3.5 MWp in a period of about 04 months, with an estimated cost on per Watt basis is worked out by the Applicant Company as below. The expected cost of the installations under has been estimated to be USS 0.513/Wp. This cost does not include the cost of land as facilities shall be installed at the premises of the Buyer.

Sr. No.	Description	US\$/Wp
1	Civil Work	0.095
2	EPC	0.413
3	Others (including approvals costs)	0.005
	Total	0.513

Item wise break up of project cost is attached herewith.

#### Source of funding:

The applicant company will install a total of 3.5 MWp at stated sites of MES Pakistan in parallel (at once) and will be equity financed with 80:20 ratio.

### Details of Annexure

Sr. No.	Annexure	Description
1	A1	MM Line MES 0.5MW Site
2	A1.1	Simulation Report of 0.5MW
3	A1.2	PV Modules Layout
4	A1.3	Single Line Diagram
5	A1.4	BOQ for 0.5MW Site
6	A2	MSG MES 0.5MW Site
7	A2.1	Simulation Report of 0.5MW
8	A2.2	PV Modules Layout
9	A2.3	Single Line Diagram
10	A2.4	BOQ for 0.5MW Site
11	A3	CMH MES 1MW Site
12	A3.1	Simulation Report of 1MW
13	A3.2	PV Modules Layout
.14	A3.3	Single Line Diagram
15	A3.4	BOQ for 1MW Site
16	A4	New Akram Lines MES 0.5MW Site
17	A4.1	Simulation Report of 0.5MW
18	A4.2	PV Modules Layout
19	A4.3	Single Line Diagram
20	A4.4	BOQ for 0.5MW Site
21	A5	Okara MES 1MW Site
22	A5.1	Simulation Report of 1MW
23	A5.2	PV Modules Layout
24	A5.3	Single Line Diagram
25	A5.4	BOQ for 1MW Site
26	B1	Technical Data Sheets
27	B1.1	PV modules Datasheet
28	B12	Inverter Datasheet
29	B1.3	DC Cable Datasheet
30	B1.4	Protection Modules Datasheet
31	B1.5	Lightening Arrestor Datasheet
32	B1.6	Weather Station Datasheet
33	B1.7	Financial Breakup
34	B1.8	O & M Manual

# Annex A-1



:

## **PVsyst - Simulation report**

Grid-Connected System

Project: MES Lahore (MM Line)

Variant: New simulation variant No 3D scene defined, no shadings System power: 501 kWp Lahore MES (MM Line) - Pakistan



.

I

#### Project: MES Lahore (MM Line)

Variant: New simulation variant

#### PVsyst V7.3.1 VC6, Simulation date: 08/01/24 10:48 wth v7.3.1

•		Project s	ummary		
Geographical Site		Situation		Project settings	
Lahore MES (MM Line	e)	Letitude	31.51 °N	Albodo	0.20
Pakisten		'Longitude	74.36 °E		
		Altitude	207 m		
		Time zone	UTC+5		
Meteo data					
Lahore MES (MM Line)					
Meleono <del>m</del> 8.1 (1996-2	2015), Sat=100% - Syi	nthelic			
		System s	summary —···		
Grid-Connected Sy Simulation for year no 1		No 3D scana defir	ned, no shadings		
PV Field Orientatio:	n	Near Shadings		User's needs	
Fixed plane		No Shadings		Unlimited load (grid)	1
TIIVAzimuth	26/0°				
System information	1				
PV Array			Inverters		
Nb. of modules		BĠ4 unite	Nb. of units		2 units
Phom total		501 kWp	Pnom total		600 kWac
			Phom ratio		0,835
		Results s	ummary		··
Produced Energy	593959 kWh/year	Specific production	1185 kWh/kWp/year	Perf. Ratio PR	72.74 %
		Table of a	contents	· •	
Project and results sum	imary				
General parameters, P	V Array Characteristic:	s, System losses			·
Main results	-	· · · · · · · · · · · · · · · · · · ·			×
Loss diagram					``
Predef. graphs					
					······································

j

.



#### Project: MES Lahore (MM Line)

#### Variant: Now simulation variant

PVsyst V7.3,1
VC0, Simulation date:
08/01/24 10:48
with v7.3.1

#### **General parameters Grid-Connected System** No 3D scene defined, no shadings **PV** Field Orientation Orientation Sheds configuration Models used Fixed plane No 3D scene dofined Transposition Perez Tilt/Azlmuth 28/0° Diffuse Perez, Meteororm Circumsolar separate Horizon Near Shadings User's needs Free Horizon No Shadings Untimited load (grid) **PV Array Characteristics** PV module Invertor Manufacturer CSI Solar Menufacturer Huawei Technologios Model CS7L-580MB-AG 1500V Model SUN2000-330KTL-H2 (Original PVsyst database) (Custom parameters definition) Unit Nom, Power 580 Wp Unit Nom, Powor 300 kWac Number of PV modules 864 unite Number of invertors 2 units Nominal (STC) 501 kWp Total power 600 kWac Modules 32 Strings x 27 in series Operating voltage 500-1500 V At operating cond. (50°C) Max. power (=>30°C) 330 kWac Prapp 460 kWp Phom ratio (DC:AC) 0.84 U трр 823 V Power sharing within this inverter I mpp 559 A **Total PV power** Total inverter power Nominal (STC) 501 kWp Total power 600 kWac Total 864 modules Number of inverters 2 units Modulo area 2445 m² Phom ratio 0.84 Array losses Array Solling Losses Thermal Loss factor DC wiring losses Loss Fraction 4.0 % Module temperature according to Irradiance Global arrey res. 24 m·Ω. Uc (const) 29.0 W/m²K Loss Fraction 1.5 % at STC Uv (wind) 0.0 W/m^sK/m/s Serie Diode Loss LID - Light Induced Degradation Module Quality Loss Voltago drop < 0.7 V Loss Fraction 2.0 % Loss Fraction -0.4 % Loss Fraction 0.1 % at STC Module mismatch losses Strings Mismatch loss Module average degradation Loss Fraction 2.0 % at MPP Loss Fraction 0.1 % Year no 10 Loss factor 0.4 %/year Mismatch due to degradation Imp RMS dispersion 0.4 %/year Vmp RMS dispersion 0.4 %/year IAM loss factor Incidence effect (IAM): User defined profile **1**0° 20° 30° 46° 50° 60° 70° 80° 90° 0.998 0.998 0.995 0.992 0.986 0.970 0.917 0.763 0.000



# Project: MES Lahore (MM Line)

## Variant: New simulation variant

· .. _ _

---- .

#### PVsyst V7.3.1 VC0, Simulation dete: 08/01/24 10:48 with v7.3.1

		System los	ises	
Unavailability of the :	system	Auxillaries loss		
Time fraction	3.4 %	Proportionnal to Power	5.0 W/kW	
	12.4 deys,	0.0 kW from Power threst		
	3 periods	Night aux. cons.	500 W	
<b></b> _		AC wiring lo	sses	u
Inv. output line up to	MV transfo			
Inverter voltage		800 Vac tri		
Loss Fraction		0.10 % at STC		
Inverter: SUN2000-330M	TL-H2			
Wire section (2 Inv.)	- Alu 2 x 3	x 240 mm²		
Average wires length		20 m		
MV line up to injectio	n			
MV Voltage		11 kV		
Wires	Alu 3	3 x 95 n1 m²		
Length		100 m		
Loss Fraction		0.01 % at STC		
	••	AC losses in tran	sformers	
MV transfo				
Medium voltege		11 KV		
Transformer from Datas	heets			
Nominel power		630 kVA		
Iran Loss (24/24 Connex	(noi	1.00 kVA		
Iron lose frection		0.16 % of PNorn		
Copper loss	:	20.00 kVA		
Copper loss fraction		3.17 % at PNom		
Colfe equivalent resistand	e 3x3	32.25 mΩ		

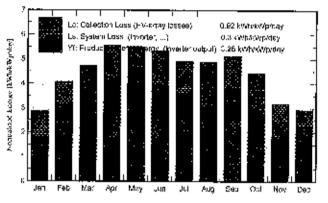
÷

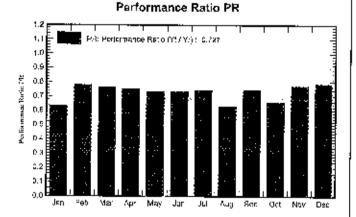


# Project: MES Lahore (MM Line)

#### Variant: New simulation variant

#### PVsyst V7.3.1 VC0, Simulation date: 08/01/24 10:48 with v7.3.1


#### Main results


### System Production

Produced Energy (P50) 593959 kWh/yeer Produced Energy (P90) 556330 kWh/yeer Produced Energy (P99) 525662 kWh/yeer Specific production (P50) Produced Energy (P90) Produced Energy (P99)

1185 kWh/kWp/year 1110 kWh/kWp/year 1049 kWh/kWp/year

#### Normalized productions (per installed kWp)





#### Balances and main results

	GlobHor	DiffHor	T_Amb	Globine	GlobEff	EArray	E_Grid	PR
	kWh/m²	kWh/m²	<b>.</b>	k\\\\\\\\\	kWh/m²	kWh	kWh	ratio
anuary	69.8	43.7	11.88	89,2	84.1	37531	28331	0.634
ebruary	92,3	46.7	16.09	114.0	107.7	46962	44484	0.779
March	131.6	77.3	22.10	148,8	138.3	59265	56348	0.768
April	161.0	87.3	27.05	186.8	157.0	65711	62574	0.749
May	176.7	. 96.9	32.91	170.8	160.7	65704	62568	0.731
June	169.5	100.5	32.80	160.2	150.8	61926	58956	0.735
fuly	160.5	. 102.3	31.45	152.3	143.1	59594	56715	0.743
August	151.5	98.0	30.72	151.7	142.8	59490	48077	0.633
September	141.8	76,6	29.06	154.1	145.1	60591	57635	0.746
October	116.4	68,0	25.94	136.8	129.1	54602	45298	0.661
November	77.4	49.9	19.09	\$ <del>8</del> .0 '	99.5	39361	37144	Q.772
December	68.6	41.9	13.95		85.7	38037	35830	0.786
féar	1517.1	887.0	24.46	1629.4	1535,0	648681	593959	0.727
Légends								
	Global horizontal irradia	ation		EArray	Effective e	enorav at the pu	tput of the array	
DiffHor	Horizontal diffuse Irradi	ation		E_Grid		ected into grid		
í_Amb /	Ambient Temperature			PR	Performar			
3labina	Global incident In coll. p	lane						
SlobEff i	Effective Global, corr. fo	or IAM and shad	lings					



-40

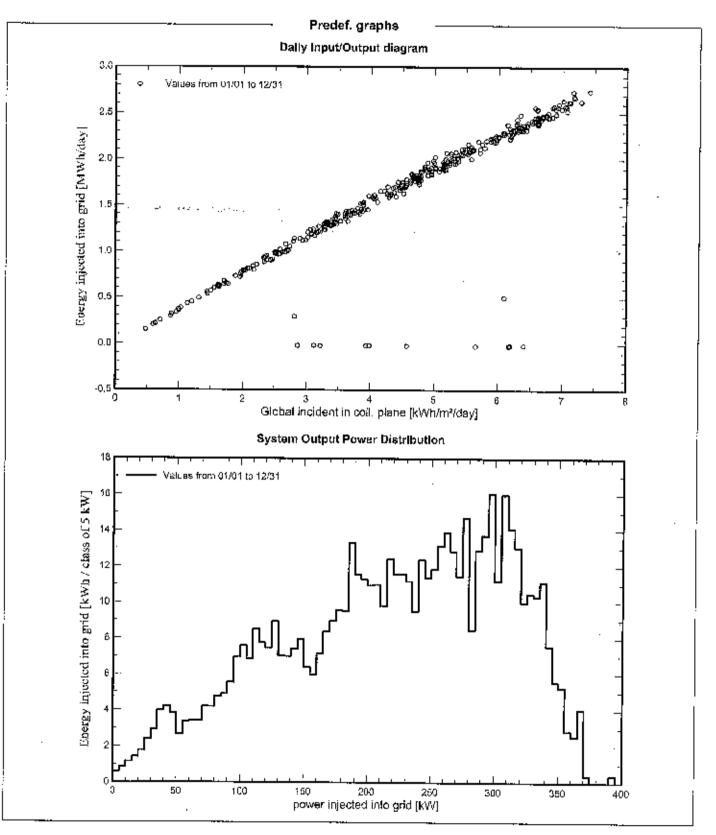
- .....

# Project: MES Lahore (MM Line)

Variant: New simulation variant

PVsyst V7.3.1 VC0, Simulation date: 08/01/24 10:48 with v7.3.1

		Loss dia	gram	
ſ	1517 kWh/m²		Global horizontal irradiation Global incident in coll. plane	
		-1.87%	IAM factor on global	
		\ac%	Sailing loss fector	
	1535 kWh/m² ^ 2445 m	° cail.	Effective irradiation on collectors	
	officiency at STC = 20.	58%	PV conversion	
	772638 kWh		Array nominal energy (at STC effic.)	
		-3.80%	Module Degrectation Loss ( for year #10)	
		(+-0.27%	PV loss due to Imadiance level	
		-6.47%	PV loss due to temperature	
		(+0.43%	Module quality loss	
		-2.00%	LID - Light induced degredation	
		V) -4.00%	Mismatch loss, modules and strings (including 1.9% for degradation dispersion	
		4-0.98%	Ohmle widing loss	
	648681 kWh		Array virtual energy at MPP	
		9-1.69%	Inverter Loss during operation (efficiency)	
		9 0.00%	Inverter Loss over nominal lov, power	
		9 0.00%	Inverter Loss due to max. Input current	
		+ 0.00%	leverter Loss over nominal inv. voltage	
		₩ 0.00%	Inverter Loss due to power threshold	
		¥ 0.00%	Inverter Loss due to voltage threshold	
		9-0.01%	Night consumption	
	637660 kWh		Available Energy at Inverter Output	
		9-0.84%	Auxiliaries (fans, other)	
		<b>∀</b> -0.04%	AC ohmic loss	1
		9-2.46%	Medium voltage transfo loss	
		9-0.01%	MV line ohmic loss	
		13-3.64%	System unavailability	
	593959 kWh		Energy injected into grid	


!



# Project: MES Lahore (MM Line)

Variant: New simulation variant

**PVsyst V7.3.1** VC0, Simulation date: 08/01/24 10:48 with v7.3.1

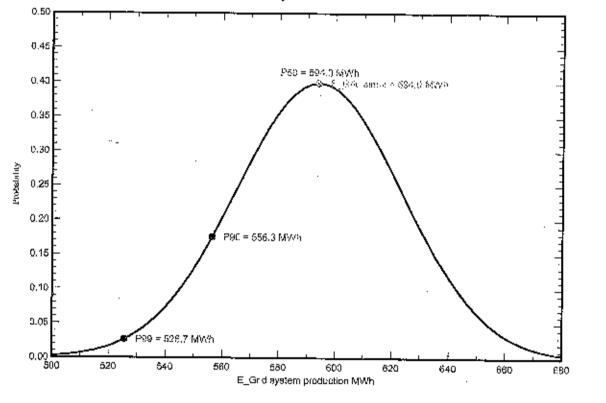




# Project: MES Lahore (MM Line)

#### Variant: New simulation variant

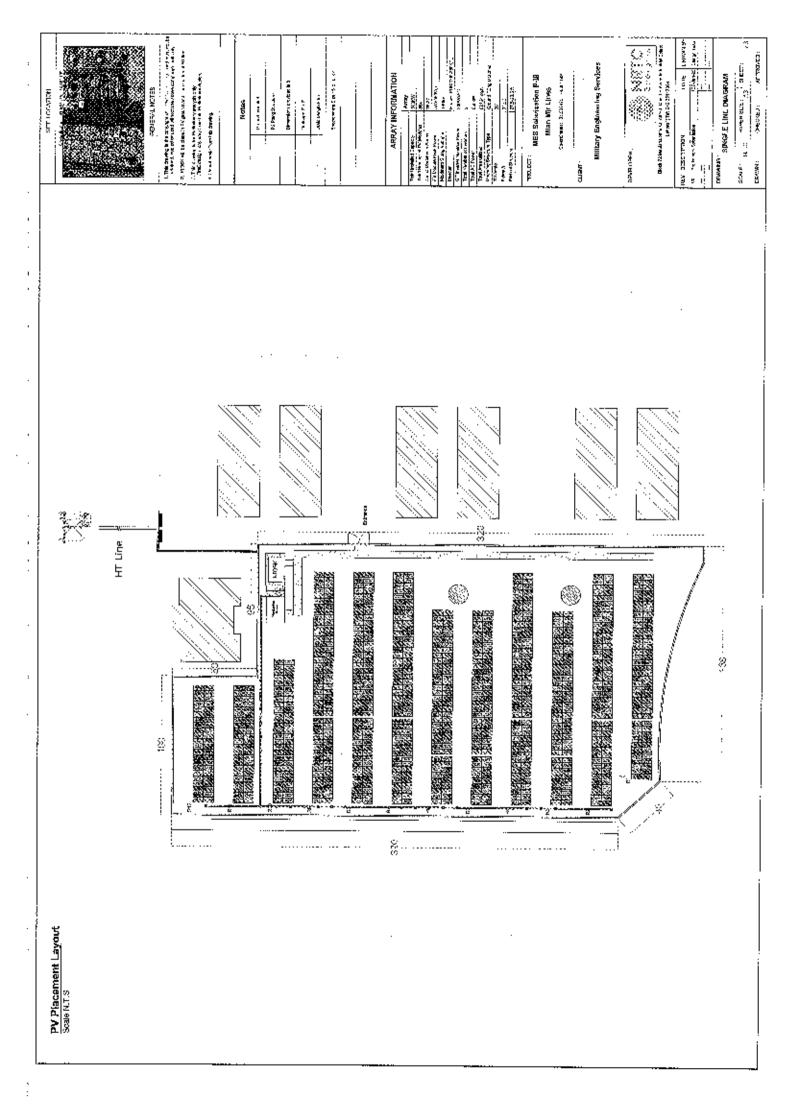
#### PVsyst V7.3.1 VCD, Simulation date: 08/01/24 10:48 with v7.3.1

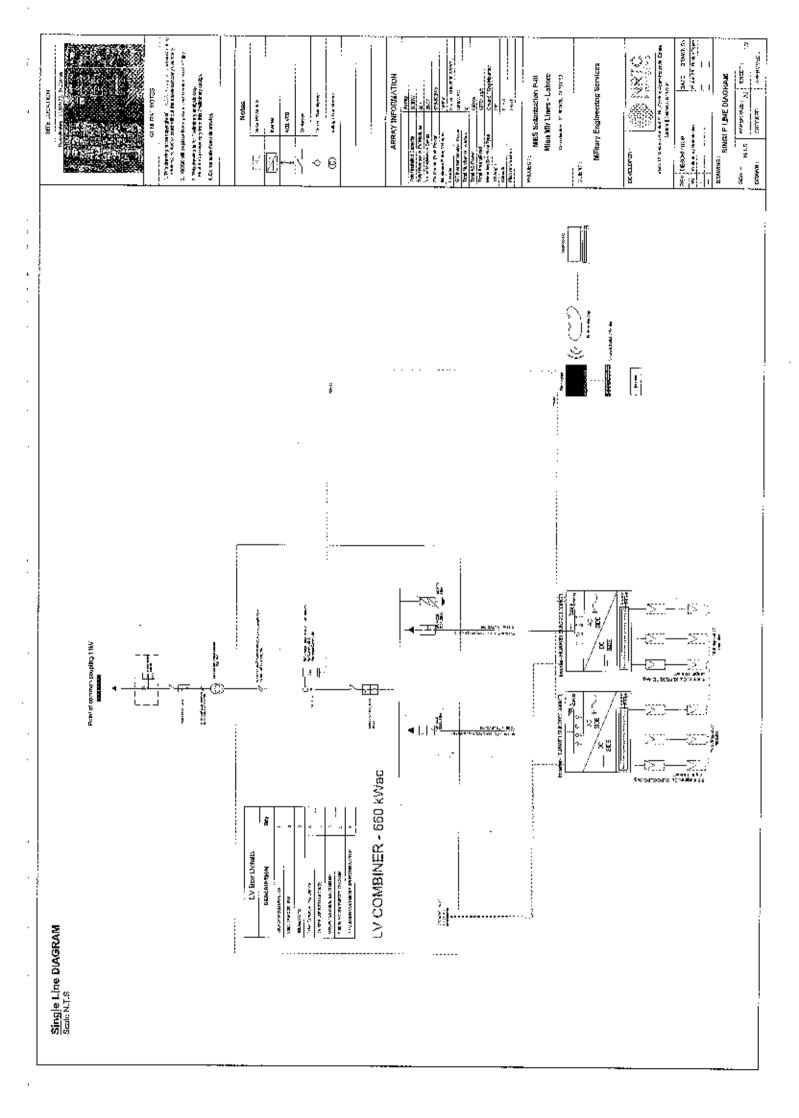

			P50 - P90 ev
Meteo d	lata		
Source	Meteonorm 6.1 (1996-2016)	), Set=100%	
Kind		ily averages	
Synthetic	- Multi-year average	-	
Year-to-y	ear variability(Variance)	4.6 %	
Specified	d Deviation		
Climate o	hango	0.0 %	
Global v	/ariability (meteo + syster	n)	
	(Quadratic sum)	4,9 %	

en langer in the

# P50 - P90 evaluation

Simulation and parameters uncer	tainties
PV module modelling/parameters	1.0 %
Inverter efficiency uncertainty	0.5 %
Solling and mismatch uncertainties	1.0 %
Degradation uncertainty	1.0 %
Annual production probability	
Varlability	29.3 MWh
P50	594,0 MWh
P90	556,3 MWh


525,7 MWh




# Probability distribution

P99

#### 08/01/24





SP 14	jing .	Specifications	្រំណា	Q.	e Att de and make	LOCALIMAORTED	Con 10051-0010-50
							Cooling 3, 50 rank
- 67		SOL	AR SY	STEM CO	MPONENTS		
	<u></u>	590Ws Tier-1 Difacial		<u></u>	·····		
	Solar PV Modules (*2 years product & 25 years performance warranty)	Meno Milypa Technology raving efficiency_22.5%	٩г	954	N-lypa Bifadal 680 w - JA; China	Imported	China
	Solar PV hyertene (S	330KVA heving		1			
2	years warany) w/// W/ Dongle	efficiency of 99,03% wch : bult⊧in SPC at DC ace AC Side	Nr	2	Huswel 350 kT., ; China	, mpuried	Colha
з	Cate ogger (Five yvers werranty)	Dataloggenfor communication	N-	1	Husiwe Smart Logger 2000A ; China	Іперлас	Chris
.4	Weather sonsors set	Whether sensers set (temp, wind, irrediation etc) compatible with the system as per RFP	Set	1	;7 Sensors ; Huawa	Imported	Chira
5	Salar PV mounting structure as non RH ^a	Solar PV mounting structure as per REF complete with CMI and Mechanics work as per crawing approved by jeansuitant	doL	 ,	Concrete Pile Structure - 150cm/r   PAX STAN - General Construction Mechanics	Lazzi	Pêkiêları
ð	Splet PV Celles as per IHC stendard 50618 OR IEC 62560 (10 years warranly .0 case of Locel Cable)	Singe to 6 4nnnsqrpv Cable tested at 1.5KV withstanding at 120 Degree X, PE/XLPO msdalider must be compliant went BC standard IEC Eventschitz	m	1	, Panstan Cables	Lecal	¶Pa∢slan
7	AC Cables from (rearbors to K OSK and liten from KOAK to point of concest vity	Thrue Core 1 20 mm/8q Cu, AC cable(Inverter Ic I V) Three Core MV 95 .mm/8q A0, AC cable (KIC66K to point of .commetions)	. ac.	1	Pakiston Ceb/ee	Local	
Ē	KIOSK compact station	I.V & de Fenel 2 x 320A MCC3 800Vote and 1 x 630A AC3.Transformet 630 XVA, HT Side Panel 630A VC5	Sei	1	l'ieriq Electric	.aca'	
â	Serthing Sytem at DC and AC side separate with material drilling upto water level, and lebour sa per BOQ approved by consultant	Complete Earthing whiti pure depaier roe, pappar electrodes having less than 3 Ohm earth rosistance		1	NRTC FNERGIES	Local	 Pacsian
-0	'Lightaning Arrestors	ESE (Early Stroamer Enticeion) Lightening Protection System as per RFP.	h.r	1	CONTRASO CESE LIGHTEN NG TERMINAL	Imported	l'uskey
11	Feroing for protection of Plant	Fonding wall for protection from animals and theft,	, locu	<i>4</i> .	NRTO ENERGIES	Local	Fakistan
12	Control Room	Well-equipped Contro room with LED and Furniture	Job	1	Signatura Arch test	_008	Pekielan
13	SCADA	Scada system for Monifering and Control as per RFP Spocifications	Jak	1	licss	Lecal I	-akistan
14	Land preparation	Dealis removal, desning, leveling, psving, wakweys, roundstionel making land mady tor SPP.		;	NRTO E NERCORES		Pakisten
15	Frongy Maler	29207	-03	1	WicroStar	mportest (	hlua
18	Sludies, approvals and permits	All studies approvats and pomnts required as per authoritios in Pakistanise		1			okizten

# Schedule-II - BOQ FOR_0.5_MWp for SITE Name_Lahore Site-3 (MM Line)_

٦

.

:

# Annex A-2

.

.

. •

.

.

ì

.

÷

:

· .



# **PVsyst - Simulation report**

Grid-Connected System

Project: Lahore MES (MSG) Variant: New simulation variant No 3D scene defined, no shadings System power: 501 kWp Lahore MES (MSG) - Pakistan



.

