

To.

QUAID-E-AZAM

Solar Power (Pvt) Ltd For informations Eon/a congress-Div(Mos -D, Chie.)

ce! Clien man

-m(mee/CA) -m(Lie, 15,

THE REGISTRAR NATIONAL ELECTRIC POWER REGULATORY AUTHORITY — MF NEPRA Tower Attaturk Avenue (East) Sector G-5/1, Islamabad Pakistan

SUBJECT: <u>APPLICATION FOR A MICROGRID SYSTEM LICENSE</u>

I, Muhammad Badar ul Munir, Chief Executive Officer, being the duly authorized representative of Quaid-e-Azam Solar Power (Private) Limited by virtue of being the Chief Executive Officer, hereby apply to the National Electric Power Regulatory Authority for the grant of a microgrid system license to Quaid-e-Azam Solar Power (Private) Limited pursuant to Section 14-B, 20 and 23-E of the Regulation of Generation, Transmission and Distribution of Electric Power Act, 1997.

I certify that the documents-in-support attached with this application are prepared and submitted in conformity with the provisions of the National Electric Power Regulatory Authority Licensing (Microgrid) Regulations, 2022, and undertake to abide by the terms and provisions of the above-said regulations. I further undertake and confirm that the information provided in the attached documents-in-support is true and correct to the best of my knowledge and belief.

Date: 14 October, 2022

Chief Executive Officer Quaid-e-Azam Solar Power (Private) Limited

3rd Floor, 83-A, E/1, Main Boulevard Gulberg III Lahore, Pakistan +92 99332261-65 FAX 042-35790366

info@qasolar.com, www.qasolar.com

Ċ

101

QUAID-E-AZAM Solar Power (Pvt) Ltd.

BEFORE THE NATIONAL ELECTRIC POWER REGULATORY AUTHORITY

APPLICATION FOR SEEKING MICROGRID SYSTEM LICENSE

ON BEHALF OF

QUAID-E-AZAM SOLAR POWER (PRIVATE) LIMITED

FOR PROJECT

ELECTRIFICATION OF POOR GRID/OFF-GRID VILLAGES OF PUNJAB

THROUGH SOLAR

Dated: 14th October, 2022

Applicant	Legal Consultant
Quaid-e-Azam Solar Power (Private)	Muhammad Saqlain Arshad
Limited	Advocate High Court
3 rd Floor, 83-A, E/1, Main Boulevard,	65/3, FCC Gulberg IV, Lahore.
Gulberg-III, Lahore, Pakistan.	
Phone: +92 423 5790363	Phone: 04235752306
Website: https://www.qasolar.com/	Website: www.snhlawfirm.com

3rd Floor, 83-A, E/1, Main Boulevard Gulberg III Lahore, Pakistan +92 99332261-65 FAX 042-35790366

Ŧ

QUAID-E-AZAM Solar Power (Pvt) Ltd.

CHECKLIST FOR EXAMINATION OF APPLICATION FOR THE GRANT OF MICROGRID SYSTEM LICENSE

Serial No.	Information/Documents required under National Electric Power Regulatory Authority Licensing (Microgrid) Regulations, 2022	Information/Documents Submitted
1.	Application for Microgrid License in Accordance with Schedule-II of the Regulations.	Yes. Attached as Annexure-I.
2.	Board Resolution and Power of Attorney	Yes. Attached as Annexure-I.
3.	Certificate of Incorporation, Memorandum and Articles of Association	Yes. Attached as Annexure-II.
4.	Annual Report of the Company	Yes. Attached as Annexure-III.
5.	Information relating to Safety and Emergency plans	Yes. Attached as Annexure-IV.
6.	Feasibility Study of the Project and Business Plan (Financial Analysis)	Yes. Attached as Annexure-V.
7.	Copy of Certificate of Occupancy or Lease Agreement and Building Permit	
8.	Power System Layout Drawings	Yes. Attached as Annexure-VI.
9.	Map with position of power station and distribution network marked using indicators to distinguish single phase and three phase as well as medium voltage networks	Yes. Attached as Annexure-VI.
10.	Tariff Application Table and Description of Intended Tariff Scheme and Service Availability	Initially the Applicant shall provide the services to the Consumers free of any charge. Subsequently, the tariff shall be charged to the Consumers as per mutually agreed between the Applicant and the Consumers in accordance with the principles of fairness and equity as provided under Regulation 6 of the