I

# Project: Lahore MES (MSG)

Variant: New simulation variant

- -----

#### PVsyst V7.3.1 VC0, Simulation date: 08/01/24 10:33 with v7.3.1

		Project s	summary —		
Geographical Site		Situation		Project sattings	
Lahore MES (MSG)		Latitude	31.55 °N	Alberto	0.20
Pakistan		Longitude	74.43 [°] E		
		Altitude	210 m		
		Time zone	UTC+5		
Meteo data					
Lahore MES (MSG)					
Meteonorm 8.1 (2016-2	021), 5at≃100% - Syr	nthetic			
		System s	ummary —		
Grid-Connected Sys Simulation for year no 1		No 3D scene defin	ed, no shadings		
<b>PV Field Orlentation</b>	1	Near Shadings		User's neods	
Fixed plano		No Shadings		Unlimited load (grid)	
Till/Azimuth	26/0°	_			
System Information					
PV Array			Inverters		
Nb. of modules		864 units	Nb. of units		2 units
Pnom total		501 kWp	Pnom total		600 kWac
			Pnom ratio		0.835
			ummary —		·
Produced Energy	589756 kWh/year	Specific production	1177 kWh/kWp/year	Parl. Ratio PR	72.60 %
	· · · •	Table of c	contents		
Project and results sum	mary				
General parameters, PV	Array Characteristics	a, System losses			
Main results	-				
.oss diagrem					
Predel, crautis					
a					·····

:



PVsyst V7.3.1 VC0. Simulation date: 08/01/24 10:33 with v7.3.1

# Project: Lahore MES (MSG)

### Variant: New simulation variant

....

		General	parameters —	~ ~	
Grid-Connected Sys	stem	No 3D scene de	fined, no shadings		
PV Field Orientation	1				
Orientation		Sheds configurati	ion	Models used	
Fixed plane		No 3D scene defin	ed	Transposition Perez	
Till/Azimuth	26/0 *			Diffuse Perez, Meleonorm	
				Circumaotar separate	
Horizon		Near Shadings		User's needs	
Free Horizon		No Shadings		Unlimited load (grid)	
·		PV Array C	haracteristics –		
PV module		PV Allay Q			
Manufacturar		001.0.1	Inverter		
Model	(107) 5	CSI Solar	Manufacturer	Huawel Technologie:	
		80MB-AG 1500V	leboM	SUN2000-330KTL-H	2
(Original PVsyst dat	aoasoj	500.146	(Custom paramete	•	
Unit Norr, Power		580 Wp	Unit Nom, Power	300 kWac	
Number of PV modules.		864 units	Number of inverters	2 units	
Naminel (STC) Madulus		501 kWp	Total power	600 kWac	
Modules	-	х 27 Iл series	Operating voltage	500-1600 V	
At operating cond. (50 Price	"CJ		Max. power (=>30°C)	330 kWao	
Ρηφρ 1		460 kWp	Pnom ratio (DC:AC)	0.84	
U mpp		823 V	Power sharing within t	his inverter	
Ι πρα		559 A			
Total PV power			Total Inverter powe	er	
Nominel (STC)		501 kWp	Total power	600 KWac	
Total		864 modules	Number of inverters	2 units	
Module area		2445 m²	Pnom retio	0.84	
	• <b></b>	Array	losses		
Array Solling Losse		Thermal Loss fa		DC wiring losses	
Loss Fraction	4.0 %		e according to imadiance	Global array res. 24 mΩ	
		Uc (const)	29,0 W/m²K	Loss Fraction 1.5 % at	I STC
		Uv (wind)	0.0 W/m²K/m/s		
Serie Diode Loss		LID - Light Induc	ed Decradation	Module Quality Loss	
Valtage drop	0.7 V	Loss Fraction	2.0 %	Loss Fraction: -0,4 %	
LORS Fraction	0.1 % at STC				
Module mismatch lo	•	Strings Line-t-	h 1		
loss Fraction	2.0 % at MPP	Strings Mismatc Loss Fraction		Module average degradation	
-coa i neomati	2-0 70 GUWH 1	сова повеција	0.1 %	Yearno 10	
				l.oss factor 0.4 %/ye	aar
				Mismatch due to degradation	
				Imp RMS dispersion 0.4 %/ye	
				Vmp RMS dispersion 0.4 %/ye	аг
<b>AM loss factor</b> noidence effect (IAM); U	ser defined profile				
			·		_
10" 20'	° 30°	40" !	59° 60°	70° 80°   90°	
0.998 0.99	0.995	0.992 Q	.986 0.970		



# Project: Lahore MES (MSG)

## Variant: New simulation variant

#### PVsyst V7.3.1 VC0, Simulation date: 08/01/24 10:33 with v7.3.1

			ses —		
Unavailability of the	system	Auxiliarías loss			
Time fraction	3.4 %	Proportionnal to Power	5.0 W/kW		
	12.4 days,	0.0 kW from Power thresh	۱,		
-81	3 parioria	Night eux, cons.	500 W		
		AC wiring la		· · · · · · · · · · · · · · · · · · ·	······································
Inv. output line up to	MV transfo				
Inverter voltage		800 Vac tri			
Loss Fraction		0.10 % at STC			
Inverter: SUN2000-330k	TL-H2				
Wire section (2 Inv.)	Alu 2 x 3	x 240 mm²			
Average wires length		20 m			
MV line up to injectio	m				
MV Voltage		11 KV			
Wires	Copper 3	3 x 95 mm²			
Length		100 m			
Loss Fraction		0.01 % at \$TC			
		AC losses in tran	sformers		··
MV transfo					
Medium voltaga		11 KV			
Transformer from Datas	heets				
Nominal power		630 kVA			
Iron Lass (24/24 Connex	ion)	1.00 kVA			
from loss fraction		0.16 % of PNom			
Copper loss	2	20.00 RVA			
Copper loss fraction		3.17 % et PNom			
Colls equivelent resistanc	æ 3x3	32.25 mΩ			

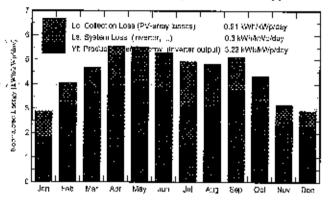


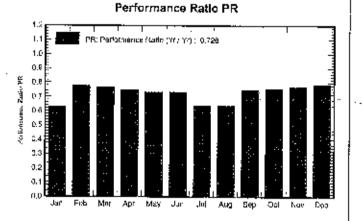
# Project: Lahore MES (MSG)

## Variant: New simulation variant

PVsyst V7.3.1 VC0, Simulation date: 08/01/24 10:33 with v7.3.\$

#### Main results


#### System Production


Produced Energy (P50) 589756 kWh/vear Produced Energy (P90) 541853 kWh/year Produced Energy (P99) 502448 kWh/year

Specific production (P60) Produced Energy (P90) Produced Energy (P99)

1177 kWh/kWp/year Performance Ratio PR 72.60 % 7081 kWh/kWp/year 1003 kWh/kWp/year

#### Normalized productions (per installed kWp)





	GlobHor	DiffHor	T_Amb	Glabine	GlobEff	EArray	E_Grid j	PR
	kWh/m²	kVVh/m²	°C	; <wh m²<="" th=""><th>kWh/m²</th><th>kWh</th><th>kW/h</th><th>retio</th></wh>	kWh/m²	kWh	kW/h	retio
January	69.8	42.4	11.54	89.6	84.5	37686	28413	0.63
February	91.8	46.6	15.8B	113.2	107.0	46619	44159	Q.77
March	130.8	79.4	21.92	145.3	137.0	58713	55820	D.76
April	160.4	87.8	26,96	166.0	156.3	65390	62279	0.749
May	· 176.0	100.0	33,05	171.4	161.3	66009	62669	0.732
Juno	168.2	101.7	\$2.90	158.7	149.3	61304	58385 I	0.734
July	160,4	100.6	31.45	152.9	143.9	59650	48865	0.63
August	150.4	97.5	30,68	150.0	141.2	58865	47968	0.63
September	141.1	7 <del>9</del> .3	28.86	j 153.9	144.5	50336	57400	0.741
October	115.5	72.9	25.81	134.3	126.7	53619	50928	0.75
November	76.7	49.6	18.79	95.6	90.1	39211	97010	0.772
December	68.8	42.1	1,3.61	90.6	85.5	37888	35679	0.786
Year	1509.6	900.0	24.33	1620,9	1527.1	645291	589756	0.726
				!				
Legends								
	al horizontal irvadia			EArray	<ul> <li>Effoctive e</li> </ul>	anergy at the ou	ulput of the array	,
Diffutor Horiz	contal diffuse irrada	ation		E_Grid	l Energy inj	ected into grid		

PR.

Performance Ratio

# Balances and main results

T, Amb

Globine

GIODEIT

Ambient Temperaturo

Global incident in coll. plane

Effective Global, corr. for IAM and shadings

Page 5/8



;

# Project: Lahore MES (MSG)

### Variant: Now simulation variant

**PVsyst V7.3.1** VC0, Simulation date: 08/01/24 10:33 with v7.3.1


1510 kWh/m²	Global horizontal irradiation
	.4% Global Incident in coll. plane
14-1.8	16% IAM factor on global
4.0	0% Soiling loss factor
1527 kW0/m² * 2445 m² coll.	Effective irradiation on collectors
efficiency at STC = 20.58%	PV conversion
······································	Array nominal enorgy (at STC effic.)
-3.809	
9-0.28%	PV loss due to irradiance level
5.39%	PV loss due to temperature
	Module quality loss
-2.00%	LID - Light induced degradation
4.10%	Mismutch loss, modules and strings (including 2% for degradation dispersion
Å+-0.97%	Ohmic wiring loss
845291 kWh	Array virtual energy at MPP
9-1.69%	Inverter Loss during operation (efficiency)
₩ 0.00%	inverter Lose over nominal inv. power
N 0.00%	Inverter Loss due to max. Input current
₩ 0.00%	Inverter Loss over nominal inv. voltage
₩ D.DB%	Inverter Loss due to power threshold
¥ 0.00%	Inverter Loss due to voltage threshold
9-0.01%	Night consumption
634331 kWh	Available Enorgy at Inverter Output
9 -0.84%	Auxilíaries (fans, other)
N-0.04%	AC ohmic loss
-2.48%	Medium voltago transfo loss
¥ 0.00%	MV line of mic loss
3-3.83%	
589756 kWh	System unavailability Energy injected into grid



Project: Lahore MES (MSG)

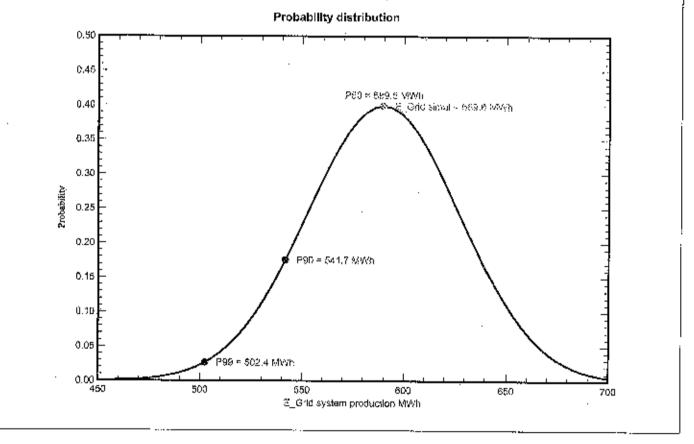
Variant: New simulation variant

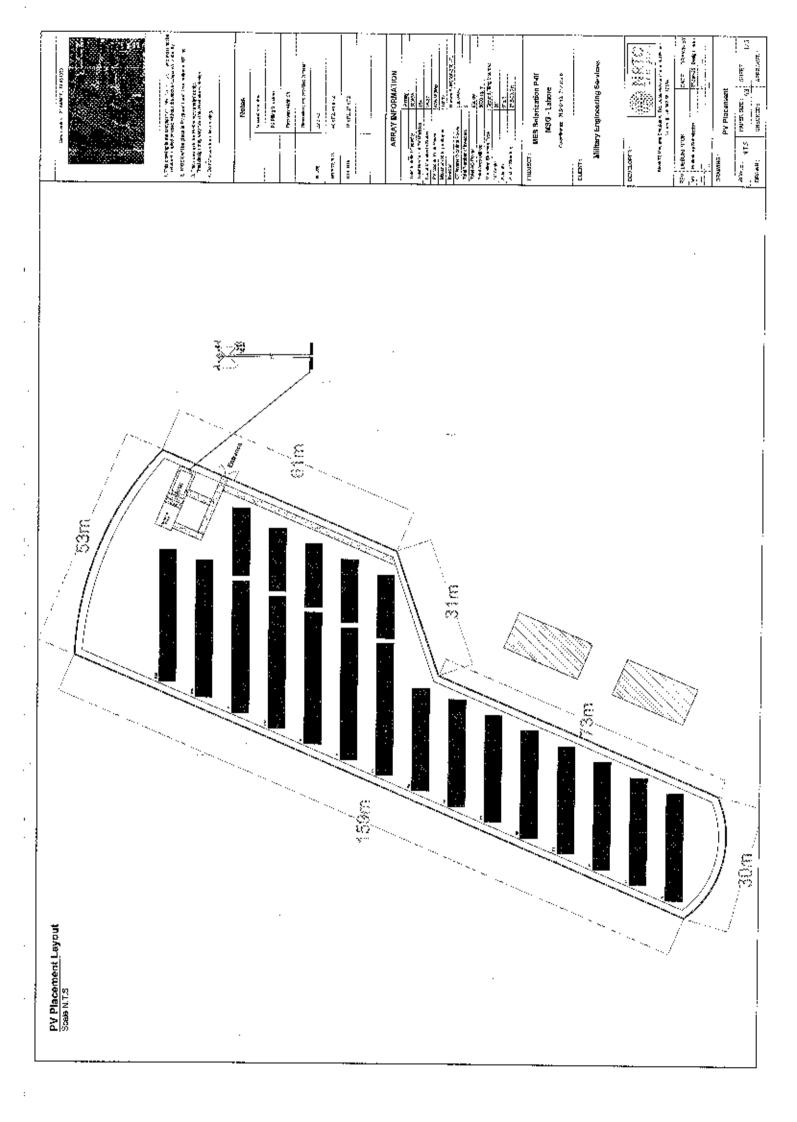
PVsyst V7.3.1 VC0. Simulation dete: 08/01/24 10:33 with v7.3.1

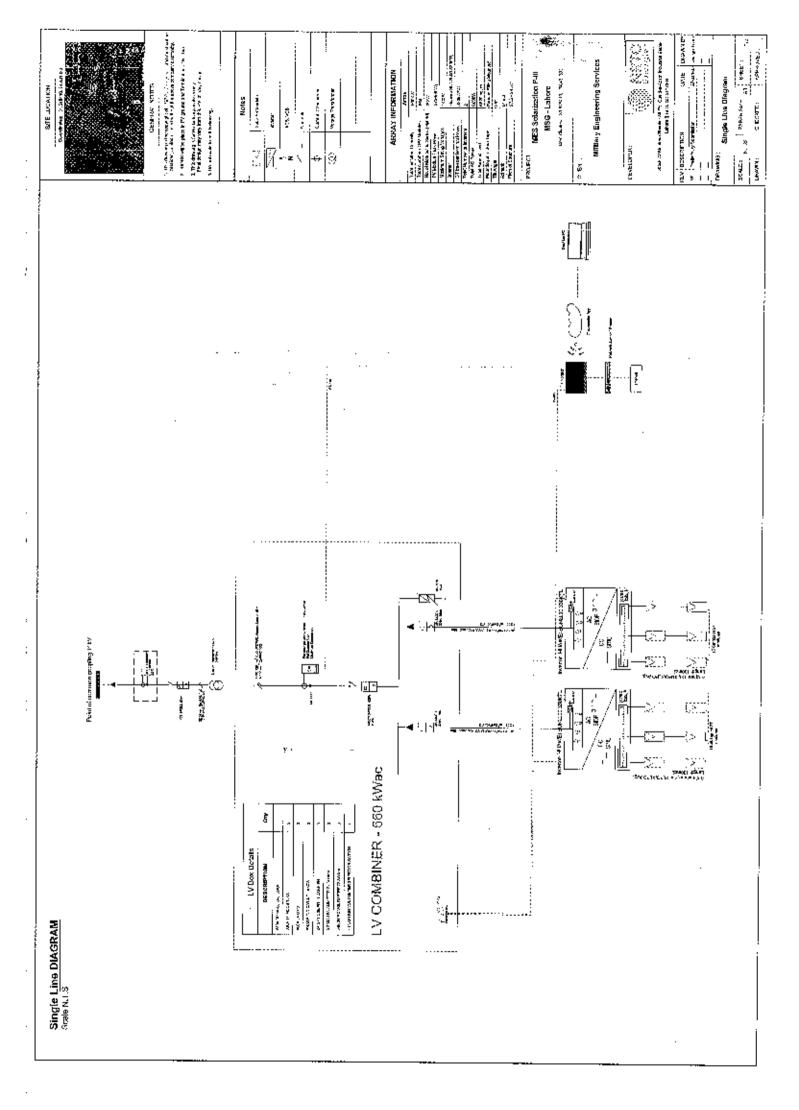




# Project: Labore MES (MSG)


#### Variant: New simulation variant


**PVsyst V7.3.1** VC0, Simulation dete: 06/01/24 10:33 with v7.3.1


Source	Meteonorm 8.1 (2016-2021),	Sat=100%
Kind		everages
Synthetic	<ul> <li>Multi-year average</li> </ul>	
Year-to-y	ear variability(Variance)	6.1 %
Specifica	Deviation	
Climate d	hange	D.D %
Globaí v	/ariability (mateo + system)	1
	(Quedratic sum)	, 17.4 %

#### P50 - P90 evaluation

Simulation and parameters unce PV module modelling/parameters	1.0 %
Inverter efficiency uncertainty	0,5 %
Soiling and mismatch uncertainties	1.0 %
Degradation uncerteinty	1.0 %
Annual production probability	
	37.5 MW
Variability	
<b>Annual production probability</b> Variability P50 P90	37.5 MW 589.8 MW 541.7 MW







Sy Ne	lleri	Specifications	Umb	(Jh)	Moreat and apples	LOCALITMPORTE	Country of Or
		so	lar sy	STEM CO	MPONENTS:		
ı	Solar 2V Koduces (172 years product & 2b years partomishice wairenty)	S80V(): Tier-1 DPacial Mont N Type Technolog having officiality_22 5%	y Nr	881	h-lype B facat 590 w-vA. China	mporter	Chine
2	Sular FV Inventers (3 years warranty) with With Dongle	<ul> <li>330KVA heVirg efficiency</li> <li>c) 93.63% with built-or</li> <li>SPD al DC and AC Side</li> </ul>	y Nr	2	HUSING SJC KTL ; CMIR	Importation	
3	Datalogger (Flye years warranty)	Datalogger for communication	N ^r	1 1	Husiyel Smart Logger SCEOA ; Clainz	Imported	China
4		Woether sensors cell (leng, wind, irrediation etc) competible with the system as per F.FP	84		7 senserar Huawei	Imporied	China
5	Solar HV mounting etucture as per RF⊃	Soler PV mounting structure as per RFP complete won Colliand Medianical work as per crawing opproved by cansultant.	chi	1	Concrete Pile Structure   160km/hr   PAIdSTAN - General Construction Mechanics	Locel	Pakistan
9	Solar IPV Cables as per IPO standard S0519 OR IEC 82830 (10 years warranty in case of Local Cable)	Single Core 4min.Sq. 2V Cablo tostad at 1,5KV will standing at 120 Degree XLPE: XLPC nsulation must be obligitant with IEC standers' EC 62230.2017	Jab	1	Pakistan Garios	.508'	Pakistan
7	AC Cables from Invertere Ic K OSK and than from KIOSK to point of connectivity	Thrac Gree 120 (hol Sq Cu, AC cap etimotral to LV) "hree Cara MV 95 minSq Al, AC cable (KICSK to point of connecticity)		1	Pakstan Çațieș	Local	Pakstan
в	KICSK compact elision	LV Side Paner 2 x 320A MOCE, 300Volts and 1 x 680A ACB Transformor 530 (VA, HT Side Panes 630A VOB	5न		, Terq Elactic	Local	Pekistan
9	Earthing Sylam at DC and AC sub-soperate with meterial, drilling upts water level, and labour as par BOC approved by consultant	Complete Reithing with pure pappenrad, conpen- electrodes having leas than 8 Ohm earch registance.	دەر	1	NRTČ EN ERČIES	Local	Paosian
14	Lightening Americans	E6E (Early Streamer Errission) Jightening Protection System as per REP.	Nr	3	CONTRA60 CESE LIGHTENING	Imported	Тижеу
11	Férraing für oralection of Plant	Ferraing wall for protection (rom entimate and that	₩αb	1	NRTC ENERGIPS	Local	 Paksian
2	Control Room	Wail-eqt(pped Control room with LED and FutriBute	Job	1	Signaltus Archilect	Local	Pøklstan
3	SCADA	Scada system for monifoling and Control as per RFP Specifications	dat	4	licss	l coaj	Pakstan
 د ا	Lanc preparation	Debris removal, disaning, leveling, paving walkways foundations, making isnd ready for SPP.	.'as	1			Pakistan
5	Energy Meter	8050T	Jcb	1	MicroStar	inteq	China
ō	Bluttes, are reversed and requile	All Bladles approvals and pomots required as per authorities in Pakistan as [	Jeb		NRTC ENERGIES	 Losa	Pakistan:

.

# Annex A-3



# **PVsyst - Simulation report**

Grid-Connected System

Project: Lahore Mes (CMH)

Variant: New simulation variant No 3D scene defined, no shadings System power: 1001 kWp Lahore MES (CMH) - Pakistan

Author



# Project: Lahore Mes (CMH)

### Variant: New simulation variant

#### PVsyst V7.3.1 VCD, Simulation date: 08/01/24 10:37 with v7.3,1

		Project s	ummary		•
Geographical Site Lahore MES (CMH) Pakistan		<b>Situatio</b> n Latitud <del>e</del> Longitude Allitude Time zone	81.54 °N 74.37 °E 210 m UTC+5	Project settings Albedo	n <b>2</b> 0
<b>Meteo data</b> Lehore MES (CMH) Meteonorm 8.1 (1996-2	2015), Sat=100% - Sy	nthetic			
			ummary	•••	····
Grid-Connected Sys Simulation for year no 1		No 3D scene defin	ed, no shadings		
<b>PV Field Orientation</b> Fixed plane Tilt/Azimuth	n 2670 °	Near Shadings No Shadinga		<b>User's neods</b> Unlimited load (grið	)
System information PV Array			Inverters		
Nb. of modules Priom total		1726 prits 1001 kWp	Nb. af unite Prom totel Pram ratio		3 units 900 kWac 1.112
		Results s	ummary	·····.	
Produced Energy	1201970 kWh/year	Spacific production	1201 kWh/kWp/year	Perf. Retio PR	73.94 %
		Table of a			
General parameters, PV	/ Arrey Characteristic:	s, System losses			3
Main results Loss diagrani					5 0
P50 - P90 evaluation					·····



# PVsyst V7.3.1 VC0, Simulation dato: 08/01/24 10:37 with v7.3.1

# Project: Lahore Mes (CMH)

Variant: New simulation variant

- --

	General	parameters —–	
Grid-Connected System	No 3D scene de	fined, no shadings	
PV Field Orlentation			
Orientation	Shada configurati	οπ	Models used
Fixed plane	No 3D scene defin	ed	Transposition Perez
Till/Azimuth 2670	•		Diffuse Perez, Meleonorm
			Circumsolar separate
Horizon	Near Shadings		
Free Horizon	No Shadings		User's needs
	No onadinga		Unilmited lose (grid)
	PV Array C	haracteristics	······································
PV module	•	Inverter	
Manufacturer	CSI Solar	Manufacture/	Line and the state of the state
Model	CS7L-580MB-AG 1500V	Manaracturer Mođel	Huawol Technologies
(Original PVsyst database)	5615 5KAN 1346 1360Y		SUN2000-330KTL-H2
Unit Nom, Powor	580 Wp	(Custom peramete Unit Nom, Power	-
Number of PV modules	1726 units		300 kWaq
Nominal (STC)		Number of inverters	3 Unite
	1001 kWp	Total power	900 kWac
Array #1 - PV Array	·		
Number of PV modules	8៥8 units	Number of Investors	8 * MPPT 17% 1.3 unlt
Nominal (STC)	503 kWp	Total power	400 kWac
Modules	31 Strings x 28 In series		
At operating cond. (50°C)		Operating voltage	500-1600 V
Ртрр	463 kWp	Max. power (=>30°C)	
U трр	854 V	Pnom ratio (DC:AC)	1.26
І трр	542 A	No Power sharing bet	
Array #2 - Sub-array #2		-	
Number of PV modules	858 units	Number of inverters	
Nominal (STC)	498 kWp		10 * MPPT 17% 1.7 units
Modules	33 Strings x 26 In series	Total power	500 kWac
At operating cond. (50°C)	aa quinge x 20 m senus	Onerflerent	<b></b>
Pinpp	157 MAIN	Operating voltage	500-1500 V
нарр И трр	457 kWp 702 V	Max. power (≂>30°C) Coorr matic (⊐C. a c)	330 kWac
о тър Глур	793 V	Priomiratio (BC;AC)	1.00
LIL PR	577 A	No Power sharing betw	VCGN MPPTe
Total PV power		Total Inverter powe	÷r
Nominal (STC)	1001 kWp	Total power	900 kWac
Total	1726 modules	Number of inverters	3 units
Module area	4885 m²	Phom ratio	1.11
		No Power sharing	
	Arrav	losses	,,,,
Array Soiling Losses	Thermal Loss fac		Sector Diada I
Loss Fraction 4.0 9		according to irradiance	Sarie Diode Loss
4.0	Ue (canst)	29.0 W/m²K	Voltage drop 0.7 V
	Uv (wind)	29.0 W/m²K/m/s 0.0 W/m²K/m/s	Loss Fraction 0.1 % at STC
LID - Light Induced Degradat			Module mismatch losses
Loss Fraction 2,0 %	6 Loss Fraction	-0.4 %	Loss Fraction 2.0 % at MPP

.

ļ

100

.

.

# Project: Lahore Mes (CMH)

Variant: New simulation variant

**PVsyst V7.3.1** VC0, Simulation date: 08/01/24 10:37 with v7.3.1

— <del>"</del>		An	ay losses	• n
Strings Mismatch loss Loss Fraction	0.1 %	Year no	ge degradation 10	
		Loss factor	0.4 %/year	
		Mismatch due to		
		Imp RMS dispers	•	
		Vn₂p RMS dianer	sion (1,4 %/year	
IAM loss factor Incidenco offect (IAM); Use	r đefinad profile			
10° 20°	36^		50° 60° 70°	
0.998 0.998	0.995	0.992		
0.000	0.000	0.332	.0.986	<u> </u>
·		DC w	Iring losses	
Global wiring resistance	10 mΩ		-	
Loss Fraction	1.5 % at STC			
Array #1 - PV Array				
Global array res.		26 mΩ	Array #2 - Sub-array #2	
Loss Fraction		1.5 % at STC	Global array res. Loss Fraction	23 mΩ
				1.5 % at STC
·		Svet	em losses	
	- <b>-</b>			
Unavailability of the sys Time fraction		Auxiliaries los	—	
time racion	3.4 %	Proportionnal to P		
	12.4 days,	0.0 kW fram Pow		
	3 periods	Night aux, cons,	500 W	
		AC wi	ring losses	· · · · · · · · · · · · · · · · · · ·
Inv. output line up to M	V transfo			
Inverter voltage	T Mulliolo	800 Vac tri		
Loss Fraction		0.08 % at STC		
Inverter: SUN2000-330KTL	-H2		Inverter: SUN2000-330KTL-H:	
Wire section (1 /nv.)		k 240 mm²	Wire section (2 Inv.)	د Ału 2 x 3 x 150 mm²
Wires length		20 m	Average wires length	
		23 11	Averege wirds length	0 m
MV line up to injection				
MV Voltage		11 KV		
Wires	- Alu 3 x	4120 mm²		
Length		100 m		
Loss Fraction		0.02 % at STC		
	<u>.</u>	AC losses	in transformers —	
MV transfo			-	
Medium voltage		11 kV		
Transformer from Datashe	ets			
Nominal power		1250 kVA		
Iron Loss (24/24 Connexion		1.0D kVA		
Iron loss fraction	-	0.08 % of PNom		
Copper loss		0.00 KVA		
Coppor loss fraction		1.60 % at PNom		
Colls equivaient resistance		8.19 mΩ	·	
			<b>_</b>	



.

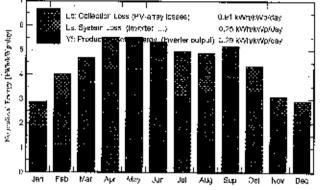
÷

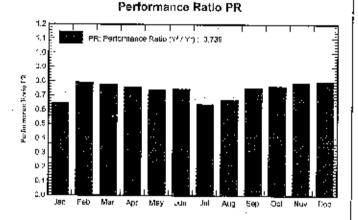
# Project: Lahore Mes (CMH)

#### Variant: New simulation variant

PVsyst V7.3.1 VC0, Simulation date: 08/01/24 10:37 with v7.3.1

#### Main results


#### System Production


Produced Energy (P50) 1201970 kWh/yeer Produced Energy (P90) 1103932 kWh/year Produced Energy (P99) 1024030 kWh/year

Produced Energy (P90) Produced Energy (P99)

Specific production (P50) 1201 kWh/kWp/year Performance Ratio PR 73.94 % 1103 kWh/kWp/year 1823 kWh/kWp/year

# Normalized productions (per installed kWp)





#### Balances and main results

	GlobHor	DiffHor	T_Amb	Globinc	GlobEff	EArray .	PR
	kWh/m²	kWh/tŋ²	°C	kWh/m²	kWh/m²	kWh	ratio
January	69.8	43.8	11.97	B9.2	84.1	75051	0.648
February	01.5	47.0	16.08	. 112.8 -	106.6	93022	0,793
March	130.8	77.5	22.10	145.7	137.2	117704	0.779
April	160.2	87.6	27.05	165.9	156.2	130724	0.760
May	176.0	99.4	S3.10	171.5	161.5	132088	0.742
June	169.5	102.6	33.65	160.2	150.7	124093	0.747
July	160.6	102.3	31.57	153.2	144.1	119956	0.641
August	151.4	85.3	30.79	151.6	142.7	118810	0.675
September	141.5	71.5	29.07	154.5	145.6	121017	0.755
October	115.7	69.5	26.00	135.2	127.6	107744	0.768
November	76.5	52.0	19.07	93.4	88.0	76644	0.788
December		. 41.9	13.92	90.7	85.5	75726	0.801
Year		890.5	24,52	1623.8	1529.9	1292479	0.739
Legends							
GlobHar Glo	bai horizontal Irradiation			EAiyay Effe	ctive energy at the	e output of the arra	67
Dl:'Hor Hori	izontal diffuse Irradiation			•	formance Ratio	o ouper er int arra	<i>y</i>
T_Amb Amb	bient Temporature						
	bal incident In coll. plane						
	ctive Global, corr. for IAM	and shodings					



Γ

.

:

.,

# Project: Lahore Mes (CMH)

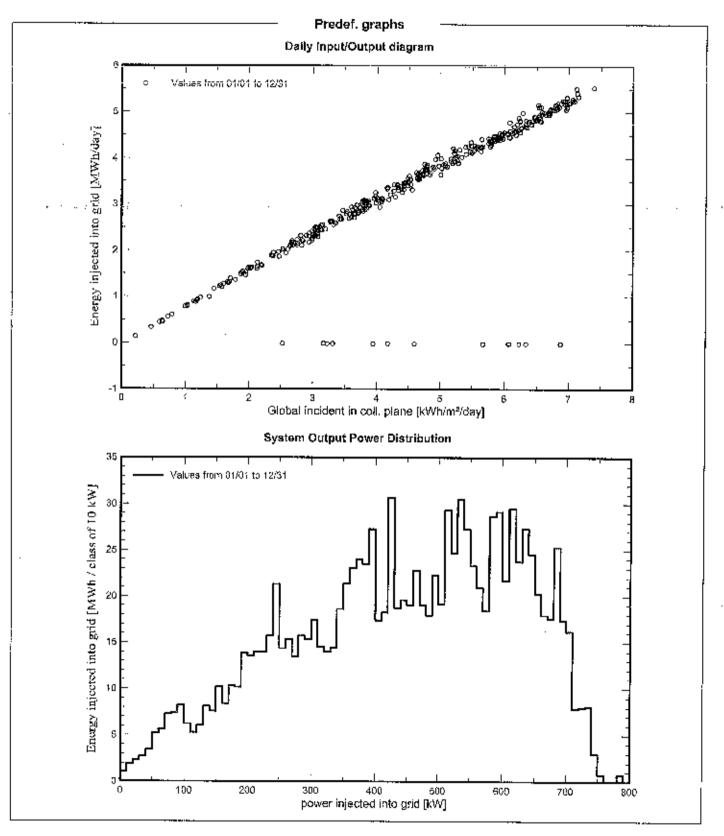
Variant: New simulation variant

Loss diagram

_ _

**PVsyst V7.3.1** VC0, Simulation date; 08/01/24 10:37 with v7.3.1

		+ ••••	
	1512 kWh/m²	7	Global horizontal irradiation
		+7.4%	Giobal Incident in coll, plane
		N	· · · ·
		-1.86%	IAM factor on global
:		>>) -4.0℃%	Soiling loss factor
	1530 kWh/m² ^ 4885 m² co		Effective irradiation on collectors
	efficioncy at STC = 20.589	%	PV conversion
درهن العاقبة أنتقد أنتاج	· · · · · · · · 1538279 kWh		Array nominal energy (at STC effic.)"
		9-3.80%	Module Degradation Loss ( for year #10)
		9-0.27%	PV loss due to irradiance fevel
		6.53%	PV loss due to temperature
		(+0.43%	Module quality lass
		9-2.00%	LID - Light induced degradation
		9-3.91%	Mismatch loss, modules and strings {Including 1.8% for degradation dispersion
		o.93% ب	Ohmic wiring loss
:	1292479 kWh		Array virtual energy at MPP
•		-1.66%	Inverter Loss during operation (efficiency)
ļ		9 0.00%	Inverter Loss over naminal inv. power
		9 0.00%	Inverier Loss due to max, input current
		90.00%	Inverter Loss over nominal inv. voltage
		9-0.01%	Inverter Loss due to power threshold
		9 0.00%	Inverter Loss due to voltage threshold
	4	9 -0.01%	Night consumption
	1270870 kWh		Available Energy at inverter Output
		9-0.66%	Auxiliaries (fans, other)
		9-0.03%	AC ohmic loss
		9-1.21%	Medium voltage transfo loss
		9-0.01%	MV line of mic loss
	l N	⇒-3.55%	System unavailability
:	1201970 kWħ		Energy injected into grid
1			




;

Project: Lahore Mes (CMH)

#### Variant: New simulation variant

PVsyst V7.3.1 VCD, Simulation date: 08/01/24 10:37 with v7.3.1



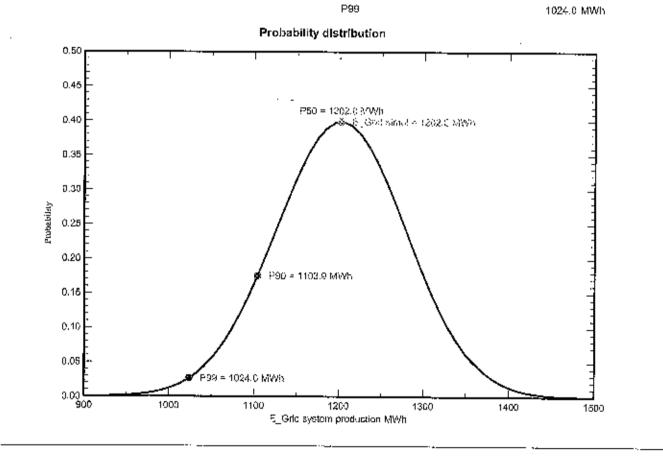


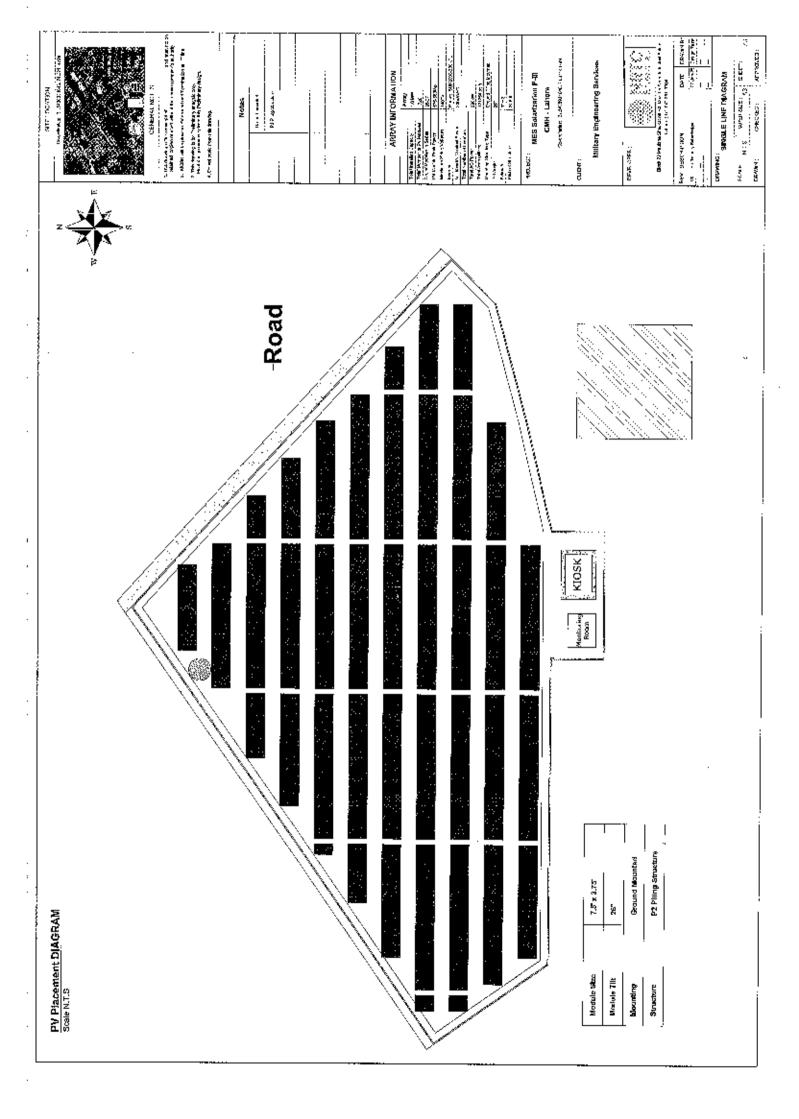
1

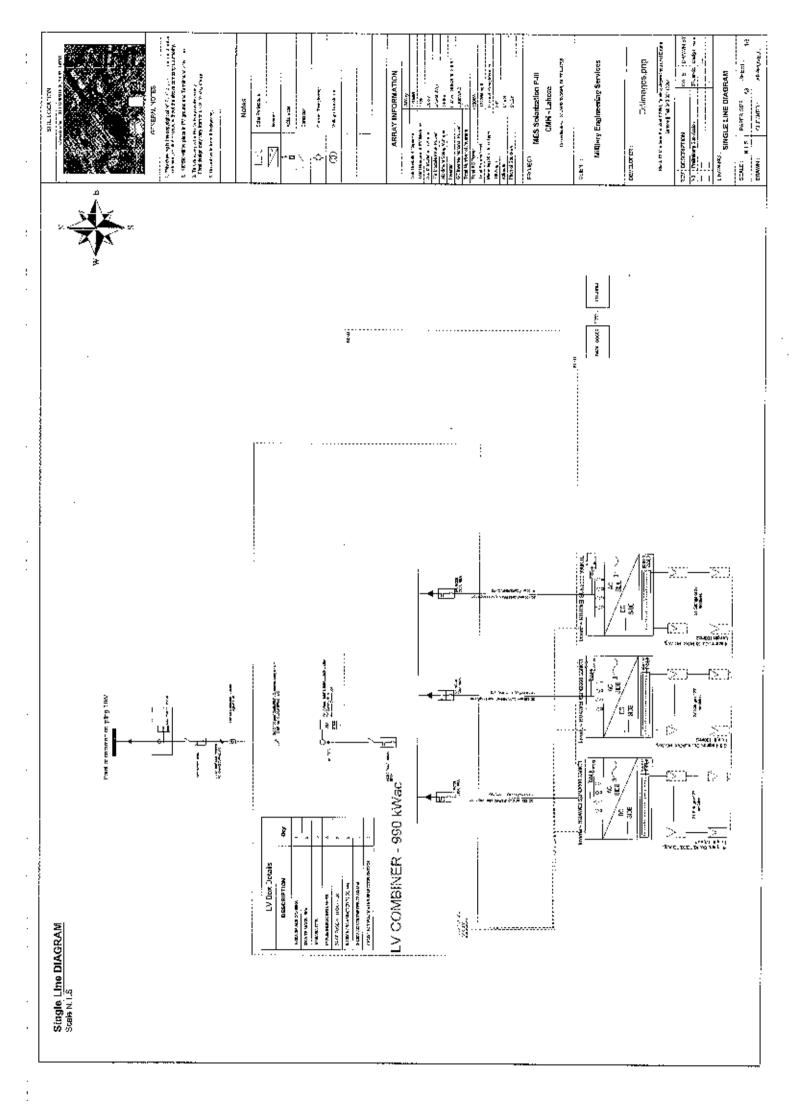
;

•

# Project: Lahore Mes (CMH)


#### Variant: New simulation variant


#### PVsyst V7.3.1 VC0. Simulation date: 08/01/24 10:37 with v7.3.1


		- Ji
Meteo d	lata	
Source	Meteonorm 8.1 (1996-201	l5), Sat≐100%
Kind	Mor	nthly averages
Synthetic	- Multi-year average	
Year-to-y	ear veriebility(Variance)	B.1 %
Specifier	d Deviation	
Climato c	hange	0.0 %
Global y	/ariabliity (meteo + syst	em}
	(Quadratic sum)	6.4 %

# P50 - P90 evaluation

Simulation and parameters unce	rtainties
PV module modelling/parameters	1.0 %
Inverter efficiency uncertainty	0.5 %
Solfing and mismatch uncertainties	1.0 %
Degradation uncertainty	1.0 %
Annual production probability	
Varlability .	76.5 MWh
P50	1202.0 MWh
. P90	1103.9 MWh







			( ::				1
-37 Mr.	Rect	Specificationa	Unde	Qty	Model and there	LOCALIMPORTED	Country of Orlg
		50	AR SVS		MPONENTS		
						<u>. (</u>	
٦	Solar PV Modules (12 years product & 25 years "performance warranty)	580Ws Tier-1 Pflacial Meno N Type Technology having officiency_22.5%	٩r	1725	N-lype Bifsclei 590 w - JA; Chrra	і Іпрозас	 Chire
2	Solar PV Inverters () years warransy) with Will Dongle	030KVA naving "efficiency of \$9.62% with built-in SPC at DC and "AC Skie		8	Huawel 330 KT., ; China	Imported	Chne
з	Dataloggor (Five years warranty)	Datalogger for Summunication	N-	1	Haawei Smart Lagger 2000A . Ontoa	Imentied	China
4	Wəsələr веласна ен.	Weather sensate sol (temp, wind, inactation ofc) compatible with the system as per REC	8e;	1	7 sonsors : Huewei	imperted	Colga
6	Sidet PV motiviling structure as per RFP	So an PV mounting attructure as per REP recruited with Civil and Mooran callwork as per prawing approved by paraultant	lsb		Concrete (His Structure   150km/or   PARISTAN	raneral Construction Modaenica	-'akistar
Ġ	Solar PV Cables as per 'EC standard 50316 OR HC 62030 (10 years warranty in cuse of Local Octrie)	Single Lors Annal, W Caste tested at 1 SKV Will standing at 120 Segree XLPET XLPO the Italian must be compliant with IEC standard IEC estandard IEC estandard IEC	 dal.	1	Pakislar Dablos	Local	Pakislen
7	AC Cables from Invertain to KIOSK end then from KIOSK to point of congradivity	Three Core 120 mmSq Cla AC cable(Invertor to LV)	Jat	1	Pak etan Gables	Local	Facstaj
g.	KIOSIC cour sect station	LV Side Panel 2 x 3204 MCCB, 800Volts and 1 x 103DA ACB, Transformer 5 25 MVA, 41 Side Fanel 630A VCB	Se:	1	Tarlq Electric	Local	Paklalan
ç	Eaching Sylem at DC and AC alde separate with material , offling upto water level, and lebour as per BCQ approved by consultent.	Complete Earthing with pure copper rod, copper- electrodes having less than 5 Ohm serth resistance	Jab	1	N 9TC HNERG ES	Local	Pakjalan
10	Ligittening Arrestons	ESE (Carly Streamor Emission) Lightening Protection System as per RFP	МГ	2	CONTRAGCICESE LICHTENINO TERMINAL	Imported	Turkey
11	Fending for protection of Plant	Fenang well for protection from entropies and theft	Jab	1			Pakislan
°2	'Cortrai Reair.	Well-actipated Control room with LED and Formare	Joh	1	Signature Architect	Losa I	faxistan
15	SCADA	Scace system for monktoring and Contro- as por REP Succifications			1C85	Local I	, ekial8L∙
14	and properation	Debfile rannoval, deathig, evening, paving, welkwaye foundations, melking land ready for SPP	Jab	1	NIRTE ENERGIES	Lorasi F	
15	Energy Meter	2005	Job	1	Moroëter	limported (	inne
:6	Studies, approvais and pemilis	All studies approvale and bemils recurred as per authorities in Pokistan as per fawidirectives/SRQs	Jeb j	1	NRTC ENERGIES	local F	

# Schedule-II- BOQ FOR_1_MWp for SITE Name_Lahore Site-1 (CMH)

1

T

· . . .

# Annex A-4



:

# **PVsyst - Simulation report**

Grid-Connected System

Project: Lahore MES (Akram Line)

Variant: New simulation variant No 3D scene defined, no shadings System power: 501 kWp Lahore Mes (Akram Line) - Pakistan



# Project: Lahore MES (Akram Line)

## Variant: New simulation variant

**PVsyst V7.3**.1 VC0, Simulation date: 08/01/24 10:40 with v7.3.1

<u> </u>	Project s	Summary —		
Geographical Site Lahore Mes (Akram Lino) Pakistan	<b>Situation</b> Latitude Longitude Attitude Time zone	31.53 °N ° 74.39 °E 217 m UTC+5	Project settings Albedo	0.20
<b>Meteo data</b> Lehore Mes (Akram Line) Meteonorm 8.1 (1998-2015), Sat=100'	% - Synthetic			
,,	System a			
Grid-Connected System Simulation for year no 10	No 3D scene dafir	-	the second second	
PV Field Orlentation Fixed plane Fill/Azimuth 2670 °	Near Shadings No Shadings		<b>User's needs</b> Unlimited load (grid)	
System information ∾V Array		Inverters		
Nb. of modules Pnom total	864 units 501 kWp	Nb. of units Pnom totel Pnom ratio	c	2 units 600 kWac ).835
	Results s	ummary —	·	
Produced Energy 595529 kWh/		-	Perf. Ratio PR	72.86 %
-,	Table of a			······································
Project and results summary General parameters, PV Array Charact Aain results	enerica, oystein losses			3
Aain results .oss diagram				6
riedel, grapris				7

# Project: Lahore MES (Akram Line)

.

### Variant: New simulation variant

...

1 1 have	22
	8
1 I I I	ō.
···· • • • • • • • • • • • • • • • • •	р.
- 20 Da	α.
	Ξ.
	-

.

PVsyst V7.3.1 VC0, Simulation date: 08/01/24 10:40 with v7.3.1

		General	parameters —			
Grid-Connected Syste	m	No 3D scene de	fined, no shadings			
PV Field Orientation			-			
Orientation		Sheds configurati	on	Modela used		
Fixed plane		No 3D scene definad		Transposition Perez		
Tift/Azimuth	28/0°					
2210						
				on component	separate	
Horizon		Near Shadings		Usor's needs		
Free Horizon		No Shadings		Unlimited load (grid)		
		– PV Array C				
PV module						
Manufecturer		CSI Solar	Invertor Museufactures			
Madel		i80MB-AG 1500V	Manufacturer		Technologies	
(Orfginal PVsyst datab		A0061 SN-900A	Madei (Custore second		0-330KTL-112	
Unit Nom, Power	433)	590 \Ww	(Custom paramete			
Number of PV modules		580 Wp 864 wolu		Unit Nom, Power 300 kWac		
Nominal (STC)			Number of invertors	2 units		
Modules	501 kWp		Total power		)0 kWac	
		Operating voltage	500-1500 V			
At operating cond. (50°C)		Max. power (≂>30°C)				
Ртрр И трр	460 kWp			Phominatio (DC:AC) 0.84		
Limpp		976 V 472 A	Power sharing within t	Power sharing within this inverter		
		412 8				
Total PV power			Total inverter pow	er		
Nominal (STC)			Total power 600 kWad		0 kWac	
Totel		884 modules	Number of invertors	2 units		
Module area	-	2445 m²	Priom ratio	0.8	4	
	<b></b>	Array	losses			
Array Soiling Losses		Thermal Loss fa	ctor	DC wiring losses		
Loss Fraction	4.0 %	Module temperature	according to irradiance	Global arrey res.	34 mΩ	
		Uc (const)	29.0 W/m ² K	Loss Fraction	1.5 % at STC	
		Uv (wind)	0.0 Wim²Kim/s			
Serie Diode Loss		LID - Light Induc	ed Degradation	Module Quality Loss		
Voltage drop	0.7 V	Lose Fraction	2.0 %	Loss Fraction	-0.4 %	
Loss Fraction	0.1 % at STC				~ <b>∀</b> .++ ,0	
Module mismatch loss	es .	Strings Mismatel	h loss	Module average degr	adation	
Loss Fraction	2.0 % at MPP	Loss Fraction	0.1 %	Year no	10	
				Loss factor	0.4 %/year	
				Mismatch due to degrad		
				Imp RMS dispersion	0.4 %/year	
				Vmp RMS dispersion	0.4 %/year 0.4 %/year	
	defeed out!!!.				0. <del>4</del> //ry881	
AM loss factor						
ncidence effect (IAM): Use		<b>-</b>				
		T 40° 5	50° <u>i 60</u> ° i	70° 80°		

1



•

# Project: Lahore MES (Akram Line)

- . .-

#### Variant: New simulation variant

- . . ...

#### PVsyst V7.3.1 VC0, Simulation date: 08/01/24 10:40 with v7.3.1

			995	
Unavailability of the syst	tem 3.4 %	Auxiliarles loss	E 6 18/11/2	
	0.4 78 2.4 Jays,	Proportionnal to Power	5.0 W/kW	
I	2.4 bays, 3 periods	0.0 kW from Power thresh Night aux, cons.	500 W	
		-Hight adx. colla.	300 99	
	<u> </u>	AC wiring to	sses	
Inv. output line up to MV	transfo			•
Inverter voltage		800 Vac tri		
Loss Fraction		0.10 % at STC		
invertor: SUN2000-330KTL4	H2			
Wire section (2 Inv.)	Alu 2 x 3	x 240 mm²		
Average wires length		20 m		
MV line up to injection				
MV Voltage		11 kV		
Wires	Alu 3	× 95 mm²		
Length		100 m		
Loss Fraction		0.01 % at STC		
· · · · · · · · · · · · · · · · · · ·		AC losses in tran	sformers ···	······································
MV transfo				
Medium voltage		11 kV		
Transformer from Datasheel	ts			
Nominal power		630 kVA		
Iron Loss (24/24 Connexion)		1.00 kVA		
Iron loss fraction		0.15 % of PNom		
Copper loss	á	20.00 kVA		
Copper loss fraction		3.17 % at PNom		
Coils equivalent resistance	3 x 3	2.25 mΩ		



:

.