3rd Floor, 83-A, E/1, Main Boulevard Gulberg III Lahore, Pakistan +92 99332261-65 FAX 042-35798366

info@qasolar.com, www.qasolar.com

IJ

			NEPRA Licensing (Microgrid) Regulations, 2022. Certain information on the matter of Tariff is provided in the Tariff Table attached as	
	11.	Standard Consumer Service Agreement	Annexure-VII. The Applicant is still in the process of drafting a Standard Consumer Service Agreement. The Applicant shall submit the copy of the Standard Consumer Service Agreement with the Registrar NEPRA as soon as it drafts the Agreement in	
			accordance with the principles provided under Regulation 7(2) of the NEPRA Licensing (Microgrid) Regulations, 2022 read with Schedule-III of the said Regulations.	
	12.	Certified copy of Building Permit	N/A	
	13.	All necessary approvals from other government agencies	As per our knowledge, the Applicant Company has complied with all necessary approvals from all government agencies	
:	14.	Letters of Support:		
		i. Commercial entities being served by the generating station	Since the Applicant does not intend to supply electric power to any commercial entities at any of the sites of the project as detailed out in the Application. therefore, this requirement is not applicable.	
		ii. Landowner agreements (license/Concession/Lease for use of land/river)	N/A	
		iii. Any other letters of support the	N/A	
	1	Applicant would like to include		

iv.	Provincial Government	The Project is approved by the Provincial Government.
۷.	Host DISCO for implementation of specification for distribution network	Since no Host DISCO's network exists at any of the sites of the Project, therefore, this requirement is not Applicable.
vi.	Any other	N/A

for Astron participa

1

•

ANNEXURE-I

Application for Microgrid License along with Authorization from Board and Power of Attorney

QUAID-E-AZAM Solar Power (Pvt) Ltd.

NATIONAL ELECTRIC POWER REGULATORY AUTHORITY

SCHEDULE 2. APPLICATION FOR MICRO GRID SYSTEM LICENSE APPLICATION FOR MINI-GRID SYSTEM LICENSE OF X.X MW OR LESS FOR COMMERCIAL PURPOSES

(Pursuant to NEPRA Licensing (Microgrid) Regulations, 2022 S.R.O. No. 994(I)/2022 dated 6th July 2022)

IMPORTANT NOTES -

Your Application for Micro Grid System License is incomplete unless all required documents are submitted.

NEPRA reserves the right to verify the accuracy of this information.

Electronic copies may be submitted via mail on a flash drive or CD-ROM.

For NEPRA Use Only			
Date Received: Number:			
Time Received:	Received by:		

In compliance with the NEPRA Licensing (Microgrid) Regulations, 2022 I am herewith certifying that I, **Muhammad Badar-ul-Munir**, am applying to construct, operate, and maintain a micro-grid system of 721.5 kWp or less for commercial purposes on 14-10-2022.

1.0 PARTICULARS OF APPLICANT AND CONTACT PERSON

Name of Applicant:	Quaid-e-Azam Solar Power (Pvt.) Ltd.
Address:	<u>3rd Floor. 83-A E/1, Main Boulevard Gulberg- III. Lahore.</u>
Tel:	042-99332261
Fax:	042-35790366

3rd Floor, 83-A, E/1, Main Boulevard Gulberg III Lahore, Pakistan +92 99332261-65 FAX 042-35796

Mobile Phone:	<u>0333-4878877</u>
E-mail:	<u>ceo@qasolar.com</u>
FBR/NTN Registration Number:	
Website Address:	www.gasolar.com
Name of Contact Person:	Muhammad Badar-Ul-Munir
Address of Contact Person:	Quaid-e-Azam Solar Power (Pvt.) Ltd., 3rd Floor, 83-A/E1, Main Boulevard, Gulberg-III, Lahore
Telephone Number of Contact Person:	042-99332261
Mobile Phone of Contact Person:	<u>0333-4878877</u>
E-mail for Contact Person:	ceo@gasolar.com

2.0 LEGAL STATUS OF APPLICANT

Indicate legal status of Applicant (Tick relevant option)