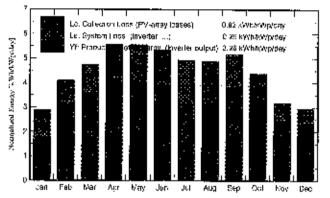
### Project: Lahore MES (Akram Line)

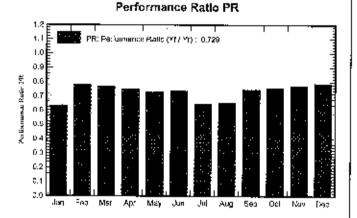
#### Variant: New simulation variant

. . . . . _

**PVsyst V7.3.1** VC0, Simulation date: 08/01/24 10:40 with v7.3.1

#### Main results


#### System Production


Produced Energy (P50) 595529 kWh/year Produced Energy (P90) 546955 kWh/year Produced Energy (P99) 507367 kWh/year

Specific production (P50) Produced Energy (P90) Produced Energy (P99)

) 1188 kWh/kWp/year Performance Ratio PR 72.85 % 1091 kWh/kWp/year 1012 kWh/kWp/year

#### Normalized productions (per installed kWp)





#### Balances and main results

	GlobHar	DiffHor	T_Amb	Globine	GlobEff	i EArray	E_Grid	PR
	kWh/m²	kWh/m²	°C	kWh/m²	kWh/m²	kWh	kWh	ratio
January	69.8	43.8	11.37	89.2	84.1	37528	28371	0.638
February	92.5	46.5	j 15 <b>.</b> 69	114.4	108.1	47087	44653	0.779
March	131.6	77.3	21.71	146.8	138.3	59241	56368	D.768
April	161.0	87.2	26.85	166.8	157.1	65640	62526	0.748
May	176.7	99.0	32.94	172.2	162.2	66243	63090	0.731
June	169.5	105.7	32.79	160.3	150.8	62018	59076	0.736
July	160.5	105.1	31.24	153.2	144.0	59925	49693	0.647
August	151.1	95.5	30.47	150.9	142.0	<b>5921</b> 3	49407	0.653
September	141.8	74.6	28.75	154.3	145.4	60574	57618	0.748
October	116.2	71.3	25.59	135.5	127.9	54007	51303	0.758
November	77.2	50,6	18.59	95.9	90.4	39371	97206	0.774
December	69.1	42.5	13.44	91,7	86.5	38375	36218	0.788
Year	1517.3	899.2	24.16	1631.1	1536.7	649223	595529	0.729
Legends								
-	Global horizontal (wadla	ation		EArray	Effective (	enerav at the ou	itput of the array	
DiffHor	Horizontal diffuse Irradiation			E_Grid		ected into grid		
T_Amb	Ambient Tomperature PR Performance Ratio							
Globine	Giobal Incident in coll. p	lane						
GlobEff	Effectivo Global, corr. 5	or IAM and shad	dings					

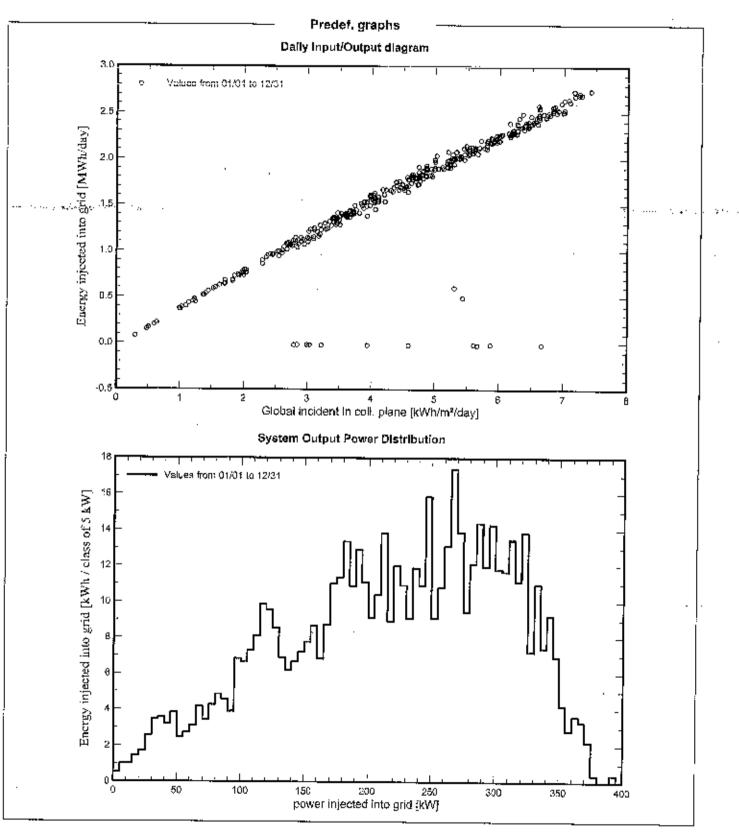


.

# Project: Lahore MES (Akram Line)

Variant: New simulation variant

PVsyst V7.3.1 VC0, Simulation date: 08/01/24 10:40 with v7.3.1


Loss di	agram
1517 kWh/m²	Global horizontal Irradiation
+7.5%	Global incident in coll, plane
-1.86%	IAM factor on global
-4 00%	Sailing loss factor
1537 kWh/m² * 2445 m² coll.	Effective irradiation on collectors
efficiency at STC = 20.58%	₽V conversion
773457 kWh	Array hominal energy (at STC effic.)
N-3.80%	Module Degradation Loss ( for year #10)
<b>N</b> -0.26%	PV loss due to irradiance level
-6.34%	PV loss due to temperature
×+0.43%	Module quality loss
-2.00%	LID - Light Induced degradation
-4.18%	Mismatch loss, modules and strings (including 2.1% for regradation disporsion
-0.96%	Ohmle wiring loss
649223 kWh	Array virtual energy at MPP
9-1.83%	Inverter Loss during operation (efficiency)
¥ 0.00%	Inverter Loss over nominal inv. power
9 0.00%	Inverter Loss due to max, Input current
· \ 0.00%	Inverter Lose over nominal inv. voltage
90.00%	Inverter Lose due to power threshold
9 0.00%	Inverter Loss due to voltage threshold
ን -0.01%	Night consumption
638567 kWh	Available Energy at Inverter Output
9-0.84%	Auxiliaries (fans, other)
9-0.04%	AC olunia loss
9-2.46%	Modium voltege transfo loss
9-0.01%	MV fine ohmic loss
3.53%	System unavailability
595529 kWh	Energy injected into grid

:

Project: Lahore MES (Akram Line)

Variant: New simulation variant

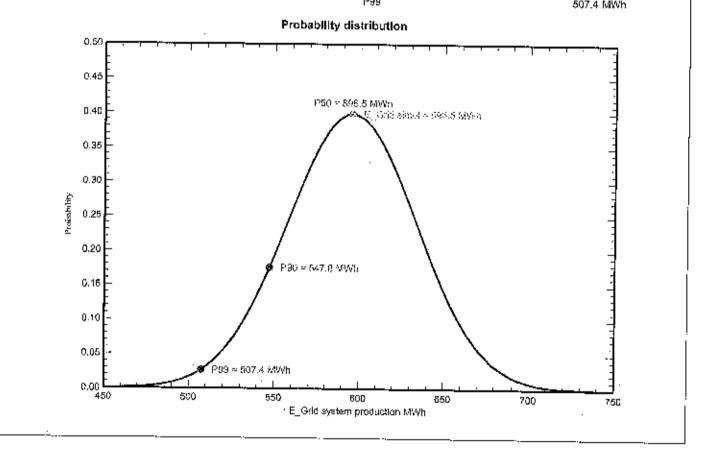
**PVsyst V7.3.1** VC0, Simulation date: 08/01/24 10:40 with v7.3.1





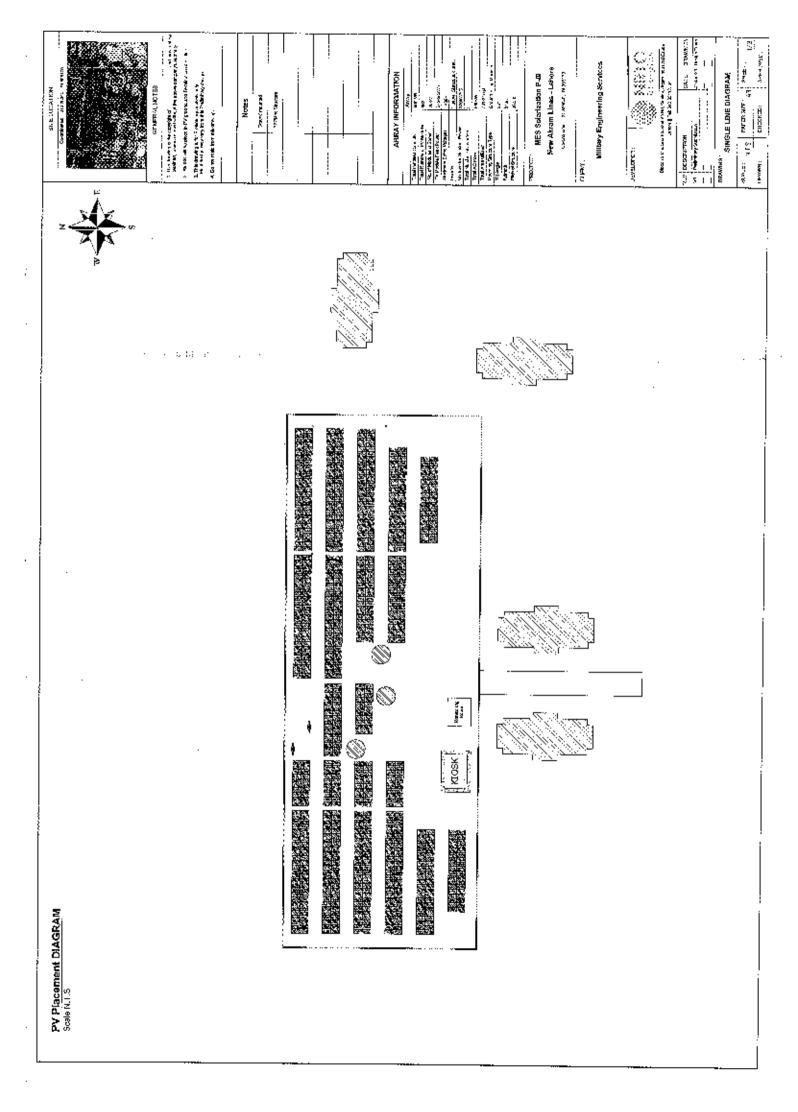
ъ.

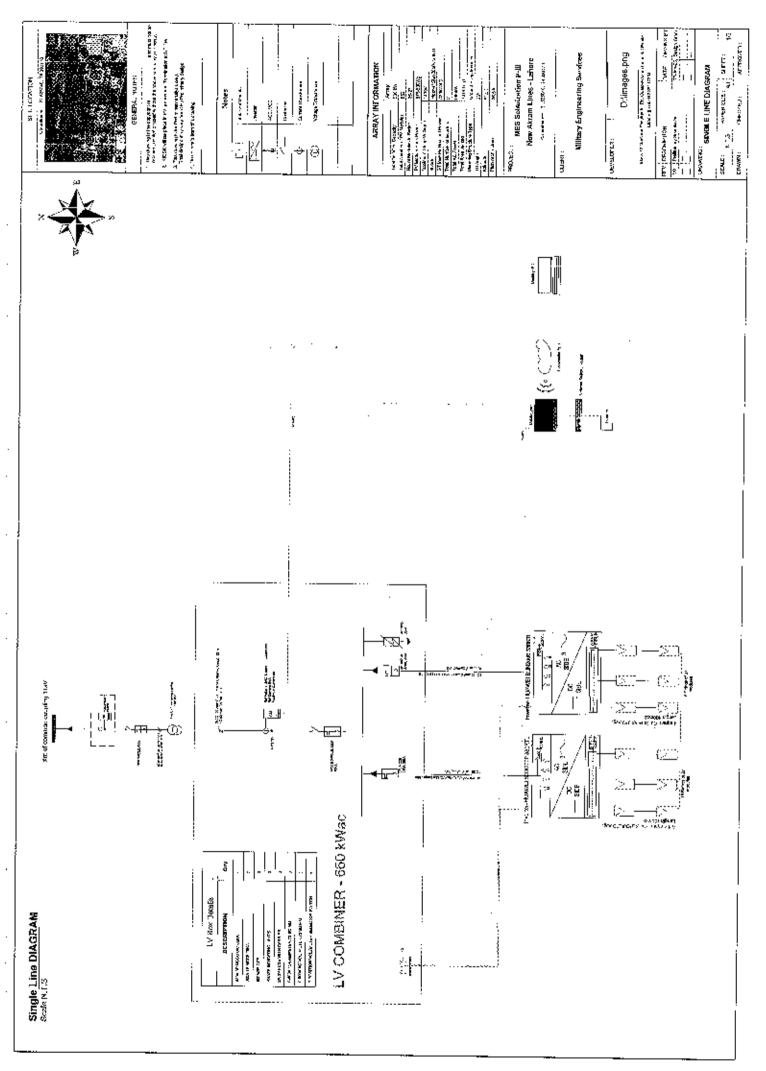
# Project: Lahore MES (Akram Line)


#### Variant: New simulation variant

**PVsyst V7.3.1** VC0, Simulation date: 08/01/24 10:40 with v7.3.1

	7		P50 - P90 i
Meteo (	data		
Source	Meteonom 8.1 (1996-2015)	, Sat=100%	
Kind	Month	ly averages	
Synthetic	⊱ Mul‼-year average		
Year-to-y	/car variability(Variance)	6.1%	
Specifie	d Deviation		
Climate d	change	0.0 %	
Giobal	variability (meteo + system	1)	
	y (Quadratic sum)	6.4 %	


## P50 - P90 evaluation


Simulation and parameters uncer PV module modelling/parameters	10%
Inverter efficiency uncertainty	0.5 %
Solling and mismatch uncertainties	1.0 %
Degradation uncertainty	1.0 %
Annual production probability	
Variability	37.9 MW
P50	595.5 MW
P90 .	547.0 MW
P99	507.4 MW



08/01/24

.





:

# Schoule-II - BOQ FOR_0.5_MWp for SITE Name_Labore Site-2 (New Akram Line)_

Se the 2	treat	Specifications	i cumu -	CLI O	Modatandmake	LOCALASPORTED	
		Concentration of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se			NORCE STREET	SLOCALAMPER TED	COUNTY OF OWNER
		SOL	AR SY	STEM CON	PONENTS		
1	Solar PV Modulos (12 yéans product & 25 years performance warranty)	580Wp Tier-1 Bifzcial Mono N Type Trachnology heving efficiency_22.5%	<u> </u>	20000000000000000000000000000000000000	s <u>toria (</u> )       N-typa Eilacia (SEO w - JA: China 	Intponed	Chipa
2	Solar PV hverters (5 years wertenly) with Whit Congka	330KVA having efficiency of 69,03% with built-in SPD of DC and AC Side	۲ı	2	Hugwei 280 k ft. Come	nparted	'Chica
2	Datalogger (Five yeare wananty)	Detalogger for communication	Nr	. ,	Huswel Sinar: Logger 2000A ; Chris	:mported	Сліна
4	Weather sensers set	: Weather sensors sot (Snip, whu, irradiation sto) compatible with the system as per RFP	- Sai	1	7 serieors : l-uawr.)	Inapried	Ohna
5	Sclar PV mounting structure as per R-P	Sclar PV mounting structure as per kPP complete with Clivit and Michanicel work seper drawing sport/yod by consultant.	Jat	1	Contense Pilo structura (150km/hr   "AKISTAN- General Constraying Machaneis	Ceneral Construction Mechanics	Pak stan
6	Saler PV Cables as per EC standard SIXI'B OR IEC 62920 (12 years warranty In case of Local CatXe)	is right Circl Animset Part Cable Insign at 13(0) willingtandig at 120 Degree XUPE/XUPC Instration must be compliant with IEC standort IEC 6250/2012	јсь		Feidelen Cables	Jocal	Pakislan
	AC Cables from Inveners to ICOSK and then from K OSK to point of connectivity	Thise Cole 120 mm\$q 'Cul AC cable(Inverter to LV)	- Jol:	1		Lcoal	Pakistan .
¥.	KIC&K compact stet on	I.V 6 de Panel 2 x 220A MCC3, 600Volta and 1 x 630A AC3 Transformer 830 AVA, HT Side Panel 830A VCB	891	1	Tariq Electric	 	Feidelan
จ	Earthing System at CC and AC side separate with material , drilling upto water level, and leadur as per BCC seproved by consultant	Complete Earthing with para cooperited, copperi efectroace treving nes that: 3 Ohm earch realstance.	-02	۲.	NRTC ENERGIES	l ecsi	Pakistan
10	Lightening Arrestors	ESE (Early Streamer Fm'ssion) Lightening Protection System as pet RFP.	Nr	1	CONTRA60 CESE LIGI TENING TERMINAL	rrported	
-1	Fending for protection of Planc	Fending wai for protoction from an meta and theft	મા	1	NRTC ENERG'ES	Loca	Pekistan
12	Calitrai Roam	Well-equipped Control room with LED and Furn Mirc	Joù	1	Signalure Architec:	Local	 Pakistan
12	SCADA	Scada aystant for monitoring and Collero, as por RHP Specifications	jap :			Local	Pausian
		Debits removal, dicarling loveling, paving, walkways, foundations making land ready for SPP.	Job	1	NRTG ENPROIES	Local	Pakiston
15	Chergy Meter	2000/F	JUE	1	N creStar	Imported	Ctine
	Studies, approvals and permits	Al' studies approvale and pomitis required as par numentios in Reidstan as per lawb(podiyos/SROs.	-03 	1	NRTC ENERGIES	i	°ckisler

- -

# Annex A-5



·x* - -

# **PVsyst - Simulation report**

Grid-Connected System

## Project: Okara MES

Variant: New simulation variant No 3D scene defined, no shadings System power: 1001 kWp Okara MES - Pakistan



.

## Project: Okara MES

Variant: New simulation variant

.....

#### PVsyst V7.3.1 VC0, Simulation date: 01/08/24 17:58 with v7.3.1

		Project :	summary ——		••
Geographical Site Okare MES Pakistan	1	<b>Situation</b> Latitude Longitude Attitude Time zone	30.75 °N 73.35 °E 170 m UTC+5	<b>Project settings</b> Albedo	0.20
<b>Meteo data</b> Okara MES Meteonom 8.1 (1996	-2015). Sat≏100% - Sy	nthelic			
			summary		
Grid-Connected S Simulation for year no		No 3D scene defi	•	-	
<b>PV Field Or</b> ientatio Fixed plane Til/Azimuth	on 26/0°	Near Shadings No Shadings		<b>User's needs</b> Unlimited <del>ioert</del> (grid)	
System Informatio PV Array	n		litvêrters		
Nb. of modules Pnom total		1726 units 1001 kWp	Nb. of units Pnom total Pnom ratio		3 units 900 kWac 1.112
		Results :	summary		
Produced Energy	1353019 kWh/year	Specific production	1352 kWh/kWp/year	Perf. Ratio PR	78.68 %
		Table of	contents		
Main results Loss diegram Predef, graphs					! !

.



_

:

ļ

PVsyst V7.3.1 VC0, Simulation date: 01/08/24 17:58 with v7.3.1

**Grid-Connected System** 

# Project: Okara MES

#### Variant: New simulation variant

**General parameters** 

No 3D scene defined, no shadings

.. ..

Orientation	Sheds configu	ration	Modela used	
Fixed plane	No 3D scene de			<b>D</b>
•	10 30 20210 00	Filled	Transposition	Perez
20				, Meteonorm
			Circumsolar	eeparate
H <b>orizon</b> Free Horizon	Near Shading	)5	User's needs	
	No Shadings		Unlimited load (grid)	>
	PV Array	y Characteristics –		<u> </u>
°V module		Inverter		
danufacturer	CSI Solar	Manufacturer	Hua	awei Technologies
Aodel	CS7L-580MB-AG 1500V	Model		v2000-330KTL-H2
(Original PVsyst database	2)	(Custom parameter		
Jnit Nam, Power	580 Wp	Unit Nom, Power	,	300 kWac
Number of PV modules	1726 units	Number of Inverters		3 แก่ไร
Nominal (STC)	1001 kWp	Total power		900 kWac
Array #1 - PV Array				
Number of PV modules	868 units	Number of Inverters	9 ° MPPT 17	% <b>1.5</b> units
Vominal (STC)	503 kWp	Total power		450 kWac
Aodules	31 Strings x 28 In series	· · · · · · · · · · · · · · · · · · ·		
At operating cond. (50°C)	Ť	Operating voltage	500	-1500 V
mpp	463 kWp	Max. powar (=>30°C)		330 kWac
Jmpp	854 V	Phom ratio (DC:AC)		1.12
mpp	542 A	No Power sharing bet	ween MPPTs	1.12
Array #2 - Sub-array #2				
Number of PV modules	858 units	Number of Inverters	9 * MPPT 175	% 15 unite
Vominal (STC)	498 kWp	Total power		450 kWac
Adules	33 Strings x 26 in series			400 41180
t operating cond. (50°C)		Operating voltage	500	-1500 V
mpp	457 kWp	Max. power (=>30°C)	000	330 kWac
Impp	793 V	Phom ratio (DC:AC)		1.11
прр	577 A	No Power sharing bet	ween MPPTs	1.11
otal PV power		Total Inverter powe		
lominal (STC)	1001 kWp	Total power		900 kWac
otal	1726 modules	Number of inverters		3 units
fodule area	4885 m²	Phom ratio		1.11
		No Power sharing		1.11
	Δr	ray losses		
array Solling Losses	Thermal Loss	-	Serie Diode Loss	
		ture according to irradiance	Vollage drop	0.7 V
	Vc (const)	29.0 W/mªK	Loss Fraction	0.1 % at STC
	Uv (wind)	0.0 W//m²K/m/s	-0001120001	
ID - Light Induced Degra	adation Module Qualit	y Loss	Module mismatch	losses
oss Frection	2.0 % Loss Fraction	-0.4 %	Loss Fraction	2.0 % at MPP



## Project: Okara MES

#### Varlant: New simulation variant

#### **PVsyst V7.3.1** VC0, Simulation date: 01/08/24 17:58 with v7.3.1

	· • • • • • • •	Array losses	
Strings Mismatch loss	Module av	erage degradation	
Loss Fraction 0.1	1% Yearno	10	
	Loss factor	0.4 %/year	
		ue to degradetion	
	Imp RMS dis		
	Vmp RMS di	spersion 0.4 %/year	
IAM loss factor			
Incidence effect (IAM): User defi	ned profile		
10" 20" ;	30° 40°	50° 60° 70"	80° 90°
0.998 0.998	0.995 0.992	0.986 9.970	·
· · · · · · · · · · · · · · · ·			···· 0.763 0.000
·	······································	· · · ·	
		wiring losses	
-	) πΩ		
Loss Fraction 1.5	i% at STC		
Array #1 - PV Array		Array #2 - Sub-array #2	
Global array res.	26 mΩ	Global array res.	<b>2</b> 3 mΩ
Loss Fraction	1.5 % at STC	Loss Fraction	1.5 % at STC
·			······································
		wiring losses	
Inv. output line up to MV tra			
Inverter voltage	800 Vac tri		
Loss Fraction	0.03 % at STC		
Inverter: SUN2000-330KTL-H2		Inverter: SUN2000-330KTL-H2	
Wire section (2 Inv.) Average wires fength	Alu 2 x 3 x 240 mm²	Wire section (2 Inv.)	Alu 2 × 3 × 150 mm²
Average wros rangin	10 m	Average wires length	0 m
MV line up to injection			
MV Voltage	11 kV		
Wires	Alu 3 x 120 mm²		
Length	392 m		
Loss Fraction	0.08 % at STC		
<u> </u>	AC loss	es in transformers	······································
MV transfo			
Medium voltage	<ul> <li>11 kV</li> </ul>		
Transformer from Datasheets			
Nominal power	1250 kVA		
Iron Lass /04/04_A-sectors	1.00 kVA		
Iron Loss (24/24 Connexion)			
Iron loss fraction	0.08 % of #Nam		
Iron loss fraction	0.08 % of PNom		

ï

:



۰,

: .

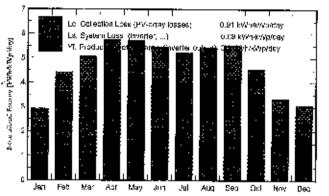
.

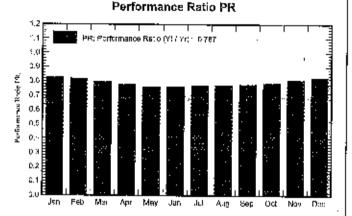
## Project: Okara MES

#### Variant: New simulation variant

PVsyst V7.3.1 VC0, Simulation date: 01/08/24 17:58 with v7.3.1

#### Main results


#### System Production


Produced Energy (P50) 1353019 kWh/year Produced Energy (P90) 1267301 kWh/year Produced Energy (P99) 1197439 kWh/year

Produced Energy (P90) Produced Energy (P99)

Specific production (P50) 1352 kWh/kWp/year Performance Ratio PR 78.88 % 1266 kWh/kWp/year . 1196 kWh/kWp/year

#### Normalized productions (per installed kWp)





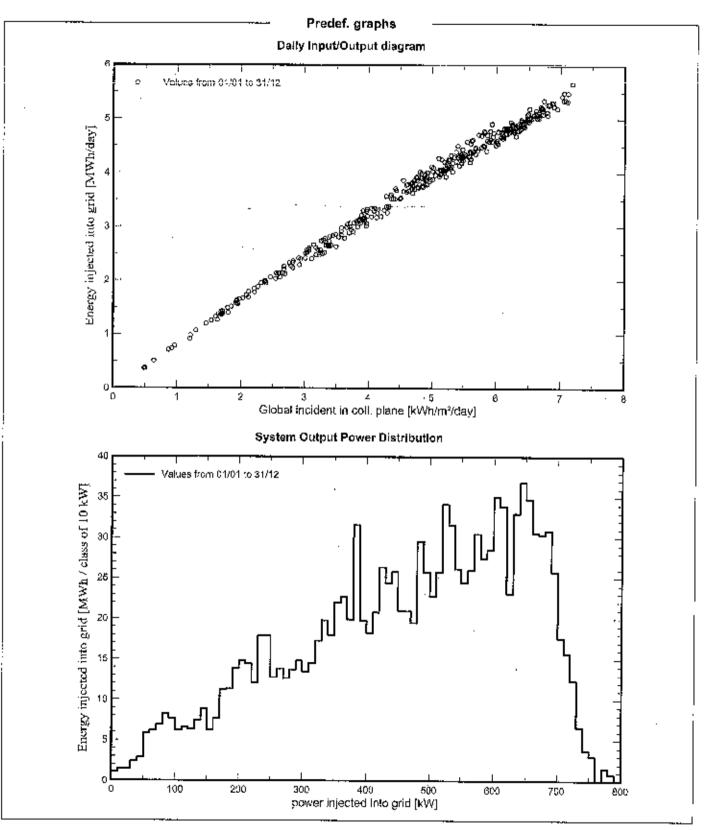
#### Balances and main results

	GlobHor	DiffHor	T_Amb	Globine	GlobEff	EArray	E_Grid	PR
	kWh/tŋ²	kWħ/m²	°C	kWh/m²	K\Vh/m*	kVVh	, kWh	ratio
January	72.0	44.1	12.67	90,8	87.4	77537	75382 j	0.830
Fobruary	100.5	52.8	16.58	123,9	119.5	104112	101593	0.619
March	139.6	76.4	22.74	156,9	151.2	128386	125384	0,799
April	166.7	89.5	28.19	172.4	165.8	137437	134293	0,778
May	183.4	101.2	33.85	177.8	170.9	138844	135639	0,762
June	173.7	107.9	34.21	163.3	156,8	i 128088	125087	0.765
July	170.9	104.8	33.08	162.4	156,0	128382	125359	0.771
August	168.5	99.0	31.92	168.6	162,1	133754	130648	0.774
September	152.3	78.4	29.90	166.1	159,8	132403	129346	0.778
October	120.0	68.2	26.94	141.0	135.9	113872	111127	0.788
November	80.9	52.4	20.30	! 100.1	96,3	83178	80993	0.809
December	71.7	44.1	14.94		91.1	80339	78167	0.825
Year	1600.1	.919.0	25.49	1717.7	1652.6	1086311	1353019	0.787
<b>Legends</b> GlabHor Globi	al horizontal Irradia	atlan		EArray	Frective	energy at the ou	tput of the erray	
	ontal diffuse irradi	ation	E_Grid Energy injocted into grid					
T_Amb Ambi	ent Temperatura		PR Performance Retio					
Glabino Gioba	al incident In coll. p	alene						
GlobE# Effec	tive Global, corr. fr	or IAM and shad	Inas					



## Project: Okara MES

#### Variant: New simulation variant


PVsyst V7.3.1 VC0, Simulation date: 01/08/24 17:58 with v7.3.1

Loss diagram 1600 kWh/m² Global horizontal Irradiation +7.4% Giobal incident in coll. plane -1.83% IAM fector on global -2.00% Solling loss factor 1653 kWh/m² * 4885 m² cell. Effective Irradiation on collectors efliciency at STC = 20.58% PV conversion f86.1877 kWh، -13 14.4 Array nominal energy (at STC effic.) : . -3.80% Module Degradation Loss ( for year #10) -0.19% PV loss due to irradiance lovef -7.00% PV loss due to temperature **⊀**+0.49% Module quality loss 9-2.00% LID - Light Induced degradation -4.14% Mismatch loss, modules and strings (Including 2% for degradation dispersion 9-0.97% Ohmic wirling loss 1386311 kWh Array virtual energy at MPP 9-1.65% Inverter Loss during operation (officiency) 40.00% Inverter Loss over nominal inv, power 9 0.00% inverter Loss due to max, input ourrent 9 0.00% Inverter Loss over nominal inv. voltage 90.00% Inverter Loss due to power threshold 90.00% Inverter Loss due to voltage threshold 10.00% Night consumption 1363346 kWh Available Energy at Inverter Output 9-0.02% AC ohmic loss **9**-0.70% Medium voltage transfo loss 9-0.04% MV line ohmic loss 1353019 kWh Energy injected into grid



PVsyst V7.3.1 VC0, Simulation date: 01/08/24 17:58 wilh v7.3.1 Project: Okara MES

Variant: New simulation variant

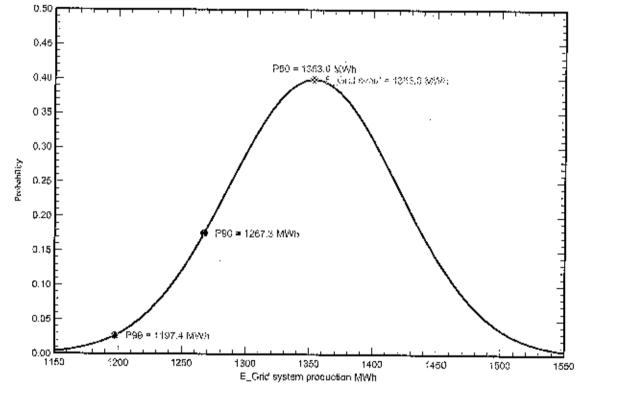


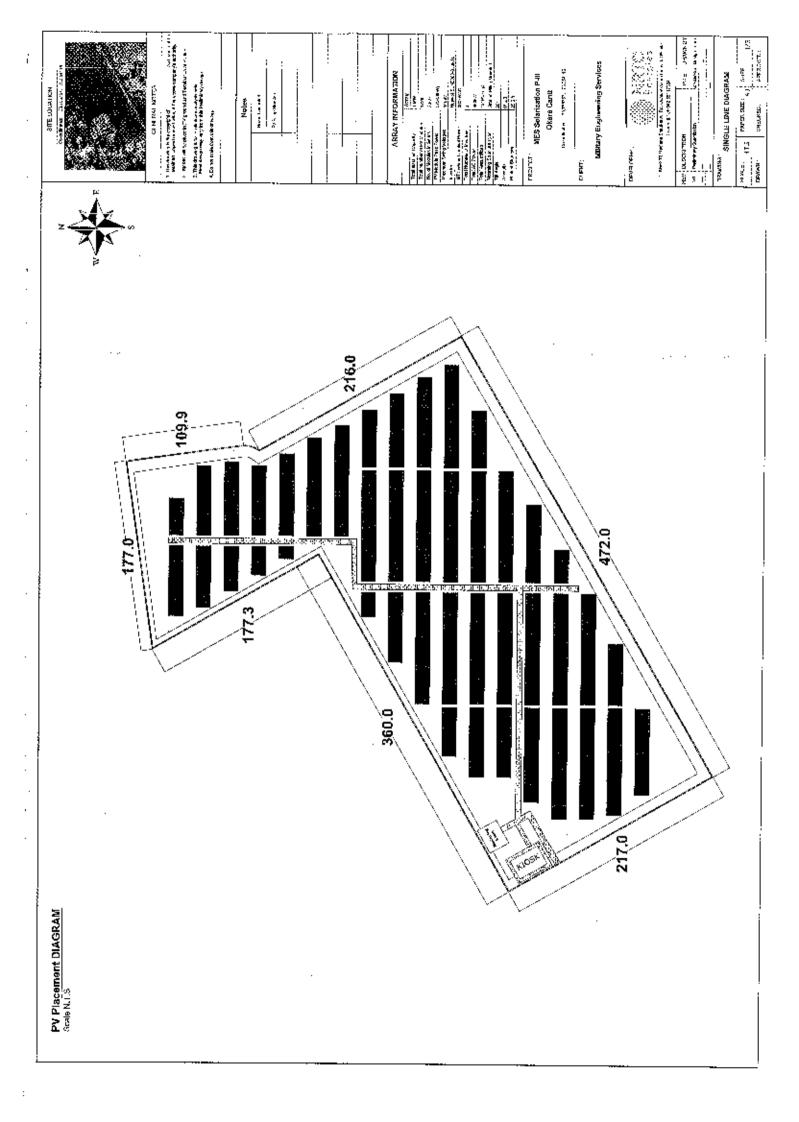


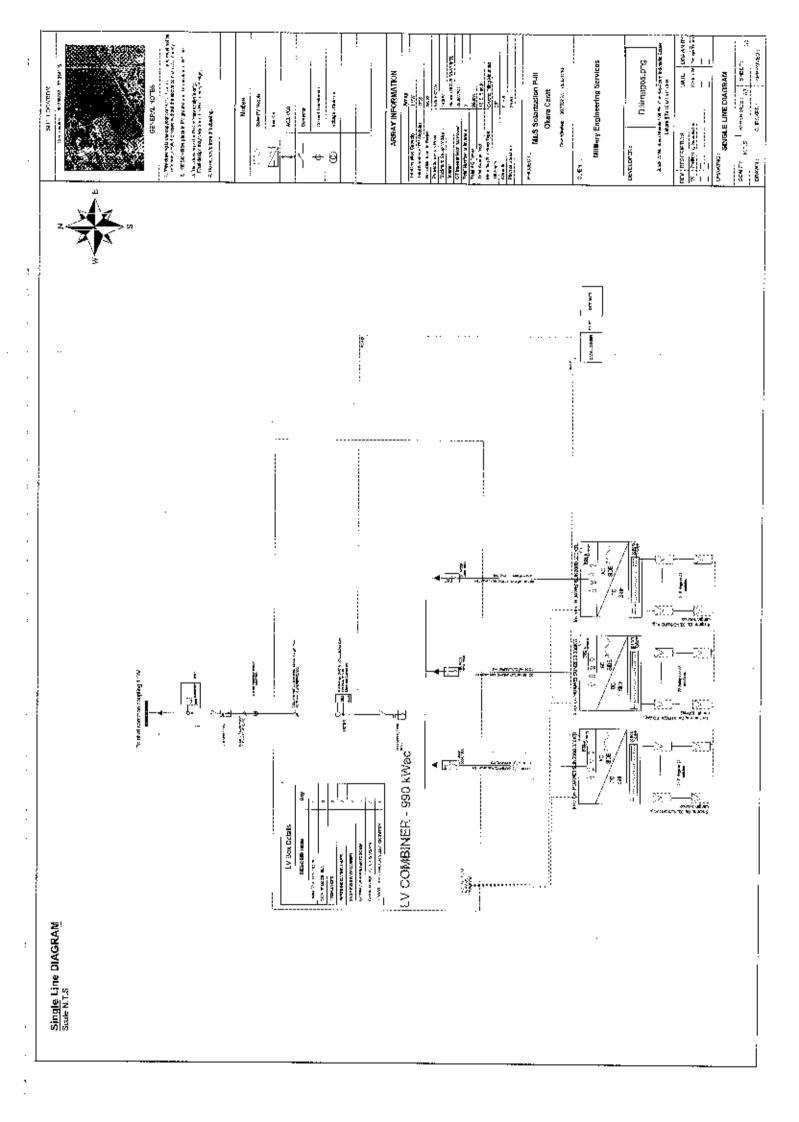
## Project: Okara MES

#### Variant: New simulation variant

# PVsyst V7.3.1 VC0, Simulation date: 01/08/24 17:58 with v7.3.1


		P50 - P90 e	valuation
Meteo data			Simulation a
Source Meteonorin 8.1 (1998-2015)	, Sat=100%		PV module mot
Kind Month	ly averages		Inverter officien
Synthetic - Multi-year avorage			Solling and mis
Year-to-year variability(Variance)	4.6 %		Degradation un
Specified Deviation			-
Climate change	0.0 %		
Global variability (meteo + system	n)		Annual produ
Veriability (Quadratic sum)	4.9 %		Variability
			P50
		A	· P90


#### and parameters uncertainties delling/parameters 1.0 % ncy uncartainty 0.5 % smatch uncertainties 1.0 % ncertainty 1.0 %


#### luction probability

	Variability	66.8	MWh
	P50	1359.0	MWh
•	P90	1267.3	MWh
	P99	1197.4	MW5

## Probability distribution







		Schedule - II - B	OQ FOI	R_1_MWr	ofor SITE Name_Okara_		·
Se Ne	Dáin	Sprofications	Unit	Cay	Model and matter	LOCALAMPORTED	Country (#CHg)
		801	AR SY	STÉM CO	MPONENTS		
	Solar PV Modulos (12 years product & 25 yoars performance warranty)	530Wp Tier-1 Bracie) Morie Ni Type Technology having Ioff clengy_22 5%	Nr	1726	N-type Rifectal 530 - JA. China	/ Imponed	Chice
2	Solar PV Invertera (S vecto vertenty) with Wife Dangto	330kVA heving "chicloney of 98,03% with built-in SPD & DC and AC Side	nir	3	Huawai 330 kT., ; China	Imported	Chna
3	Detalogger (Five years warrenty)	Dataloggar for communication	Nr	1	Haawo Smert Logger 20034 : China	Im-ported	China
<u>ا</u>	Weather sensors set	Weather sensors on) (temp, wind, imadiation etc: compatible with the system as par REP	80ť	1	7 sonsora ; Hugwe	Imported	:
Ű	Scier ⊃V nounling Scier ⊃V nounling	Solar PV mounting altracture as per RFP compete with Civit and .Modhence work as per urawing expertived by particultant.	Joh	1	Concrete Pile Structure   15tkm/tr   PAKISTAN - Ceneral Construction Machanica	Locai	Pakistap
ñ	Solar FV Cattles as per EC stenaard 50016 ()R EC 32330 (10 years warronty in case of Local Cente)	Single Core Annual 197 Caule tessor at 5 SKV will standing at 120 Degree XLPC/XLPC incutation must be compliant with IEC stance of IFC	John -	1	Pakistan (Jatijes		Pekislan
7	i AC Califies fram investers to KIOSK and then from IOCSK to pand of connectivity	ecosity shi 2 Three Core 120 mms of Car AC cable (Investor to LV) Three Core VV 98 turns 41, AC cable (KIOSIK to part of some of LV)	Jat	1	Pak stur Cables	Losgi	Pak stan
A	<iusk compact="" station<="" td=""><td>LV Side Panel 3 x 320A MCCE, 860volte and 1 x 1000A ACE Trensformer 1,25 MVA, HT Sico Panel 636A VCB</td><td>Şet</td><td>1</td><td>Taiiq Electric</td><td>Local</td><td>Pzkislar</td></iusk>	LV Side Panel 3 x 320A MCCE, 860volte and 1 x 1000A ACE Trensformer 1,25 MVA, HT Sico Panel 636A VCB	Şet	1	Taiiq Electric	Local	Pzkislar
9	Earthing Sytem et DC and AC side separate with material, dvilling upto webri kavel, end labour as per BCQ approver: by tonsultant.	resistance.	10D	1	NHTC ENERGIES	_ocal .	 Pakialan
10	Lightening Arrestors	ESE (Forly Streamer Einission) Lightoring Protection System es per RFD	ħr	2	CONTRAID CESE LIGHTENING TERMINAL	Imauried .	Tukey
11 	Feasing for protection of Pfani	Fonding well for v protection from entreds and theft	dol dol	1	INRTC ENERGIES		ⁿ £kielzn
1Z	Centrol Room	Wel-souipped Control ream with LED and Furniture	.І=ь	1	Signalure Architest	Lose :	Pukistan
13	SQADA	Snace system for monitaring end Contro as per RFP specifice; ons	Jaa		icsa	-···	akistan
14		Debris removal, dicarling leveling, poving, welkways foundations, melung land ready for SPP	Job	1	NRTC ENERG-ES		n Pakistan
15	Energy Mele-	20367	Jat		MicroStan	) tehoqm	
¹⁰	Studiee, approvals and portnits	Al' studies approvais and permits required as per auxiont es un Pakisian as achiav#directives/SROs	. on	1	NRTG ENHROIES	Loce' "	'akistan

# Annex B-1

# Harvest the Sunshine

# DEEP BLUE 4.0 SOUVIN-type Bifacial Double Glass High Efficiency Mono Module JAM72D40 555-580/GB

Power by the taskest SMBB in-type seller cell, half-cell conliguestion and gabless itboon connection technology. These postsiles have highly outpower, lower buy boar weak illumitation reagines, and botton temperature acetacient.

1 · ·	•					
. :	1.		· · .	- Yarteaniw		
				ź		
	1	: .		3.		
•···				··· }.		in the part of the
				1		
		:				
	2		;			
	:			. 3		
				÷		
\$ . ·				i	•	
				1	• •	
	<u> </u>	,				
· ·		: .			÷.,	
	1.	÷ .		S.		
· . ·						
	· ·					
	· · ·			÷.		
	1.1			1		
					•••	·
· · · .	·.	·		1		
1 A 1				- S		
:					· ·	
:.					÷	
:						• •
						· · ·



#### Higher power generation batter &COE



n-type with very Lower LID



80% A

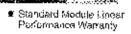
batter LCOE

Better weak illemination response



Better Temperature Coefficient




## Superior Warranty |

- < 32-year product werranly
- < 30-year brear power output warranty





P. n-type Elfablal Double Class Wodule Linear Performance Womenty



## Comprehensive Certificates

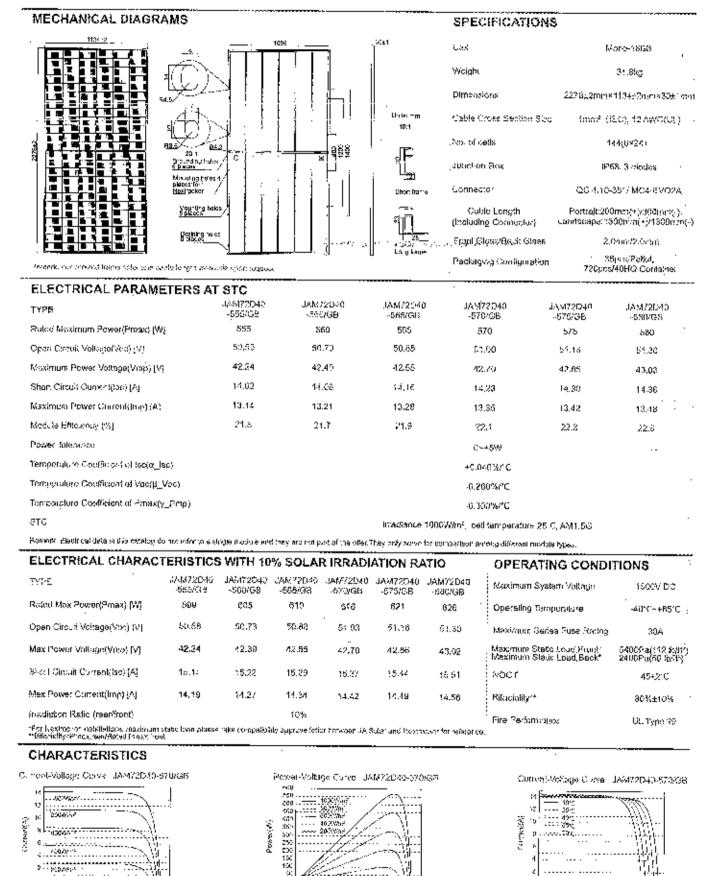
- (EC 61235, ISC 61730)
- ISO 9001; 2015 Ouzlity management systems
- ISO 14001; 2015 Environmental management systems.
- ISO 45001: 2018 Occupational health and safety management systems
- EC 82941: 2019 Terrestrial photovoltaio (PV) modules -Quality system for PV module menufacturing







# **JA** SOLAR

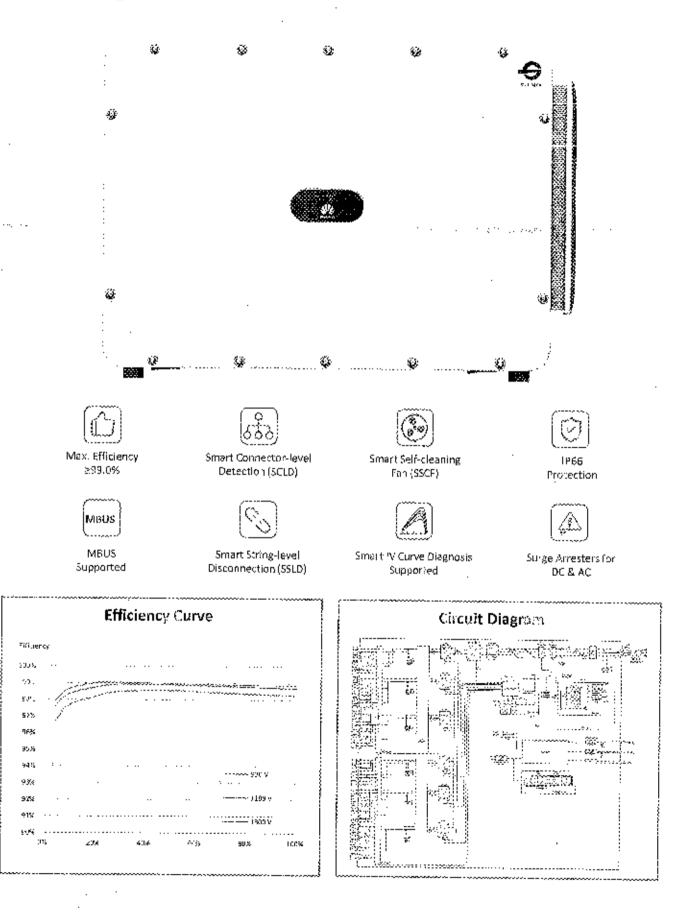

29 61 92 49

Voltege(V)

JAM72D40 555-580/GB

10 30 95 70

VoltagetV)




Prentium Cells, Premium Modules

00 in:

VoitooarVN

# SUN2000-330KTL-H1 Smart String Inverter



SOLAR HUAWELCOM

SUN2000-330KTL-H1

# Technical Specifications

	Efficiency
Max. Efficiency	299.0%
European Efficiency	≥28.8%
	Input
Max. Input Voltege	1,500 V
Number of MPP Treckers	t
Max. Current per MPP?	55 A
Max, Short Circuit Current per MPPT	ана на страна на стра На страна на r>На страна на
Max. PV Inputs per MPPT	4/3/5/4/5/5
Start Voltage	550 V
MPAT Operating Voltage Range	500 V = 1,500 V
Nominal mout Voltage	
A A A A A A A A A A A A A A A A A A A	1,080 V
	Output
Vom nal AC Active Power	300.000 W
Most AC Apparent Power	AV 000,007
Max. AC Active Power (costd=1)	X30.000 W
Nomina: Output Voltage	300 V, 2W i PE
Rated Af-Grid Frequency	50 Hz / 60 Hz
Nominal Output Current	216.6 Å
Max. Caupet Carrent	238.2 A
Adjustable Rower Factor Range	0.81G 0,51D
Teta: Harmonic Distortion	· · · · · · · · · · · · · · · · · · ·
	<15
Connect States I and Discourses and Mill PA	Protection
Smart String-Level Disconnex Lor(SSLD)	Yes
Antl-Islanding Protection	. Yes
AC Overcurrent Protection	
DC Reverse-polar by Protection	Yes
PV-array String Fault Monitoring	Yes
DC Surge Arreston	Туре II
AC Surge Arrester	Туре II
DC Insulation Resistance Detection	Yas
AC Grounding Fault Protection	V ₆₅
	······································
Residual Current Monitoring Unit	Yes
	Communication
Display	LEO Indicators, WLAN + APP
USX	Yes
MIQUS	Yas
k)485	"#\$
	General
Dimensions (Wix Hix D)	1,048 x 732 x 393 (nm
Weight (with mounting plate)	s112 kg
Doe roting Temporature Range	
Cooling Method	
and the second second second second second second second second second second second second second second second	Smart Air Cooling
Max. Operating Alticude without Denating	
Relative Humidity	0~100%
Aŭ Connector	Waterproof Connector + OT/Dff Termina
Protection Regree	IP 66
Fopology	and the second second second second second second second second second second second second second second second

;

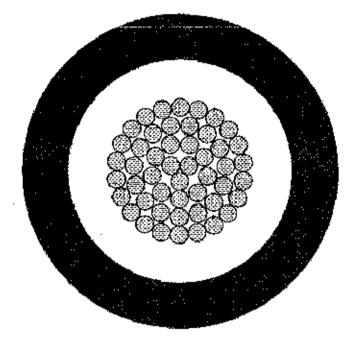




# TECHNICAL DATA SHEET

# SOLAR CABLE PHOTOVOLTAIC (PV) - EN 50618 H1Z2Z2-K 62930 IEC 131

124mm² TOU/XLPO/XLPO, 1.5kV D.C ((NATURAL), BLACK) (8SEN 50618) FLEXERE TIMPED COPPER CONDUCTOR, HALOGEN-FREE CHOSS-LINKED (SLFO) INSULATION SINGLE CORE HALOGEN FREE FLAME RETARDANT CROSS-LINKED (XLPO) SHEATHED.


erence Standard
er Standard(s)
ed Voltage of Cable

8SEN 50618

IEC 60228, EN 50395, EN 50396, EN 60332-1-2, EN 61034-3/2 & EN 60754-1/2.

1.5/1.5kV D.C (Max. Voltage;1.8kV D.C)

Core colour(s) as per Customer Request.



#### Cable Components

No. of Core(s) Cross Section Area of Conductor Shape of Conductor Conductor Material/Type Max Diameter of Single Strand Diameter of Conductor Insulation Material Thickness of Insulation Temperature Rating Thickness of Outer Sheath Overall Diameter of Cable Minimum Bending Radius High Voltage Test on Cable in Water Dipping Maximum DC Resistance @ 20°C Weathering / UV Resistance	<ul> <li>1</li> <li>(*) 4 mm²</li> <li>Flexible</li> <li>Tinned Annealed Copper Class 5 Flexible as per IEC 6022\$</li> <li>0.31 mm</li> <li>(*) 2.6 mm</li> <li>(*) 2.6 mm</li> <li>XLPQ</li> <li>0.7 mm</li> <li>-40°C to +90°C (120°C for max, 20,000 hours)</li> <li>0.8 mm</li> <li>-40°C to +90°C (120°C for max, 20,000 hours)</li> <li>0.8 mm</li> <li>(*) 5.99 mm (Tolerance Range: ±5%)</li> <li>Flixed: 4 X Overall diameter and Flexing: 5 X Overall diameter</li> <li>6.5 kV A.C. for 5 Minutes</li> <li>5.09 Ω/km</li> <li>720 Hrs. No Cracking</li> </ul>
Minimum Bending Radius High Voltage Test on Cable in Water Dipping Maximum DC Resistance @ 20°C	<ul> <li>Fixed: 4 X Overall diameter and Flexing: 5 X Overall diameter</li> <li>6.5 kV A.C. for 5 Minutes</li> </ul>
Continuous Current Rating	-
Ambient temperature: 60°C Conductor operating Temperature: 90°	

Method of Installation:		
Single cable free in air	:	65 Amps
Single cable free in surface	:	52 Amps
Two Loaded cables touching, on a surface	:	44 Amps

Disclaimen. The Information vorticined within this datasheet is for guipence only and is subject to change without notice or lightlip. All the Information is provided in good faith and is believed to be correct at the time of publication/circulation. When selecting cable accesscribes, pieces note that entries cable dimensions they vary due to manufacturing

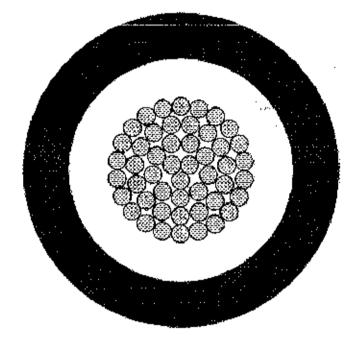
Primal to Tableir ( , 'Autob 2006/5022



# TECHNICAL DATA SHEET

## SOLAR CABLE PHOTOVOLTAIC (PV) - EN 50618 H1Z2Z2-K 62930 IEC 131

1x6mm² TCU/XLPO/XLPO, 1.5kV D.C ((NATURAL), BLACK) (BSEN 50618)


FLEARLE TINNED COPPER CONDUCTOR, HALOGEN-PREE CROSS-LINKED (ALFO) INSULATION SINGLE CORE HALOGEN FREE FLAME RETARDANT CROSS-LINKED (ALFO) SHEATHED.