- □ Sole Proprietorship
- □ Partnership

71.2

□ Public Limited Liability Company

□ Private Limited Liability Company**

- □ Cooperative Society
- □ Incorporated Trustee
- □ Other (please specify)

(Attach Certificate of Registration, Certificate of Incorporation, Memorandum and Articles of Association, Deed of Partnership, Deed of Trust, as applicable)

3.0 DETAILS OF THE DIRECTOR/ CEO of THE APPLICANT

_	Director/CEO Name:	Muhammad Badar-Ul-Munir
Ξ	Postal address:	Quaid-e-Azam Solar Power (Pvt.) Ltd., 3 rd Floor. 83- A/E1, Main Boulevard, Gulberg-III, Lahore
	Cellular Phone:	0333-4878877
	Email:	<u>ceo@qasolar.com</u>

3.1 DETAILS OF THE Employees / Staff

س	Number of Engineers:	6
[]	Number of skilled employees:	18
	Total Number of employees:	34

4.0 NATURE OF APPLICATION

4.1 State whether Application is a new Application or Renewal

- □ New Application
- 🗆 Renewal

Ĩ

4.2 Refusal, Suspension or Cancellation of Isolated Grid System License

Has the Applicant ever been refused a Mini-Grid System License or had its Mini-Grid System License suspended and/or cancelled by the Authority?

□ No

4.3 If yes, give details of the refusal, suspension, and/or cancellation.

Not Applicable

[□] Yes

5.0 MAIN BUSINESS ACTIVITIES OF APPLICANT

Please indicate the main business activities the Applicant is currently engaged in (add additional pages if needed):

Quaid-e-Azam Solar Power (Pvt.) Limited is a public-sector for-profit company established by the Government of the Punjab. The company has been established for the setting up of renewable energy projects in general and Solar Energy Power Projects in particular. Quaid-e-Azam Solar Power (Pvt.) Limited is the first ever utility scale solar power plant in the country. It aims to initiate solar energy programs and research projects with respect to Solar Energy power generation plants.

6.0 DESCRIPTION OF PROJECT

6.1 Name of Project: Electrification of Poor Grid/Off-Grid Villages of Punjab Through Solar

6.2 Requested length of Microgrid System License (Years): 10 Years

6.3 Please provide a detailed description of the project (add additional pages if needed):

The Government of Punjab realizing its responsibility for provision of electricity to homes in remote villages, has decided to undertake the challenge for provision of electricity to the off-grid population through its Energy Department. The statistics obtained from DISCOs of Punjab shows that 6,103 villages are off-grid due to remoteness and high infrastructure cost. The Quaid e Azam Solar Power (Private) Limited has been declared as the executing agency for the execution of this project.

This project shall help to provide solar solutions to Off-grid Villages/poor grid villages of Punjab and shall pave a way towards implementation on a large scale. The project shall enable occupants of the said villages to get a clean and reliable source of electricity with reduced burden on the national grid.

The solar solutions include Solar panels, Inverters, Battery banks, SCADA, distribution system and billing system. The systems will be installed at available land of government at the sites mentioned in the schedule at the outskirts of the selected villages. In view of the above, the Quaid e Azam Solar Power (Private) Limited has proposed this project of combined capacity of 721.5 kWp to be implemented at 5 different sites, details of which are mentioned in the Documents attached with the Application.

6.4 Is this project for multiple micro-grid systems?

□ Yes, how many individual systems will fall under this Application: 6
 □ No

If yes, please provide the following information for each system using a consistent reference (I.e. 6.5a for the first system, 6.5b for the second). If information is similar across multiple systems, this may be noted in place of repeating information.