Reference Standard Other Standard(s) Rated Voltage of Cable BSEN 50618

IEC 60228, EN 50395, EN 50396, EN 50332-1-2, EN 61034-1/2 & EN 50754-1/2.

1.5/1.6kV D.C (Max, Voltage:1.6kV D.C)

Core colour(s) as per Custamer Request.



#### Cable Components

No. of Core(s) Cross Section Area of Conductor Shape of Conductor Conductor Material/Type Max Diameter of Conductor Insulation Material Thickness of Insulation Temperature Rating Thickness of Outer Sheath Overall Diameter of Cable Minimum Bending Radius High Voltage Test on Cable in Water Dipping Maximum DC Resistance @ 20°C Weathering / UV Resistance

#### 1 (*) 6 mm³ Flexible Copper Class 5 Flexible as per IEC 80228 0.31 mm (*) 3.4 mm XLPO 0.7 mm -40°C to +90°C (120°C for max, 20,000 hours) 0.8 mm (*) 6.85 mm (Tolerance Range: ±5%) Fixed: 4 X Overall diameter and Flexing: 5 X Overall diameter 6.5 kV A.C. for 5 Minutes 3.39 Ø/km 720 Hrs., No Cracking

#### **Continuous Current Rating**

Amblent temperature: 60°C		
Conductor operating Tomperature: 90°		
Method of Installation:		
Single cable free in air	:	70 Amps
Single cable free in surface	:	67 Amps
Two Loaded cables touching, on a surface	:	57 Amps

Disclatiner: The information contained within this deteched is drawleding only and is subject to change without notice or liability. All the information is provided in good faith and is believed to be correct at the time of publication/birculation. When selecting cable accessories, please note that actual caple dimensions may vary due to manufacturing faitances.

Ref No: TE-148-012025-R1 Dated: 23-01-2025



No. of Pages: 11

No. of	Pages: 11		"Anne	x B"
	Technical Submit	tal	_ ! ,	
	For supply of KIOSK Sul	stations	·	·
	M/S: Nrtc Energi			
Gene	ral Enclosure Specifications:			
*	MANUFACTURING STANDARD IEC 61439-2.			
×	ENCLOSURE PROTECTION OUTDOOR TYPE.	500M at	10 11 4	
x	CUBICAL MATERIAL M.S SHEET THICKNESS 14/16-SWG.	FORM - 01	(P-54	
×	FULLY PAINTED AFTER SURFACE TREATMENT WITH ELECTROS	TATIC DOLUDED DAME		
×	FOLLOWING COPPER BUSBARS DESIGNED ACCORDING TO JEC		RAL -7035.	
x	BUS BAR WILL BE PAK MADE, RATED @ 35°C & ACCORDING TO			
×	NEUTAL WILL BE 50% OF THE MAIN BUSBAR & EARTH BAR WI		100.40	
	KIOSK Substation SOUKVA (0.5 MW)	LL BE 25% OF MAIN BU		
Sr. #	Item Description	na-1-		y 08 No.
	MV Section:	Make	Model	Qty
	11KV VCB 630A, 25KA Outgoing Panel	·		
1	as per attached "Annex C"	TE with ABB VCB		01 No.
2	MV Cable (MV Panel to Transformer)	WAPDA approved		01 Job.
3	LV Cable (LV Panel to Aux. Transformer)	WAPDA approved		01 Job.
	Transformer Section:	100 a Dit approved	<b>.</b>	101300.
1	630KVA Oil Type Step Up Transformer 0.8/11KV	Client Scope		01 No.
	Bus Tie Dct Section:			
1	Bus Tie Duct TP 630A		· · ·	
T	2 x (30 x 05) mm per Phase	TE		01 Job.
	Ventilation Section:			<b></b> .
1	Ventilation System For Transformer (4 Heavy Duty Fan With	*r	Ţ	
	Control DB)	TE		01 Job.
	Marshiling Box:			
1	Marshiling Box For LV, MV & Tarnsformer Signals	ΤΈ		01 Job.
	LV Section:	· · ·		
	Incoming			
	MCCB TP 320A, RC-32KA @ 800V	ABB - Italy	XT5V-HA 400	02 No.
2	MCCB TP 320A, RC-32KA @ 800V	Space Only		02 No.
	Outgoing	· · · · · · · · · · · · · · · · · · ·	·	
1	MCCB TP 630A, RC-32KA @ 800V	ABB - Italy	XT5V-IIA 630	01 No.
2	Aux.Contacts For MCCB	ABB - Italy	XT5	01 No.
3	Digital Energy Analyzer (0.5 class with TCP/IP Port)	Circutor/Eqv,	CVM-C11	01 No.
4	Current Transformers 600/5A (0.5 Class)	Metelx/Eqv.		03 No.
_5	Surge Protection Device TP @ 800V	Citel/Eqv.		01 No.

Labore: Taij Gerh Boad, Yadgar Shubada Stop, G.Y. Road, Manawan, Labore-Pakistan,
 +92-42-36522861-62-63 +92-42-36522864 info@tariqelectric.com
 Karachi: 1st Floor, MA Tabba Foundation Building, Gizri Road, Stock - 9, Clifton, Karachi,
 Cell: +92-301-1163120

www.tarigalectris.com



Page 6 of 17

Ref No: TE-148-012025-R1 Dated: 23-01-2025



No. of	Pages: 11		"Ann	ex B"
	Technical Submit	tal		
	For supply of KIOSK Sub	ostations		
	M/S: Nrtc Energi			
6	Indication Lights ON/OFF/Trip		<u> </u>	
7	Indication Lights R,Y,B	Schneider/Eqv.		03 No.
8	Control MCB 6ASP, 6KA	Schneider/Eqv.		03 No.
	Panel Accessories:	ABB - Germany	5H 201	06 No.
1	Panel Light With Micro Switch	Chine .		
2	Panel Exhaust Fan With Thermostat	Chint		. 01.Set.
~	Auxiliary DB:	Imported		01 Set.
1	MCCB TP 50A, RC-18KA @ 415V	400		
2	Indication Lights R,Y,B	ABB	A18 125	01 No.
3	Control MCB 6ASP, RC-06KA	Schneider/Eqv:		03 No.
<u>_</u>	MCB TP 10A, RC-06KA	ABB - Germany	SH 201	03 No.
5	MCB SP 10A, RC-06KA	ABB - Germany	SH 203	02 No.
	MCB SP 06A, RC-06KA	ABB - Germany	SH 201	12 No.
	Misc. Accessories;	ABB - Germany	5H 201	12 No.
1	Lightning Arrester for KIOSK			
2	Light Plug Universal (Piano Type)	Local		01 No.
3	industrial Plug and sockets 32A 4PIN	Imported		01 No.
4	Photoelectric EE Switch	Imported		01 No.
	Alarm Activation System:	Panasonic/Eqv.		01 No.
1			· .	· · ·
2	Smoke Dectector System Indication Light for Trip	Imported		03 No.
3		Schneider/Eqv.		01 No.
4	Control MCB 6A SP, 6KA Push Button Fault Acknowledge	ABB	SH 201	01 No.
-4 5		Camsco/Eqv.		01 No.
<u> </u>	Control Relays 4NC/ 4NO 220V Hooter / Buzzer	Finder/Relpol	· · · · ·	02 No.
7	Revolving Light	Imported		01 No.
8.		Imported		01 No.
<u> </u>	Temperature Sensor with Alarm Contact Panel Accessories:	Imported		01 No.
1		· . · · · · · · · · · · · · · · · · · ·		· .
2	Tube light 220V (Indoor) Door limit switch	Imported		08 No.
	Boundry Wall light 220V (Outdoor)	Imported	_	05 No.
4		Imported	· <b></b> ·	06 No.
4	Exhaust Fan with Dust filters	Imported		03 Set.
	Temperature Section		·	
1	Temperature Indicator with Sensor & Alarm Contact For Each	Imported		03 Set.
	Compartment (Signal 04-20mA)			09 Jet.
-	Auxiliary Transformer:			

Lahore: Taij Garh Road, Yadgar Shuhada Stop. G.T. Road, Manawan, Lahore-Pakistan,
 + 92-42-36522861-62-03 + 92-42-36522864 info@tariqelectric.com
 Karachi: 1st Ptoor, MA Tabba Foundation Building, Gizri Road, Block - 9, Cläten, Karachi,
 Celk + 92-301-1168120

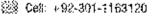
www.tarigetectric.com



Ref No: TE-148-012025-R1 Dated: 23-01-2025






"Annex B"

Technical Submittal For supply of KIOSK Substations M/S: Nrtc Energies Auxiliary Transformer 25KVA, 800/415V 1 TE 01 No. 2 MCCB TP 80A, RC-20KA @ 900V A6B - Italy T4V 250 01 No. Heat Insulation of KIOSK: Roof, Walls & Doors of KIOSK will be insulated with Glass wool 01 Job. which will be with MS Sheet internally. A second second KIOSK Substation 1000KVA (1 MW)  $\mathbf{2}$ Qty 15 No. Sr. # Item Description Make Model MV Section: 11KV VCB 630A, 25KA Outgoing Panel 1 TE with A88 VC9 01 No. as per attached "Annex C" 2 MV Cable (MV Panel to Transformer) WAPDA approved 01 Job. З LV Cable (LV Panel to Aux. Transformer) WAPDA approved 01 Јођ. Transformer Section: 1250KVA Oil Type Step Up Transformer 0.8/11KV 1 Client Scope 01 No. **Bus Tie Dct Section:** Bus Tie Duct TP 1000A 1 ΤE 01 Jab. 2 x (60 x 05) mm per Phase Ventilation Section: Ventilation System For Transformer (4 Heavy Duty Fan With 1 TE 01 Job. Control DB) Marshilling Box: Marshlling Box For LV, MV & Tarnsformer Signals 1 TE 01 Job. LV Section: Incoming MCCB TP 320A, RC-32KA @ 800V 1 ABB - Italy XT5V-HA 400 03 No. 2 MCCB TP 320A, RC-32KA @ 800V Space Only 02 No. Outgoing ACB TP 1250A, RC-66KA @ 900V (ADJ.) LSI 1 ABB - Italy E2.2H/E9 1250 01 No. 2 Motor Mechanism 220V AC ABB - Italy E2.2H/E9 01 No. 3 UVT 220V AC ABB - Italy E2.2M/E9 01 No. 4 Shunt Trip (Open/Close) ABB - Italy E2.2H/E9 02 No. 5 Digital Energy Analyzer (0.5 class with TCP/IP Port) Circutor/Eqv. CVM-C11 01 No. 6 Current Transformers 1200/5A (0.5 Class) Metelx/Eqv. 03 No. 7 Surge Protection Device TP @ 800V Citel/Eqv. 01 No. Indication Lights ON/OFF/Trip 8 Schneider/Eqv. 03 No.

🛞 Lahore: Taij Garh Read, Yadgar Shuhada Stop, G.T. Road, Manawan, Latiore-Pakistan.

3 +92-42-36522861-62-63 3 +92-42-36522864 info@tariqelectric.com

Karachi: 1st Floor, MA Tabba Foundation Building, Gizri Road, Block - 9, Olffton, Karachi.



www.tarigelectric.com

A88 535

Page 8 of 17

Ref No: TE-148-012025-R1 Dated: 23-01-2025



"Annex B"

No. of Pages: 11

Second state

	Technical Submit	tal					
	For supply of KIOSK Sub	stations					
M/S: Nrtc Energies							
9	Indication Lights R,Y,B	Schneider/Egv.		03 No.			
10	Control MCB GASP, 6KA	ABB - Germany	SH 201	06 No.			
•	Panel Accessories:						
1	Panel Light With Micro Switch	Chint		01 Set.			
. 2	Panel Exhaust Fan With Thermostat	Imported	and the state of	01 Set.			
	Auxiliary DB:						
1	MCCB TP 50A, RC-18KA @ 415V	АВВ	A1B 125	01 No.			
2	Indication Lights R,Y,B	Schneider/Egv.		03 No.			
3	Control MCB 6ASP, RC-06KA	ABB - Germany	SH 201	03 No.			
4	MCB TP 10A, RC-06KA	ABB - Germany	5H 203	02 No.			
5	MCB SP 10A, RC-06KA	ABB - Germany	511 201	12 No.			
6	MCB SP 06A, RC-06KA	ABB - Germany	5H 201	12 No.			
	Misc. Accessories:						
1	Lightning Arrester for KIOSK	Local		01 No.			
2	Light Plug Universal (Plano Type)	Imported		01 No.			
3	Industrial Plug and sockets 32A 4PIN	Imported		01 No.			
4	Photoelectric EE Switch	Panasonic/Eqv.		01 No.			
	Alarm Activation System:						
1	Smoke Dectector System	imported	· _ · · ·	03 No.			
2	Indication Light for Trip	Schneider/Eqv.		01 No.			
3	Control MCB 6A SP, 6KA	ABB	SH 201	01 No.			
4	Push Button Fault Acknowledge	Camsco/Eqv.		01 No.			
5	Control Relays 4NC/ 4NO 220V	Finder/Relpoi		02 No.			
6	Hooter / Buzzer	Imported		01 No.			
7	Revolving Light	Imported		01 No.			
8	Temperature Sensor with Alarm Contact	Imported		01 No.			
	Panel Accessories:		· · · · · · ·	01100.			
1	Tube light 220V (Indoor)	Imported		08 No.			
2	Door limit switch	Imported	··•	05 No.			
3	Boundry Wall light 220V (Outdoor)	Imported		06 No.			
4	Exhaust Fan with Dust filters	Imported		03 Set.			
	Temperature Section		· -	00.000			
4	Temperature Indicator with Sensor & Alarm Contact For Each						
1	Compartment (Signal 04-20mA)	Imported		03 Set.			
	Auxiliary Transformer:						
1	Auxiliary Transformer 25KVA, 800/415V	TE		01 No.			

Lakore: Tałj Garh Road, Yadgar Shuhada Stop, G.T. Road, Manawan, Lahors-Pakistan, +92-42-36522861-62-63
 H-92-42-36522864
 info@tariqetecbic.com
 Karachi: 1st Floor, MA Tabba Foundation Building, Gizri Road, Biock - 9, Clifton, Karachi:
 Colt: +92-301-1163120



www.tarigelectric.com

Page 9 of 17

Ref No: TE-148-012025-R1 Dated: 23-01-2025



No. of Pages: 01

## "Annex C"

Technical Submitteel (BA) Cuite-L		Annex C			
			ty D1 No.		
	Make	Model	Qty		
	<u> </u>	<u>/////////////////////////////////////</u>			
	ABB - Italy		01 No,		
	JSE - Chína	<u> </u>	01 No.		
		T			
		REX-610	01 No.		
			01 No.		
			01 No.		
			01 No.		
			_01 No.		
			01 No.		
	Schneider / Eqv.		03 No.		
	Schneider / Eqv.		03 No.		
			01 No.		
	Schneider / Eqv.		01 No.		
	Schneider / Eqv.		02 No.		
	Klemsan / Eqv.		01 No.		
	E-Logics / Eqv.		01 No.		
	E-Logics / Eqv.		01 No.		
	ABB		01 No.		
	ABB		03 No.		
Current Transformers Ratio: (XXX/5/5A), Burden: 10VA, 15VA, Class:					
	FICO / Eqv.		03 No.		
Potential Transformers, 11kV/V3/110V/V3, Class 0.2 Burden: 100VA,					
12/36/95KV, SC-25KA	FICO / Eqv.		03 No.		
11KV Surge Arrestor	Nanyang (china)		03 No.		
Panel Accessories					
Panel Light + Door limit Switch	Chint - China		01 No.		
Anti Condenstate Heater 60W With Thermostat		···	01 No.		
Auto Manual Selector Switch For Heater ON			01 No.		
Terminal Blocks	Klemsan		01 Set.		
E/M Scada Register Shall be verified during FAT.					
	For supply of KIOSK Substatic M/S: Nrtc Energies 11KV 630A, 25KA Outgoing Panel (I/O)(Inside KIOSK) Item Description Breaker Compartment Motorized VCB 630A, Rated Voltage 12KV withdraw able Typc, Operating Voltage 11KV, 25KA, BIL 36/95KV, with Shunt Coll @ 110VAC/DC & Motor Mechanism @ 220VAC Earthing Switch Low Voltage Compartment Digital O/C, E/F & S/C Protection Relay With Auto Recloser Function Digital Energy Mater (0.2s accuracy class Compatible with Scada) Analogue Voitmeter scaled (0-15KV) Analogue Ammeter scaled (0-15KV) Analogue Ammeter scaled (0-2XXXA) Voltmeter selector switch (4-Position) LED Type Indication Lights for Phase R/V/B @ 110VAC LED Type Indication Lights for CLB On/Off/Trip @ 110VDC LED Type Indication Lights for CLB On/Off/Trip @ 110VDC LED Type Indication Lights for E.S On @ 110VDC Indication Lights for Heater ON @ 220VAC Push Button ON/OFF Phase Failure Phase Sequance Relay Capacitor/DC Trip Unit TP MCB 06A DP MCB 10A Cable Compartment Current Transformers, 11kV/V3/110V/V3, Class 0.2 Burden: 100VA, 12/36/95KV, SC-25KA 11KV Surge Arrestor Panel Light + Door limit Switch Anti Condenstate Heater 60W With Thermostat Auto Manual Selector Switch For Heater ON Terminal Blocks	11kV 630A, 25kA Outgoing Panel (J/O)(Inside XIOSK)         Make           Breaker Compartment         Make           Motorized VCB 630A, Rated Voltage 12kV withdraw able Type, Operating Voltage 11kV, 25kA, Bil 36/95kV, with Shunt Coll @         ABB - Italy           110VAC/DC & Motor Mechanism @ 220VAC         ABB - Italy           Earthing Switch         JSE - China           Low Yoltage Tormpartment         ABB           Digital Energy Mater (0.2s accuracy class Compatible with Scada)         Bile Star / Eqv.           Analogue Voltmeter scaled (0-15kV)         Lumel - Poland           Analogue Voltmeter scaled (0-25kV)         Lumel - Poland           Analogue Voltmeter scaled (0-25kV)         Lumel - Poland           Analogue Voltmeter scaled (0-25kV)         Lumel - Poland           Motorized VCB meter scaled (0-25kV)         Lumel - Poland           Voltmeter selector switch (7-Position)         Camsco / Eqv.           LED Type Indication Lights for Phase R/Y/B @ 110VAC         Schneider / Eqv.           LED Type Indication Lights for C.B On/Off/Trip @ 110VDC         Schneider / Eqv.           IDIgital D Concerner Status Relay         Klemsan / Eqv.           Transformer Status Relay         E-Logics / Eqv.           Phase Failure Phase Sequance Relay         Klemsan / Eqv.           Phase Failure Phase Sequance Relay         Klemsan / Eqv.	Technical Submittal (MV Switchgear)         For supply of KIOSK Substations         M/S: Nrtc Energies         Site A Outgoing Panel (I/O)(Inside KIOSK)         Item Description       Make       Model         Breaker Compariment:       Quarter Site A Bit Science       Quarter Site A Bit Science       Quarter Site A Bit Science         Mate (Voltage 12KV with draw able Type,       ABB - Italy         Operating Voltage 11KV, 25KA, Bit 36/95KV, with Shunt Coll @       ABB - Italy         JONACC & Motor Mechanism @ 220VAC       ABB - Italy         Digital Comparition Mate Colspan="2">ABB - Italy         JONAC Colspan="2">ABB - Italy         Digital Comparition Mate Colspan="2">ABB - Italy         Digital Comparition Mate Colspan="2">ABB - Italy         Digital Comparition Mate Colspan="2">ABB - Italy         Digital Comparition Mate Colspan="2">ABB - Italy         Digital Comparition Mate Colspan="2">ABB - Italy         ABB - Italy         Digital Comparition Mate Colspan="2">ABB - Italy         Digital Comparition Mate Colspan="2">ABB - Italy         Mate Mate Colspan= Equitation Ligh		

麓 Cell: + 92-301-1163120

www.tarigelectric.com



Page 17 of 17

## EXTERNAL LIGHTNING PROTECTION



GENERAL DESCRIPTIONS

Walt Courses and the

CONVRAGE Early Streamer Emission (COSI) lightning terminal can anticipate of other elements and items within its protectable range according to its protoction level radius by an accepting the lightning strikes and conducting these strikes into the earch through the safest and projected ways. COMTRAGE CESE Terminal work as to principle of creating IONs by its interval iON GUNLAGEON channels. This structure itself allows the terminal to read set the high voltage sightning strikes, even up to 200kA, to the earthing system then to the earth at the kafest way.

8439

3 V. . . .

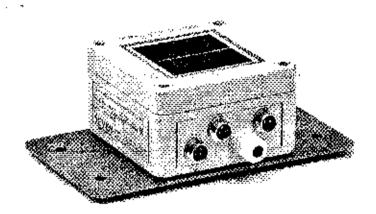
CONTRACT CESE Lightning Remninal is exclusively suitable to install where primary protection is needed like critical points; nullitary zones and aaro-space bases at higher protection radiuses range.

Tested and certified according to NFC17-102/2011 Early Streamer Emission -Standard including Defial' (ΔT) advance fime tesh current with standing lost to determine CONTRAGO's protection levels.

			• •	• •			 	 		-
> Righ Salt mist treatment										
			•	• • •	• •	•••		•	-	1
> Comio sulphurous at nospinere tra	atur	۱e	••••	ι						ł
		•••					 	 	• •	Į
> Current withstanding tast: 200kA ()	10/3	33	ιU	2L	<b>:</b>					
	• • • •	• •					 	 		-
> Advance time D./ Ja? (AT) tost										

TECHNSCAL CHARAC	TERISTICS		
Məterial	Stainless 5.001		
Weight	3.00 kg		
Ext. Dlameter	120 mm.		
enght ih)	52 cm.		
Box orght	55 cm.		
Red Dometer	20 mm.		
Aslaptar Diameter	60mm.Male		
Code	IP67		
Wirtking Temperature	-25°C/ <del>30°C</del>		
: ype of Transipal	Electroatme/loheric		
Internal Insulation	ation High Density Polyprothane Rasin		
Stundard NFC 17-102/201			
Grounding Methoo	Wire/Tapp		
Max, Current Withstend (16/350ps) / >2.5 Mp/g)	20010A		
Advance Toris, Adv	<u>б0</u>		

Organizations and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s	-leigistini		NARCH OF CO Protection A Corea	NTHARAS Musica Lauris	<b>U</b> Leef
aur Karneda / SanEsheSm	2		32	ЗУ	43
nor the statistic processing of the statistic statistics	۷	63	69	76	สร เ
I(a) w veter of Kp from tions (b) retentions to the n 20 more that soften look (gives sign proved real soften time content on kernel (sign content) and	· · · · ·	79	96	97	107
eSine for el publicar (set uk (Pértinan Astrocetor) del ni mare pranten (set ki) (Suentard astrocetor) ado = kiešE tre districtus (districtus) de ce úng tu der	10	/9	อส	59	- 35
<ol><li>and total re.</li></ol>					


Akgh vältäge höpušterinines.	KON GENERALISE DAK
Completely autonomous	Testable with ORBITAL Texters
10% moint efficient than passive systems.	-Fally composition with the standards
Electroatmospheric repactor Inside	20 years thin that unon warranty

ODTÜ METU

# 3S-SR-3T-WS-MB



# PROJ-0121-YWM-MS-DWG-0002-00 Solar Radiation Sensor Box Measurement of Solar Irradiance



#### MODE OF OPERATION

A silicon solar cell can be used as an irradiance sensor, because the short-circuit current is proportional to irradiance. Our sensors are built out of a monocrystalline solar cell connected to a shunt. Due to the low resistance of the shunt the cell operates next to short circuit.

The temperature coefficient of the short-circuit current creates a small error.

The compensation is realized by using a specific temperature sensor laminated to the rear side of the solar cell. The measuring signals of short- circuit current of the cell and the resistance value of the temperature sensor are measured by a micro controller.

The calculated values of irradiance and temperature given onto a RS485 port with customer specification protocol. The electronic circuit is optimized for low power consumption.

#### MECHANICAL CONSTRUCTION

The solar cell is embedded in Ethylene- Vinyl- Acetate (EVA) between glass and Tedlar. Plain integration into the top cover of the box Advanced weatherproof junction box made of UV resistant material with cable gland and screw-less terminal for the connection of the measuring cable, therefore, the sensor construction is comparable to that of a standard PV module. The electrical connection is realized by a 3m cable.

# 3S-SR-3T-WS-MB

.....

. .....

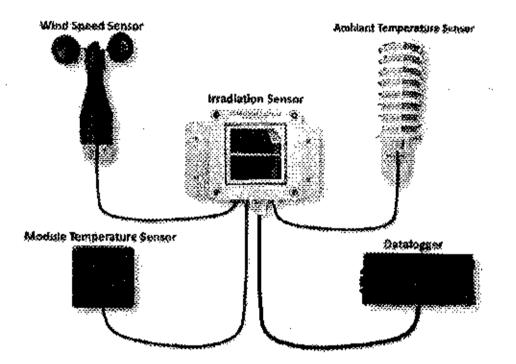


ALL SENSOR'S ARE CALIBRATED IN SIMULATED SUNLIGHT AGAINST A REFERENCE CELL OF THE SAME TYPE. THE REFERENCE CELL IS PERIODICALLY CALIBRATED AGAINST A REFERENCE CELL CALIBRATED BY FRAUNHOFER ISE, FREIBURG.