6.5 Site of the microgrid system(s) (Village(s), Sub-county and District):

Site No.: A: Basti Chaapu, Bahawalpur

Ì

Site No.: B: Gatta Raikh, Dera Ghazi Khan

Site No.: C: Basti Mud Saindad. Rajanpur

Site No.: D: Basti Kheersar. Bahawalpur

Site No.: E: Pughla Shumali/Janubi, Dera Ghazi Khan

(Attach title document to the land, relevant maps of the planned distribution envelope and drawings as appropriate. Use a consistent numbering system)

6.6 Generation (Expected): 1.1 GWh

If multiple specific units are planned, if similar indicate the number or add additional lines if dissimilar:

	Rated Size	Equipment Specifications
Type of syste	m (kW)	Add additional lines if needed or specify if multiple similar units are being planned

			280	Basti Chaapu, Bahawalpur
				Solar irradiance at site: 5.264
				Manufacturer/Make PV: Canadian Solar
				Technology : Fixed Tilt
				Solar Cell Type: Monocrytalline
2				Total Number of PV Panels: 629
				Nominal Power of each PV Panel: 445
				Inverter Details: (Make, Type, efficiency) Infini Solar/Hybrid/91%
				Maximum output (kW): 224
				Annual generation (kWh/year): 434,000
	G			Annual Capacity Utilization Factor: 17.5
	n		71	<u>Gatta Raikh. Dera Ghazi Khan</u>
-	er	🗆 Solar		Solar irradiance at site: 6.5
	io at			Manufacturer/Make PV: Canadian Solar
:	n			Technology : Fixed Tilt
				Solar Cell Type: Monocrytalline
				Total Number of PV Panels: 160
				Nominal Power of each PV Panel: 445
				Inverter Details: (Make, Type, efficiency) Infini Solar/Hybrid/91%
				Maximum output (kW): 56kw
	}			Annual generation (kWh/year): 110,050
				Annual Capacity Utilization Factor: 17.5
		.	84.5	Basti Mud Saindad, Rajenpur

-46.1

3, 7

6

Ŋ

ſ	 	Solar irradiance at site: 5.419
		Manufacturer/Make PV:
		JA SOLAR (JAM72S20 445-470/MR/1000V)
		Technology : Fixed Tilt
		Solar Cell Type: Mono crystalline
e e		Total Number of PV Panels: 186
		Nominal Power of each PV Panel: 455
		Inverter Details: (Make, Type, efficiency)
		Sofar HYD 5K~20KTL-3PH, Hybrid, 98%
		Maximum output (kW): 20*5= 100KW
		Annual generation (kWh/year): 131.000 kWh
		Annual Capacity Utilization Factor: 17.5
	91	Basti Kneersar, Banawalpur
		Solar Irradiatice at site: 5.275
		JA SOLAR (JAM72S20 445-470/MR/1000V)
		Manufacturer/Make PV:
		Technology: Fixed Tilt
;		Solar Cell Type: Mono crystalline
		Total Number of PV Panels: 200
		Nominal Power of each PV Panel: 455W
		Inverter Details: (Make, Type, efficiency)
		Sofar HYD 5K~20KTL-3PH, Hybrid, 98%
		Maximum output (kW) : 20*5= 100KW
		Annual generation (kWh/year): 141 050 kWh
		Annual Canacity Utilization Eastern 175
		Annual Capacity Outization Factor: 17.5

Ý T

,

	Storage		Manufacturer/Make: N/A
		TOTAL:	721.5 kWp
	(state):		
	Other	<u> </u>	N/A
	Generator set (diesel		N/A
	□ Hydro		N/A
	gasse		
	□ Biomass/Ba		N/A
	□ Wind		N/A
			Annual Capacity Utilization Factor: 17.5
			Annual generation (kWh/year): 302,200 kWh
			Maximum output (kW): 20*12= 240KW
			Sofar HYD 5K~20KTL-3PH, Hybrid, 98%
			Inverter Details: (Make, Type, efficiency)
			Nominal Power of each PV Panel: 455W
ł			Total Number of PV Panels: 429
			Solar Cell Type: Mono crystalline
			Technology : Fixed Tilt
			JA SOLAR (JAM72S20 445-470/MR/1000V)
			Manufacturer/Make PV
		1	Solar irradiance at site: 5 185

•

8

Ĺ

7

I

	Technology/Chemistry: N/A			
	Maximum output (kW): N/A			
	Capacity (kWh): N/A			
	Manufacturer/Make/efficiency MEGAREVO, off-grid, 98.7%)			
□ Storage Inverter	Maximum Output (kW): For 150kW Inverter Max Output(kW): 150 kW			
	For 30kW Inverter Max Output(kW) : 30 kW			