## TECHNICAL DATA

General Information	
Solar Cell	Monocrystalline Skicon (52 mm x.52 mm)
Current Short	High precision shunt resistor directly soldered to the terminals of the cell
Operating Temperature	30°C is +70°C
Electrical Connection	3 m PUR Cable, UV and weather registant
Power Supply	12 to 30 VDC (30 mA typically at 20 VDC)
interface	RS485 0p to 19200 Badd
Protocol	The censor is connected via s 2-wire RS465 bus with open vendor- independent Modbus RTU protocol
Galvanic Isolation	1000 V between power supply and RS485 bus
Case	Advanced weatherproof junction box made of UV resistant material
Dimensions, Weight	94 mm x 94 mm x 57 mm, approx, 200 g
Protocžen	(F64
Acouracy	
Imadiance	10 1500W/m ² , Accuracy of monthly sums compared to a W.M.O. class 1 Pyranometer (s.g. CMP 11) according to ISO 9080: better ±5%
Dritt	Very small drift of <0.3% year
Electrical Connection	
Brown	Power (+)
White	Power (-)
Green	R\$485 Data (+) / A
Yellow	RS485 Data (-) / B
Raputri	3S-WS-PLS, Wind speed sensor. 2 pip connector
laput 2	3S-AT-18B20, Ambient temperature sensor, 3 pin connector
Input 3	33-MT-18620, Modula temperatura sansor, 4 pin connactor
Others	
Calibration	individual calibration of each sensors in the natural sublight at AM 1.5 spectrum by means of a compatible calibrated reference calibrated reference calibration.
Happiling Case	The sensor can be cleaned using a smooth potton cloth, water and a mild cleaning fuld. Opening of the sensor case by the user or installation staff is not necessary. If the case is opened, we cannot gue/antee the seaf of the case anymore.
Modbus Specification	
Baud Rate	1200, 2400, 9600, 19200, 38400
Parity	No, aven, odd
Stop Bit	1, 2 (enly at no parity)
Factory Default	9600 Bazd, SN1, address: 1

3S-SR-3T-WS-MB


-----



. . . . . . . . . . . . . . . .

. . . .

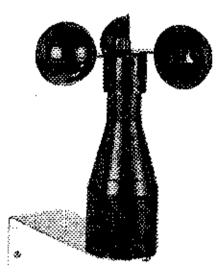
### WIRING EXTERNAL SENSORS



#### RELATED PRODUCTS

SS-WS-PLS	Wind speed sensor, read cordact, polse
38-AT-18B20	Ambient temperature sensor, DS15B20
3S-MT-18920	Module icorperature sensor, OS18B20
38-PS-12VDC	Power supply, 220VAC, \$0/50Hz_32VDC, 300mA
38-Shield-A	Sclar Radiation Siteld for Ambient Temperature Sensor PT150, PT1000, DS18820 stc.




_____

# Wind Speed Sensor

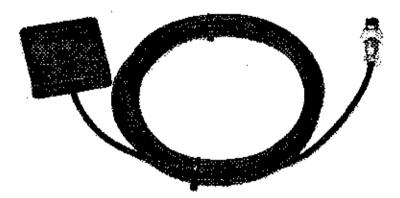
## APPLICATION

Small and economical anemometer with digital output used to measure wind speed at solar power plants as well as at universal applications. Compatible with SEVEN Sensor Box, Supplied with stainless steel mounting bracket and Cable.

_____



## TECHNICAL DATA


Sensor type	UV resistant plastic material cup star anemometer
Output Signal	
	Roed relays, 2.5 Hz / (m/s) puise
Measuring Range	0,940m/s
Accuracy	±0.5 m/s or ±5 % of measuring value
Resolution	0.4 is wind run
Frequency	0100 Bz
Contact Load	10 W, 1788, 32 V DC, max, 0,4 A
Ambient Temperature	-25+88 °C, los-free
Cable	3 m LIMY Cable, UV and weather resistant
Protection	(P54)
Stavival Speed	Max, 60 m/s
Dimensions	234 mm x 175 mm
Weight	0.3 kg



# **Module Temperature Sensor**

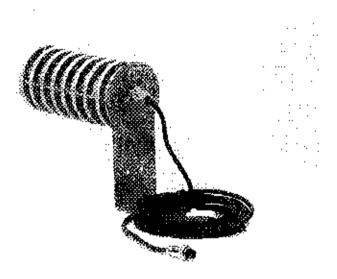
# APPLICATION

Maxim DS18B20 is an economical digital module temperature sensor for universal application as well as for solar photovoltaics projects. Compatible with SEVEN Sensor Box.



## TECHNICAL DATA

Géherai Information	
Sensor Type	OS18820 digital temperatura probe, for flat surfaces (back side of solar panet)
Measuring Range	~\$5+\$25°C
Accurecy	±0.6 °C
Sensor Housing	Plastic hoosing with atomizum plate, H x W x U 12 mar x 50 mm x 30 mm
Cable	5 m PUR Cable, UV and waathar resistant
Protection	8267
Connectios	One-Wire-Bus technique




**. . . . . . . . . . . . . . . . .** . . . . . . .

# Ambient Temperature Sensor

## APPLICATION

Maxim DS18B20 is an economical digital ambient temperature sensor for universal application as well as for solar photovoltaics projects. Compatible with SEVEN Sensor Box. For this, SEVEN provides a stainless-steel mounting bracket and UV resistant solar radiation shield.



## TECHNICAL DATA

General Information	
Seasor Type	Dö16520 digitel temperature probe
Measuring Range	-55+32610
Accuracy	± 0.6 ℃
Sensor Housing	Staintess steet tube, 6 mm diamater, 60 mm tength
Cable .	3 m or 5 m PUR Cable, UV and weather resistant
Protection	1965
Connection	Ons-Wire-Bus technique



# Modbus RTU Specifications

## Supported Bus Protocol

BaudRate:1200,2400,9600, 19200,38400 Parity: No, even, odd Stop Bit: 1, 2 (only at no parity) Factory Default: 9600 Baud, 8N1, address: 1

Transmission mode: MODBUS RTU

Supported function codes:

- 0x04: Read Input Register

The following Mod bus data can be read individually or in blocks:

D-Dec.	ID-Hex	Value
0	0x00	Irradiance value 016000 in 0.1 Watt/m²
1	0x01	Temperature of measuring cell 01000 [range -2575°C] in 0.5°C
2	0x02	External temperature 1 01000 [range -2575°C] In 0.5°C
3	0x03	Wind speed in 1/100 m/s 06000
4	0x04	External temperature 2 01000 [range -2575°C] in 0.5°C
5	0x05	Temperature compensated irradiance value 016000 in 0.1Watt/m ²
6	0x06	mV value of irradiance input 010000 in 0.01mV (raw data)
7	0x07	Temperature of measuring cell 01800 [extended range -55125°C] in 0.1°C
8	0x08	External temperature 1 01800 [extended range -55125°C] in 0.1°C
9	0x09	External temperature 2 01800 [extended range -55125°C] in 0,1°C
10	0x0A	External humidity (Temp./Humidity sensor) 0100 [%] actual always "0"
<b>1</b> 1	0x0B	Digit value of the ADC [04096] (raw data)
12 ·	0x0C	Wind sensor pulse frequency of last wind measurement cycle (raw data)
13	0x0D	Wind sensor number of pulses since last modbus read out (high-word) (raw data)
14	0x0E	Wind sensor number of pulses since last modbus read out (low-word) (raw data)
15	0x0F	Cell temperature as 'sign value' -550 +1250 [range -55 +125°C] in 0.1°C
16	0x10	Ext. temp. 1 as 'sign value' -550 +1250 [range -55 +125°C] in 0.1°C
17	0x11	Ext. temp. 2 as 'sign value' -550 +1250 [range -55 +125°C] in 0.1°C

SEVEN Sensor Solutions (3S) • sales@sevensensor.com • www.sevensensor.com

# Financial Breakup

								and part of them
1 Ferners' on Lipost dig	NUPAR	36 km+ (A steel 2 dites)				200500000000000000000000000000000000000		
> Inegr 8 Brghooting	у 	749 B.M (2.2) 441 B.CH. 651	···-	Jet	22YTH/te	197 AOK	T-0.23	5, 217, 646
2 Unternation of Approxim	vidEd	Luci As par Regtoral Environmentel Instanton Agency		_				
Civit Works						ġ.		
1 Geo Toshofaal Shud wa	RE 	Live and considered for each site members of in the zone.	-	8	0000019280.	842309626	C 10011071	0178120
V Lond properties	ц	SEE 2.3 M/V	. <u> </u>	¥	9.'928'V.4.7	1.02,545.45	1,772727.1	12 222 22 2
I	¥	852 0 XW	'	بة	2,250,056,00	 		
	분	the first stored for 20 di 420 consistend in the zone.		¢¢	2,630,000.00	13,000,000,00	20/00/06/2	12,021,011-01
_ I	, w	I twin valive 1000 motors also fusived length is considered for cash alle		ę,	2,826,100,000	15,125 C0 0 0 0	Z 10C,920L/0	
- 8%-1	y	Кора Пастана и собор Калариана		de.	MINE/00	16,000 000	2400.000	
<ul> <li>If very name</li> <li>Observations</li> </ul>	7	it was not the web back a second relief	10	3	2859.000	12,Setters	200000	14:50:000
12	NE 2000000000000000000000000000000000000	i tri nati onstanto la vechale merioredia forto zaro. 540-2000 contrava secondo contrava e contrava e contrava e contrava e contrava e contrava e contrava e contrava	2	3	1, 130,030	200000	1,272.010	B 375
PV Plant						â		
i PV Parcis	. WATMCJCANADIAN ¹ Tim 1 11.//SOUWMAC	4 ¹ Tim 1	282	W21	25,252,02	0010/2022/86	-   	5 R S 3 7 89
- I	WOITUNGLAAR 4.	Surt 37 ng aveter - NV Series	 88 1	kitikan.	10 202 00	. w Janac		
	¥.	+EC #W+122		KM3T:	12400.00	78.750,000 00	14.775 00.00	1.00.000 F
4 (300%)	COMMAN 5	Overal of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the output of the ou	·	   <u>*</u>	x march	12.555,041-01	2,205 (40) (0)	14452 000
	2 2	и и жило удели (о токо токо жилисти Ц ИЛА и Килит дер Пос дерани и нацин хулатте	-  -	7	1,200,000,000	1100 Million		
	Ne constant	Lettra (sevene) un	-	Strain and a strain and a strain and a strain a strain a strain a strain a strain a strain a strain a strain a	ESCOLUTION DE LA COLUCIONE	10000000000000000000000000000000000000		
						19393-00355799999999		
		方がらないというないで、「東京というないないない」		2212222222A0000	Delete and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second			

-

.

:

:

•

.

.

. . .

.

:

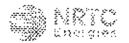
.

.

.

.

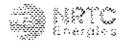
:


.

.

# O&M Manual




# NRTC Energies – Operation and Maintenance Plan (O&M Plan)



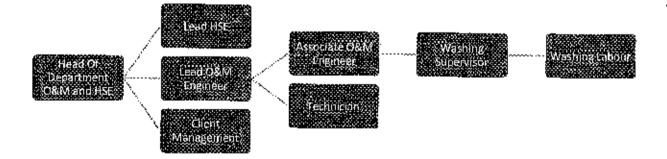
:

i

	itents oduc	tion
1)		
-) 2)		M Services
-/ 3)		M team Organogram
		ponsibilities
		ead of Department (HOD)
		&M Engineer
		ead HSE
		ssociate O&M Engineer
		echnician
		/ashing Supervisor
		ashing Labor
		pe of Services
		onitoring
		eaning Scope/Methodology:
		aintenance
	·5)	Operational Maintenance
-	.6) -`	Preventative Maintenance
	.7)	Monthly Inspections
	.8)	Bi-Annual Inspections
	.9)	Annual Inspections
-	.10)	Corrective Maintenance
•	.11)	Response to Fault Messages
	.12)	O&M Strategy in case of the fault
	13)	Performance Reporting
	14)	Security:
	15)	Safety:
	15.1	Standard Guidelines for Safety
4.	15.2	Operation,
	15.3	Safety Warnings and Cautions General
	15.4	Work Site
4.	15.5	Additional:



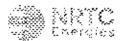
## Introduction


The goal of this plan is to reduce the cost and Improve the effectiveness of operations and maintenance (O&M) for photovoltaic (PV) systems. Reported O&M costs vary widely based on the requirements of the system, but a more standardized approach to planning and delivering O&M has the potential to both decrease costs and make those costs more predictable over time. However, the bigger payoff for improved O&M is increased performance.

#### 1) C O&M Services

O&M Services includes Operations, Maintenance and cleaning of complete plant, 24/7 monitoring of plant through online software, scheduled or Emergency corrective and preventive maintenance, monthly, biannually and annually inspection and testing of plant. Analyze the Data (fact and figures) make the reports on Daily, Weekly and monthly bases.

Detail Description of work is Defined Below


#### 2)E O&M team Organogram



#### 3): Responsibilities

#### 3.1) Elead of Department (HOD)

- Manage all the operation and Maintenance Activities of plant along with all the resources.
- Manage and report all sites activities to the BOD.
- Review the whole progress of all operational plants on daily, weekly and on annual basis.
- Manage the activities of O&M team.



- Manage and control the operational budget of the plant.
- Ensure the activities performed under HSE compliance.
- Client management.
- Over view the performance of O&M team.
- Ensure the quality of work.
- Engage the EPC-C during handover plant to O&M department and ensure the work done as per BOQ.
- Atrange the audit of hand overing plants to O&M department.

## 3.2)10&M Engineer

- Report site problems timely to the IIOD.
- Materials arrangements and mobilization for the site activities.
- Analyze all quality checks performed during monthly inspection of Solar system.
- Train on site resources for System operation, maintenance and cleaning.
- Maintain monthly report of installed system.
- Able to troubleshoot installed Solar system.
- Ensures that tools and test equipment are properly maintained and fit for purpose.
- Comply with Company health, safety and environmental policies.
- Manage the inventory by regularity checks.
- Keep the performance parameters under observation and perform tests time to time to improve the
  performance of plant.
- Proactively manage the team in case of fault and always try to minimize the down time or production loss.
- Maintain all kinds of record reports, inspection check lists, inventory and budget record.

#### 3.3) Lead HSE

- Conducting HSE compliance audits on regular basis.
- HSE trainings on weekly basis, physical and virtual.
- Reviewing HSE documentation and its implementation on regular basis.
- Inspection of fire extinguishers on monthly basis.
- Risk evaluation of the site and its prevention.
- PPEs provision to teams and inspection on regular basis.
- Waste management inspection on regular basis.
- Incident investigation and reporting.
- Reporting of HSE statistics to BOD on regular basis.
- Certified safety trainings of employees on annual basis.

#### 3.4) Associate O&M Engineer

- Prepare daily plant operations report.
- Responsible for generating weekly operation and maintenance progress report.
- Lead and supervise washing activities.
- Responsible for generating schedules of plant washing activities and mobilize the manpower accordingly
   across the fleet of solar plants.
- Identifies washing problems and develops corrective action plans.
- Co-ordinate and update higher management on net washing expenditure.
- Provide timely written review reports from field operation, status and constructive feedback as requested.
- Work with other members of the maintenance team, sub-contractors and other groups to equipment

replacement and installation.

- Record and report all faults, deficiencies, and other unusual occurrences on plants.
- Participate in continuous improvement initiatives and associated periodic meetings

## 3.5) Technician

- Daily inspection of PV modules, inverters, LT's, MV's, Transformers and update the issues accordingly.
- Monitoring a site and its activities with the instruction of Lead O&M engineer.
- Report all the activities/issues to Lead O&M Engineer.
- Able to troubleshoot and installed solar system.
- Manage all the maintenance activities of the plant.
- Report all the issues to the Lead O&M engineer.
- Perform all the preventive maintenance effectively and the corrective maintenance with the minimum loss impact.
- Perform all the quality checks during the all kinds of inspections.
- Update the Lead O&M engineer about the stock.
- Maintain the fault reports and inspection record.
- Comply with Company health, safety and environmental policies.
- Handle the labor and train them according to work conditions.

#### 3.6)IWashing Supervisor

- Pre-Inspection of PV modules, structure and working area.
- Training of washing labor on regular basis, according to HSE standards.
- Fill the washing inspection check list after completing the washing activity.
- Ensure the safety of labor and inspection of PPEs on regular basis.
- Inspection of washing equipment's before starting activity.
- Prepare daily report of washing and share the results with pictures.
- After completion of work ensure braker and pressure pumps are proper close and system is isolated.
- Ensure the SOPs of washing are followed.

#### 3.7) Washing Labor

- Inspection of PV modules.
- Inspection of washing tools.
- Washing of solar panels in compliance with washing SOP's.
- Cleaning of inverters.

#### 4) Scope of Services



The scope of O&M activities comprised of the following:

#### 4.1)Monitoring

Realtime online monitoring and controlling of the PV System 24/7.

Remote access to all operational data for the PV Power Plant will guarantee the uninterrupted transfer and acquisition of operational data to the remote monitoring system.

Following shall be the features of the gateway and remote monitoring system:

- Online monitoring system.
- Alarms / alerts and timely notification of key performance indicators.
- Monthly and annual reporting including system availability, system output (characterization of spatial and temporal variations), capacity factor, degradation trends, average and cumulative output opening/closing of service tickets, spare parts used, and any deviations from the guaranteed generation.
- Status of equipment and protections (DC & AC).
- Separate monitoring of inverters, DB including PV Module string level (current and voltage) monitoring.
- Any reductions in performance will be logged.
- The data shall present the status of the PV Power Plant, including the Performance Ratio, annual overview, and the current power being generated and exported to the Client.

## 4.2) @leaning Scope/Methodology:

Manual labor cleaning with wipers and pressure water.

This method requires human operator to clean manually with the help of mop or solar wipers. The quality of cleaned surface is judged by visual method by the O&M team and washing supervisor himself for the satisfactory level or till the dust particles get wiped out completely. For Minimum water consumption pressure nozzles and pressure-controlled water punsps are used.

#### Please check "Annexure A-Panel cleaning SOPs for more details".

#### 4.3)Maintenance

The Maintenance activities will be divided into the following parts:

- Operational Maintenance will include operation of Solar PV Systems.
- Preventative Maintenance will include inspections and tests of Solar PV equipment to depict their performance.
- Corrective Maintenance will include troubleshooting and parts replacement (if required) in case of abnormal behavior, component failure or breakdown.

#### O&M Task Sheet:

Below table summarizes the scope of work of operations and maintenance related work under the Operations and Maintenance of the Solar Equipment:

TASK	WEEKLY	MONTHLY	QUARTERLY	ANNUALLY
System performance monitoring (remote)		· · · · · ·	× .	·
System performance analysis and report			· · · į	~
Operator training for safe operation	↓	×	×	4
Cleaning of panels	↓ ✓	× ···-		
System monitoring/inspection on-site		*	<u></u>	
Inspection of modules (Thermal imaging)		· ·	<ul><li>✓ *</li></ul>	
Each array voltage and current test	· ····	~	√ ×	<b>_</b> _
Checking inverter settings and its output				√*
Inverter power factor settings	1			√*
Electrical system and circuit breakers inspection	~ <b>√</b>	×	~	4
Analyzing system wiring condition	·	<u>├</u> ·── <u> </u>		
System grounding test				√
Inspection of panels mounting structure		1	······································	√
dentification of shading on panels by surrounding objects		└ 	<u></u>	_,

* The activity/task may or may not be done, it may depend on the condition and requirement analysis of the plant.

#### 4.5).1 Operational Maintenance

Operational maintenance will include,

- Cleaning of solar panels monthly or according to site conditions.
- Checking Inverter Display Parameters.
- Visual Inspection of cable trays against any damage.
- Visual Inspection of solar panels against any damage.
- Checking functionality of installed equipment.
- Checking all the operation equipment status from the online portal.

#### **4.6)**□ Preventative MaIntenance

- Mounting Structure inspection for sturdiness and corrosion.
- Visual inspection of Solar Panels and DC Connectors.
- Checking terminal and cable connections of inverters.
- Monitoring on the online system which includes to check all the currents, inverter status and acknowledge of all the alarms and inform the maintenance team for rectification.
- Checking functionality of Inverters and online system.
- Inspection of LV DB of inverters and main DB.
- I-V characteristic curve measurements of the affected PV Module strings to identify the reason in case of reduced output.
- In addition, detailed BI-Annual and Annual Inspections of the complete plant shall be performed, and the report shall be submitted.

#### 4.7) I Monthly Inspections:

- Inspection of complete solar equipment during the monthly site visit.
- Inspection of Inverter, panels, structure, transformer and all related equipment.
- Testing of stings.
- Inspection of Fire cylinders and HSE equipment.
- PR calculation of PV plant.

Following checklists are filled during monthly inspection site visits:

- I- Inspection of washing
- li- Inspection of HSE equipment
- lii- Inspection of cables and tables
- iv- Inspection of inverter
- v- Inspection of PV modules.
- vi- Inspection of EMS
- vii- Inspection of Transformer
- viii- Inspection of electrical DBs

#### 4.8)□ Bİ-Annual Inspections

following parameters shall be checked and tested during the bi-annual inspections,

- 100% visual inspection of PV Modules regarding damage shall be performed during 1st blannual inspection.
- Random visual PV Module damage inspection during and biannual inspection.
- Random check for loosening of PV Modules.
- Random testing of sturdiness of mounting foundation / system and random substructure corrosion inspection.
- Testing of inverter features according to manufacturer's maintenance schedule.
- Maintenance of inverters according to manufacturer's instructions.
- Inspection and functional check of complete security surveillance system including fences if any, cameras, etc.
- Functionality testing of the monitoring system.
- Maintenance of all PV Plant components according to manufacturer's instructions.
- Checking of expiration date of the fire extinguishers installed on-site.

#### 4.9) Annual Inspections

- Visual damage inspection of all accessible cable trenches and cable trays.
- Visual inspection and random testing of PV Module string connectors.
- Visual inspection of all PV Modules, all components and degree of pollution.
- Thermography of PV Modules to identify hot spots of cells, busbars or connectors.
- Maintenance of sensors of weather station based on manufacturer's instructions.
- Visual inspection of all Breakers.
- Inspection of overvoltage protection regarding external damage.
- Functional check of internal and external overvoltage and undervoltage protection through operation
  of test terminal.
- Functional insulation monitoring check.
- Check of control and auxiliary voltages.
- Check of the safety circuit for the interruption of the AC-grid protection in the case of failure (emergency shutoff, over-/ undervoltage, over temperature, etc.).
- Visual inspection of AC- and DC clamps for tightness and discoloring, tightening of clamps.
- Maintenance of inverters according to manufacturer's instructions.
- Visual inspection of PV Power Plant regarding accessibility and stability for which would be needed for the replacement of an inverter or PV modules.
- Ground maintenance includes all procedures necessary to avoid PV Module shading. This includes the levelling or any new constructed buildings.
- Grounding continuity and resistive values verification.
- IV curve tracing of whole plant.
- Comparison report with respect to irradiance.
- PR calculations of PV plant,

#### 4.10)II Corrective Maintenance

Following corrective maintenance services will be perform during O&M,

- Critical Reactive Repair
- Condition Based Maintenarice
- Warranty Enforcement
- Equipment Replacement through Spares (planned/unplanned)
- Complaint Management

#### 4.11) Response to Fault Messages

Every fault message shall be registered and stored in our data record.

- All fault messages and results relevant for the operation of the PV Plant shall be documented in the ticketing system. Any fault messages resulting in fault calls shall be documented in the corresponding monthly reports, indicating start and end of fault, reason and/or any performed repair works, as well as the respective components of the PV Plant fault management / warranty defects.
- Fault management procedures shall include necessary communication of faults, coordination of on-site appointments with service staff, as well as the corresponding and general operational structure.
- Fault management procedures shall include the preparation, handling and support in events covered by
  insurance provided by OEM, and the enforcement of claims for compensation to third parties, including
  the component manufacturers.
- All defects shall be documented within the same day of detection, and a summary provided to Company
  on a monthly basis in the corresponding monthly report. All fault and defect rectification shall be
  included in the monthly reports, with reference to the initial alarm/notification of occurrence.
- Warranty claim matters will be dealt with the manufacturer of prescribed equipment and will have specified time.

#### 4.12)I. O&M Strategy in case of the fault

#### DC Side faults:

To perform any kind of testing/trouble shooting on the DC string in case of any fault, string must be isolated from the system before performing any task verify the irradiance fail is less then 350 w/m².

- Turn off the AC switch.
- Turn off the DC Isolator.
- Check the current in the string from the clamp meter.
- Separate the string from the MC4 Connector.
- Perform the trouble shooting.

#### Inverter Trouble Shooting:

Isolate the inverter before any troubleshooting. If the maintenance works will be required then the inverter must be completely isolated from the system, the supply must be turned off from the MV panel prior to perform any activity and must confirm the voltages from the Meter before starting any kind of activity at the inverter.

#### Inverter Isolation

To perform any kind of the trouble shooting at the inverter it must be completely isolated from the system. Always keep in mind that the inverter is powered by dual sources: PV strings and utility grid.

Proceed as follows to stop the inverter during normal maintenanco and service work as follows:

- Stop the inverter using stop button instruction sent by the APP. The inverter stops.
- Disconnect the AC circuit breaker.
- Set the DC load-break switch of the inverter to OFF.
- Wait at least 10 minutes for inner capacitors to discharge completely.
- Verify that there is no voltage or current before pulling any connector.
- Wait for the module DC side voltage drops below the safety voltage.

When a fault occurs Proceed as follows to stop the inverter when a fault or emorgency loccurs as follows:

- Inverter will stop automatically in case of fault.
- Disconnect the AC circuit broaker.
- Set the DC load-break switch of the inverter to OFF.
- Walt at least 10 minutes for inner capacitors to discharge completely.
- Verify that there is no voltage or current before pulling any connector.
- Wait for the module DC side voltage drops below the safety voltage.

#### inspection before starting

After the maintenance or service work, you may start the inverter. Restart the inverter only after removing the fault that impairs safety performance.

As the inverter contains no component parts that can be maintained, never arbitrarily replace any internal components.

Inspect the following requirement before starting the inverter:

- All connections are done by strictly following the Installation manual and circuit diagram.
- The coverings of the internal devices are fixed and secured.
- Make sure, via suitable Instruments, that there is no ground fault of the PV modules.
- Measure the DC and AC current with multimeter to check if they fulfill the module startup conditions and there is no overvoltage bazard.
- After long time storage, a thorough and professional test is necessary before starting the inverter.

#### 

The performance of plant is monitored, recorded and shared on daily, weekly, monthly, half-yearly, and yearly basis.

Performance Reports shall include the following,

- Plant availability
- Daily Generation vs Daily Irradiation
- Actual Monthly Generation corresponding to Actual Irradiation
- Expected Monthly Generation corresponding to Expected Irradiation (PV Syst values)
- Actual Monthly Performance Ratio
- Lost Time log
- Committed Energy
- Inventory Status
- Information about any maintenance activity
- Fault messages and calls

A list of O&M reporting and its frequency is attached as an "Annexure F-List of O&M reporting".

#### 

Security of the entire Plant shall be in the Client's scope.

4.15)∃ Safety:

#### 4.15.1∃ Standard Guidelines for Safety

#### Disconnection

- a) Switching on or off an electrical disconnect is a process often taken for granted as safe, but it can be one of the most dangerous tasks involved in maintaining a PV system.
- All system components must be assumed to be energized with maximum DC voltages (up to 1500 V) until personnel verify that the voltage has been removed. Wait for at least o5 minutes after turning the inverter off to get the capacitances discharged completely.
- c) Workers must wear proper PPEs (Rubber Gloves, Safety Helmet and Safety Shoes) when operating disconnects, and care should be taken to use the proper LOTO technique for throwing switches.
- d) A recommended safety protocol is to follow the left-hand rule, which involves standing to the right side of the switch and using the left hand to throw the switch. This ensures that the worker's body is not in front of the switch should an arc flash occur.

#### 4.15.2 □ Operation

- a) Do not touch any live electrical part of PV Panel such as terminals with bare hands, always use appropriately rated safety gloves.
- b) Do not touch front side of PV Panel under sublight this may lead to thermal burn.
- c) Do not stand in front of PV panel during operation (this will cause shadows).
- Do not attempt at making an electrical connection with wet, soiled, or otherwise faulty connectors.

- e) Avoid sunlight exposure and water immersion of the connectors.
- f) Avoid connectors resting on the ground or roof surface (this might result in the connectors being immersed in water during rainy season).
- g) Check that all electrical connections are securely fastened. Make sure that all locking
- connectors are fully engaged and locked.
- Do not connect any extra energy sources other than the already installed ones.

To avoid product damage, personal injury, or even possible death, anyone installing or handling the equipment must carefully read, understand, and follow all the installation and safety instructions in this document before attempting to install, wire, operate the array, and/or perform maintenance.



WARNING

This document must be read and understood before attempting to handle, install, wire, operate, and/or perform maintenance. The panels produce DC electricity when exposed to sunlight or other light sources. Contact with electrically active parts of the Solar panels can cause injury or death, whether they are connected to other Solar panels or individually.



Observe all electrical safety precautions to prevent electrical shock while installing the solar equipment, and while wiring, testing, and/or performing maintenance of the PV array. Use insulated tools and proper personal protective equipment to reduce the risk of electric shock.

## 4-15-3 □ Safety Warnings and Cautions General

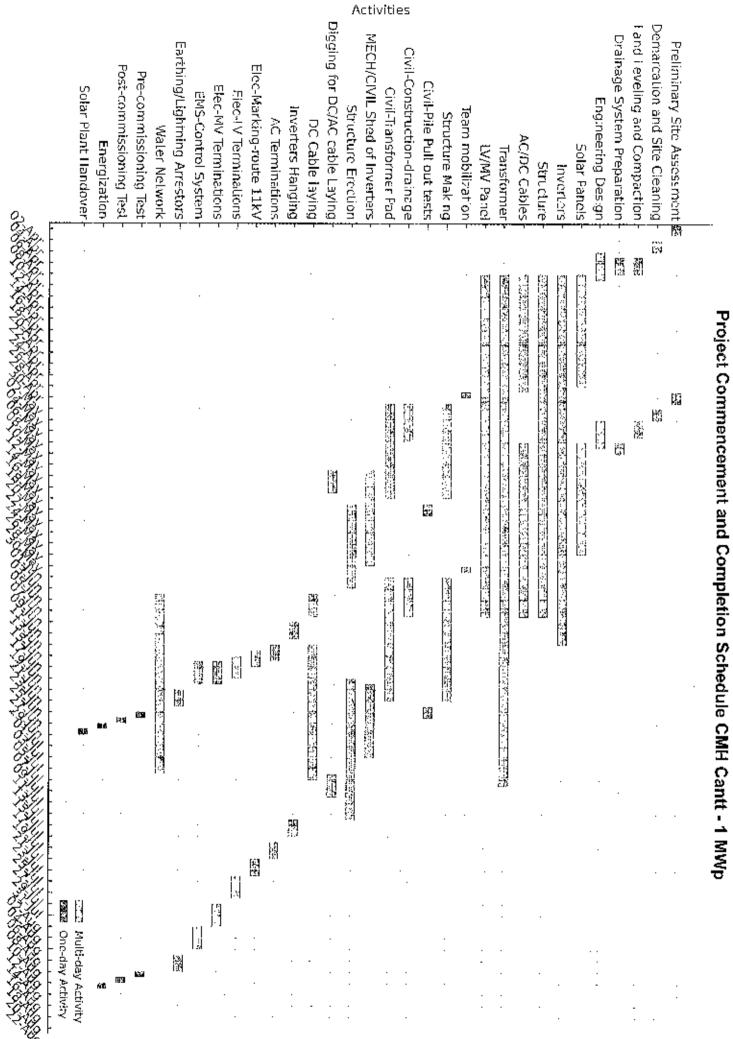
- Potentially lethal DC voltages can be generated whenever solar panels are exposed to a light source, therefore, avoid contact with electrically active parts and be sure to isolate live circuits before attempting to make or break any connections.
- Do NOT proceed if any doubt arises about the correct or safe method of performing any of the procedures found in this document
- NO washing of panels will be allowed during peak hours of sun light (11:00AM to 3:00PM) because of hot surface of the panels.
- During working hour if found any sort of abnormality which could lead to serious issues or unable to understand, personal should inform the condition to the immediate supervisor.
  - Always wear appropriate safety and protective equipment, such as:
    - Rubber soled shoes
    - Cutresistant and chemical resistant gloves.
    - Safety glasses
    - Hard hat

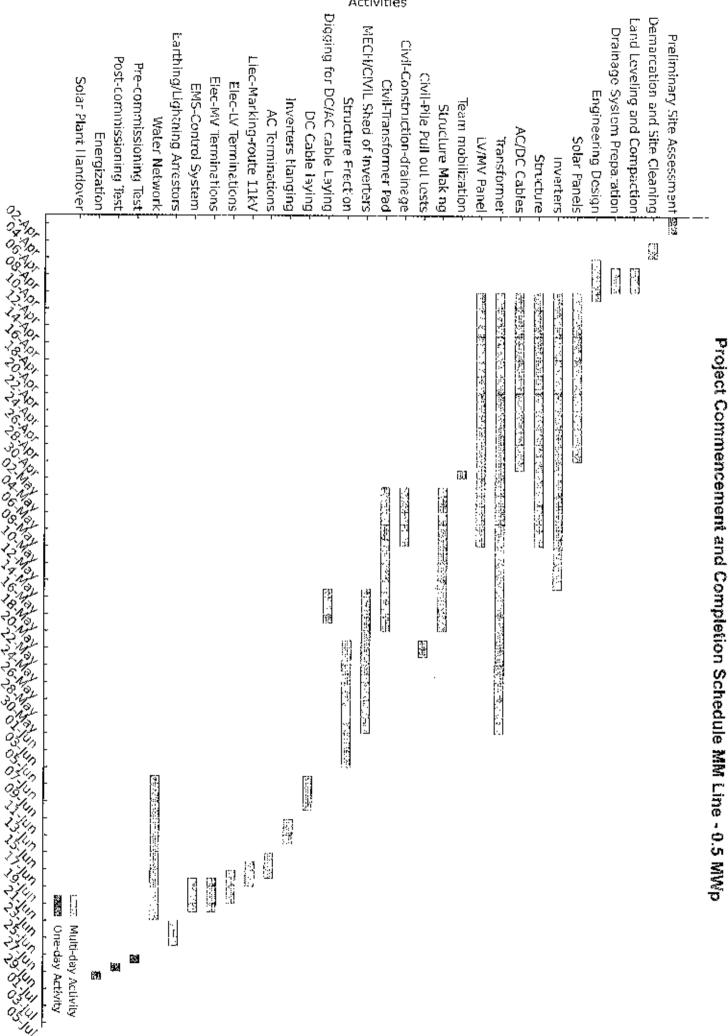
- When working on electrical connections, remove all metallic jewelry, and use insulated tools.
- Wear cut resistant gloves whenever handling Solar panels
- Do NOT drive screws into any part of the photovoltaic laminate. Altering the laminate or improper Installation could cause electric shock, may result in fire, and will void the product Limited Warranty.

#### 4.15.411 Work Site:

Follow all appropriate safety practices for the site.

- Do NOT handle PV laminate assemblies in high wind conditions.
- Do NOT perform maintenance on this product when Solar panels are wet or are in standing water.
- Ensure that the work area is clear of trip hazards. Personal injury can result from tripping over power cords, tools, electrical conduit, natural gas lines, and/or installation materials.
- Provide clear warning signage at each access point to the Installation. This signage should clearly state the dangers associated with a high voltage solar system, the personal protection equipment that should be worn, and emergency telephone numbers for fire and emergency medical service.
- All safety signs as per site to be pasted to different locations.

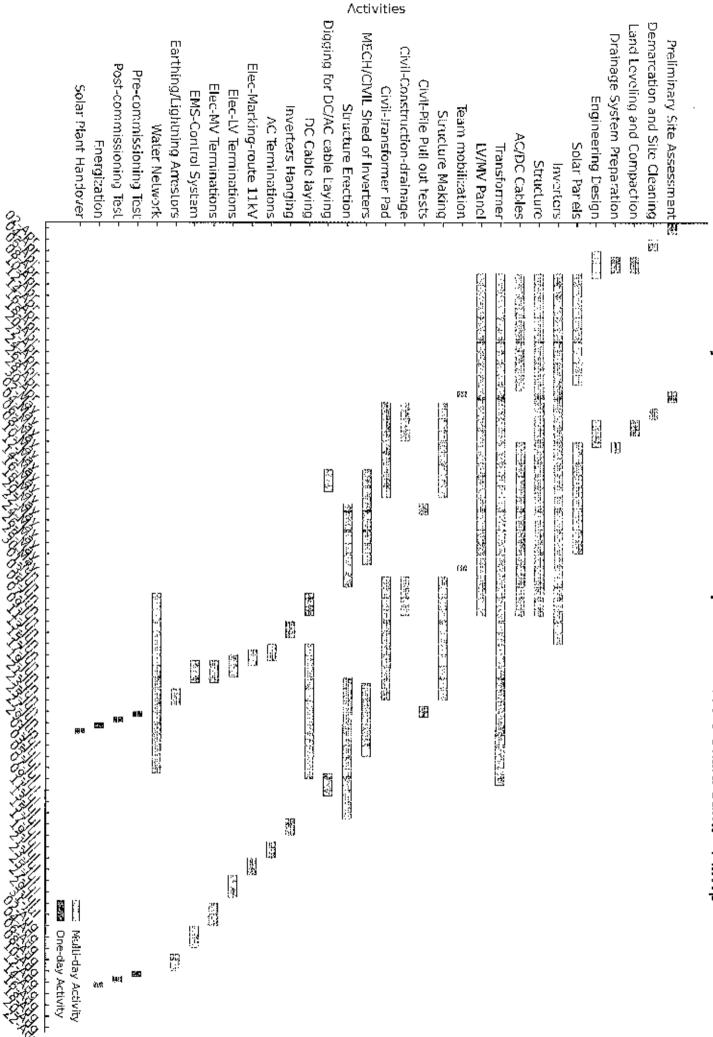

#### 4.15.51_ Additional:


- Try NOT to walk or kneel on the Solar panels. Wear clean (free from small stones) soft soled shoes to avoid possible scratching of the front surface of the Solar panels.
- Avoid dropping sharp objects or placing objects on the Solar panels, and do NOT wheel carts or drag items across them.
- PV Solar panels contain electrical components, and cannot be trimmed or altered in any way.
- Do NOT connect or disconnect quick connect cables under load,
- To reduce the risk of electric shock or arc flash, cover Solar panels with an opaque material before making wiring connections.
- All test equipment, leads, and probes must be rated for maximum system voltage.
- Observe proper polarity when connecting Solar panels into an electrical circuit, as reverse connections
  may damage the Solar panels and will void the product Limited Warranty.
- Do NOT attempt to concentrate suplight (via lenses, mirrors, etc.) on the Solar panels to increase output, as damage may occur, which will void the product Limited Warranty.
- Follow all roof manufacturer and material safety data sheet (MSDS) instructions for the safe use of any chemicals.
- Do NOT use any chemical agents on or around Solar panels that are NOT approved by NRTC Energies.



MUST be worn on this site at all times

Pacial provides in the last intervention of the cleaning intervention and cleaning intervention and cleaning intervention and cleaning intervention intervention and cleaning intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention intervention interven			
Specimization and Site Assessment 2013           Demandation and Site Cleaning         2011           Distance of Conjunction         2011           Disteneo of Conjunction         2011     <			Solar Plant Handover
Preliminary Site Assessment ES         Demarcation and Site Cleaning         Land Compaction         Diralnage System Preparation         Engineering Lesion         Brigineering Lesion         Sinctrue         ACUCC Calcles         Transformering         Sinctrue         Sinctrue <td></td> <td></td> <td>Energization -</td>			Energization -
Preliminary Site Assessment         Site           Demarcation and Site Cleaning         Image: System Preparation         Image: System Preparation <t< td=""><td></td><td></td><td>Post-commissioning Test</td></t<>			Post-commissioning Test
Preliminary Site Assessment E           Democration and Site Cleaning         E           Land Leveling and Compaction         EE           Democration and Site Cleaning         EE           Solar Parels         EE           Solar Parels         EE           Structure         EE           ACDC Catles         EE           Transformer         EE           VIAW Panel         EE           Tansformer         EE           VIAW Panel         EE           Tansformer         EE           VIAW Panel         EE           Tansformer         EE           Structure Making         EE           Civil-Pile Pull out tests         EE           Structure Erection         EE           Novertes Hanging         EE           DC cable Laying         EE           DC cable Laying         EE           Elec-Marking Arrestores	ale and and a		Pre-commissioning Test
Preliminary Site Assessment       Image: System Region of Site Cleaning       Image: Site Cleaning       Image: Site Cleaning       Image: Site Cleaning       Image: Site Cleaning       Image: Site Cleaning       Image: Site Cleaning       Image: Site Cleaning       Image: Site Cleaning       Image: Site Cleaning       Image: Site Cleaning       Image: Site Cleaning       Image: Site Cleaning       Image: Site Cleaning       Image: Site Cleaning       Image: Site Cleaning       Image: Site Cleaning       Image: Site Cleaning       Image: Site Cleaning       Image: Site Cleaning       Image: Site Cleaning       Image: Site Cleaning       Image: Site Cleaning       Image: Site Cleaning       Image: Site Cleaning       Image: Site Cleaning       Image: Site Cleaning       Image: Site Cleaning       Image: Site Cleaning       Image: Site Cleaning       Image: Site Cleaning       Image: Site Cleaning       Image: Site Cleaning       Image: Site Cleaning       Image: Site Cleaning       Image: Site Cleaning       Image: Site Cleaning       Image: Site Cleaning       Image: Site Cleaning       Image: Site Cleaning       Image: Site Cleaning       Image: Site Cleaning       Image: Site Cleaning       Image: Site Cleaning       Image: Site Cleaning       Image: Site Cleaning       Image: Site Cleaning       Image: Site Cleaning       Image: Site Cleaning       Image: Site Cleaning       Image: Site Cleaning       Image: Site Cleaning       Image: Site Cleaning       Image: Site Cleaning       Image: Site			Water Network
Preliminary Site Assessment Importance         Demarcation and Site Cleaning         Land Leveling and Compaction         Drainage System Preparation         Structure         AC/DC Cables         Transformer         Civil-Piol Pull out tests         Structure         MECH/CIVIL Shed of Inverters         Structure Election         DC Cable Laying         DC Cable Laying         Directers         Structure Election         DC Cable Laying         DC Cable Laying         Diverters Hanging         AC Terminations         Elec-Marting-route 11kP         Elec-Marting-route         Elec-Marting-route 11kP         Elec-Nating-route         Elec-Nating-rout			Earthing/Lightning Arrestors
Preliminary Site Assessment E           Demarcation and Site Cleaning         Image: Site Cleaning           Land Leveling and Compaction         Email           Drainage System Preparation         Email           Solar Farels         Email           Solar Farels         Email           ACDC Catics         Email           Transformer         Email           V/MV Panel         Email           Transformer         Email           V/MV Panel         Email           Transformer         Email           V/MV Panel         Email           Transformer         Email           Civil-Pite Pull out tests         Email           Civil-Pite Pull out tests         Email           Civil-Pite Pull out tests         Email           Civil-Pite Paration         Email           Dic Cable Laying         Email           Elec-Marking-route 11/K         Email           Elec-Marking-route 11/K         Email			EMS-Control System -
preliminary Site Assessment iz         Demarcation and Site Cleaning         Land Leveling and Compaction         Drainage System Preparation         Solar Farels         Solar Farels         Invertes         Structure         AC/OC Catkis         Transformer         U/MV Panel         Team mobilization         Structure Making         Civil-Pilo Pull out tests         Civil-Pilo Pull out tests         Structure Exection         Structure Exection         Digging for DC/AC cable Laying         NeCHACING-Reserver         Structure Exection         AC Terminations         Elec-Marking-rout LIVP         Elec-Marking-rout Structure         Elec-Marking-rout Structure <td></td> <td></td> <td>Efec-MV lerminations</td>			Efec-MV lerminations
preliminary Site Assessment Ex         Demarcation and Site Cleaning         Land Leveling and Compaction         Drainage System Preparation         Engineering Lesign         Solar Farels         Structure         AC/OC Cables         Transformer         Structure         Structu	· · · ·	· · · · · · · · · · · · · · · · · · ·	Elec-LV Terminations
preliminary Site Assessment         Demarcation and Site Cleaning         Demarcation and Site Cleaning         Land Leveling and Compaction         Drainage System Preparation         Solar Far ets         Solar Far ets         AC/DC Catkes         Transformer         UNIV Panel         UNIV Panel         Civil-Pilo Pull out tests         December Pad         MECH/CIVIL Shed of Invertes         Structure Factor         Digging for DC/AC cable Laying         DC Cable Laying         DC Cable Laying         DC Cable Laying         DC Cable Laying         Civil-Transformer         Civil-Transformer         Civil-Transformer         Civil-Transformer         Civil-Transformer         Civil-Transformer         Civil-Transformer         Civil-Transformer         Civil-Transformer <tr< td=""><td></td><td></td><td>Elec-Marking-route 11kV</td></tr<>			Elec-Marking-route 11kV
Preliminary Site Assessment 20         Demarcation and Site Cleaning         Land Leveling and Compaction         Drainage System Preparation         Engineering Lesion         Soluri Par els         Inverters         AC/DC Cables         Transformer         Land Leveling and Compaction         Soluri Par els         Inverters         Structure         AC/DC Cables         Transformer         Land Monthalitzation         Structure Making         Civil-Dic Unit ut tests         Civil-Dic Unit ut tests         Civil-Transformer Pad         MECH/CIVIL Sched of Inverters         MECH/CIVIL Sched of Inverters         Structure Eleveling         MECH/CIVIC cable Laying         DC cable Laying         DC cable Laying         DC cable Laying         DC cable Laying         DC cable Laying         DC cable Laying         DC cable Laying         DC cable Laying         Diguing for DC/X cable Laying         DC cable Laying         DC cable Laying         DC cable Laying         DC cable Laying         DC cable Laying         <	<u>5.25</u>		AC Terminations
Preliminary Site Assessment         Demarcation and Site Cleaning         Land Leveling and Compaction         brainage System Preparation         Engineering Cesign         Solar Farels         AC/DC Cables         Transformer         Lam mobilization         Structure         AC/DC Cable Laying         Civil-Pile Pull out tests         Elevel Pull out tests         Elevel Pull out tests         Elevel Pull out tests			Inverters Hanging
prediminary Site Assessment       Image: System Preparation       Imag			DC Cable laying
Preliminary Site Assessment       Image: Second State Cleaning         Demarcation and Site Cleaning       Image: Second State Cleaning         Land Leveling and Compaction       Image: Second State Cleaning         Drainage System Preparation       Image: Second State Cleaning         Engineering Cesign       Image: Second State Cleaning         Solar Panels       Image: Second Structure         AC/DC Catkles       Image: Second Structure         Transformer       Image: Second Structure         Team mobilization       Image: Second Structure Structure Making         Civil-Pile Pull out tests       Image: Second Structure Structure Structure Structure Structure Structure         MECH/CIVIL Shed of Inverters       Image: Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Struc	· · · · · ·		Digging for DC/AC cable Laying
Prediminary Site Assessment       Image System Preparation         Demarcation and Site Cleaning       Image System Preparation         Engineering Lesign       Image System Preparation         Solar Far ets       Image System Preparation         Solar Far ets       Image System Preparation         AC/DC Cables       Image System Preparation         Transformer       Image System Preparation         AC/DC Cables       Image System Preparation         Transformer       Image System Preparation         Structure Making       Image System Preparation         Civil-Pile Pull out tests       Image System Preparation         Civil-Construction-drainage       Image System Preparation         Civil-Transformer Pad       Image System Preparation         MECH/CIVIL Shed of Inverters       Image System Preparation			
Prediminary Site Assessment       Image: System Preparation         Land Leveling and Compaction       Image: System Preparation         Drainage System Preparation       Image: System Preparation         Solar Parets       Image: System Preparation         Solar Parets       Image: System Preparation         AC/DC Cables       Image: System Preparation         Transformer       Image: System Preparation         Team mobilization       Image: System Preparation         Structure Making       Image: System Preparation         Civil-Pic Pull out tests       Image: System Preparation         Civil-Construction-drainage       Image: System Preparation         Civil-Transformer Pad       Image: System Preparation         Structure Making       Image: System Preparation         Civil-Pic Pull out tests       Image: System Preparation         Structure Preparation       Image: System Preparation         Structure Making       Image: System Preparatin Preparatin Preparatin Preparation		1.800	
Prediminary Site Assessment       Image: Second Site Cleaning         Demarcation and Site Cleaning       Image: Second Site Cleaning         Land Leveling and Compaction       Image: Second Site Cleaning         Engineering Cesign       Image: Second Site Cleaning         Solar Parets       Image: Second Site Cleaning         Structure       Image: Second Site Cleaning         AC/DC Catics       Image: Second Site Cleaning         Transformer       Image: Second Site Cleaning         LWMV Panel       Image: Second Site Cleaning         Team mobilization       Image: Second Site Cleaning         Structure Making       Image: Second Site Cleaning         Civil-Pilc Pull out tests       Image: Second Site Cleaning         Civil-Construction-drainage       Image: Second Site Cleaning         Structure       Image: Second Site Cleaning         Structure       Image: Second Site Cleaning         Structure Making       Image: Second Site Cleaning         Structure       Image: Second Site Cleaning         Structure       Image: Second Site Cleaning         Structure       Image: Second Site Clea		<u> </u>	
			Civil-Pile Pull out tests
		A reference of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s Second second s Second second se	Structure Making
		[6]	Team mobilization
		1	LV/MV Panel
		第二十二十二十二十二二十二十二十二十二十二十二十二十二十二十二十二十二十二十二	Transformer
		(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	AC/DC Catiles
			Structure -
		the second of	Inverters -
			Solar Panels
			Engineering Design
		· · · · · ·	Drainage System Preparation
			Land Leveling and Compaction
Prefiminary Site Assessment 28	· · · ·		Demarcation and Site Cleaning
			Prefiminary Site Assessment 器






Activities

:

One-day Activity		
- Multi-day Activity		Solar Plant Handover
Ing		Energization
1914		Post-commissioning Test
189		Pre-commissioning Test
		Water Network
·		Earthing/Lightning Arrestors
		EMS-Control System
		Elec-MV Terminations -
The second second second second second second second second second second second second second second second se		Elec-LV Terminations
		Elec-Marking-route 11kV
<u></u>		AC Terminations
·		inverters Hanging
		DC Cable laying
		Digging for DC/AC cable Laying
		A Structure Erection
		$\dot{\mathcal{H}}$ MECH/CIVIL Shed of Inverters
		Čívil-Transformer Fad
		M Civil-Construction-drainage
		Civil-Pile Pull out tests
•		Structure Making -
	[¥]	Team mobilization -
	いた。本国により開発がある。 建築のため、「開発のため」、「開催のようには、開催のため」、「開催の」、「開催の」、 「日本」の「日本」の「開発のため」、「開催の」、「「開催の」、「「開催の」、「「	LV/MV Panel -
		Transformer -
	[199] 中国大学的学校,在1995年中国大学校的学校,1995年中国大学校的学校,1995年中国大学校会会。	AC/DC Cables
	میں اور میں میں اور میں میں میں میں میں اور میں میں میں میں میں میں میں میں میں میں	Structure
· · · ·	的人。 <b>就是这些错误,这些我们们就是这些,这些人,你就是这些人,这些人们的时候,这些人们的</b> 这些人,就是	Inverters
	「「「「」」「「」」「「」」「」」「」」「」」「」」「」」「」」「」」「」」「	Sofar Panels
		Engineering Design
· · ·		Drainage System Preparation
		Land Leveling and Compaction
· · · · · · · · · · · · · · · · · · ·		Demarcation and Site Cleaning
•		Preisminary Site Assessment



Date

Project Commencement and Completion Schedule Okara Cantt - 1 MWp