6.7 Location of the microgrid system(s) (Approximate if not known):

ï

Site No.	Site Location	Latitude	Longitude	Coordinate System
A	Basti Chaapu, Bahawalpur	29.1491248	72.279755	N/E
В	Gatta Raikh, Dera Ghazi Khan	30.43415	70.31986	N/E
С	Basti Mud Saindad, Rajanpur	28.848125	70.320144	N/E
D	Basti Kheersar, Bahawalpur	29.125079	72.176070	N/E
E	Pughla Shumali/Janubi, Dera Ghazi Khan	30.821718	70.266050	N/E

6.8 Is the microgrid system(s) new? If no, please state number of years the mini-grid system(s) has been in operation: Yes

6.9 Expected Annual Production: (Rated Generation Capacity)

Site No.	Site Location	Minimum	Maximum
Α	Basti Chaapu, Bahawalpur	400,000 kWh	440,000 kWh
В	Gatta Raikh, Dera Ghazi Khan	100,000 kWh	120,000 kWh
C	Basti Mud Saindad, Rajanpur	120,000 kWh	135,000 kWh
D	Basti Kheersar, Bahawalpur	140,000 kWh	145,000 kWh
E	Pughla Shumali/Janubi, Dera Ghazi Khan	290,000 kWh	310,000 kWh

6.10 Total Connected Load of System: 360 kW approximately

6.11 Average Hours of Operation (daily): 8.5 Hours

(If less than 24hours detail a typical service availability schedule).

6.12 Distribution

	Type of system	Size of system
Type of Distribution System	🗆 Overhead	
Voltage level of distribution system	 33 kV 11 kV 0.4 kV/0.22 k³ 	V
Lines / Feeders	 33 kV Three-Phase 11 kV Three-Phase 0.22 kV Single Phase LV 0.4 kV Three-Phase LV 	Meters Meters Meters Meters
Grid Stations	 33/11 kV 33/0.4 kV 	 No/MVA No/MVA
Poles	🗆 Cement	Poles

10

h

	 Wood Structure Other (state): 	Poles Poles Poles Poles
Power	NoRating (MVA)	Make
Transformers	NoRating (MVA)	Make
Distribution	NoRating (kVA)	Make
Transformers	NoRating (kVA)	Make
Specification of Distribution System	Specify name of host DISCO distribution network have been	from which specification for n obtained

11

Description of distribution network (indicate geographical coordinates of four reference points, general length, or other important features):

6.13 Number of Consumers:

T

- □ Residential: 871
- \Box Commercial: <u>0</u>
- \Box Industrial: <u>0</u>
- \Box Agricultural <u>0</u>
- \Box Special (Governmental): <u>0</u>

 \Box Any other: <u>0</u>

6.14 Summary of Revenue and Sources of Funding

- Expected Electricity Sales by Customer Category
 - o Residential [kWh/year]: 1,118.000 kWh approximately

 - o Industrial [kWh/year]:
 - o Agricultural [kWh/year]:_____
 - Special (Governmental) [kWh/year]: ______
- □ Electricity tariff [kWh or flat rate per W] as agreed mutually: Initially Free of Cost, the tariff shall be determined later

□ Capital contribution (specify foreign or local): <u>PKR 330 Million (Local)</u>

- \square Loan capital (specify source and provide evidence):
- Grant by Federal/Provincial Government: Funding by Government of Punjab for 2 Sites (PKR 130 Million)

Others (specify):

Project Internal Rate of Return: ______

Project Internal Rate of Return on Equity:

7.0 BANKERS AND FINANCIAL REFERENCES

- □ In Pakistan: Company's CSR and <u>ADP-2021-22</u>
- \Box Outside of Pakistan: <u>N/A</u>

8.0 DECLARATION BY THE APPLICANT

I/we hereby declare that the details stated above are, to the best of my/our knowledge, true and correct.

Dates this <u>14th</u> day of <u>October</u>. 2022.

SIGNATURE OF APPLICANTName:Muhammad Badar-Ul-MunirTitle:Chief Executive Officer

Signature:

13

ويعاد والمراجع والمحمد والمحري

. . . .

QUAID-E-AZAM Solar Power (Pvt) Ltd.

POWER OF ATTORNEY

We, QUAID-E-AZAM SOLAR POWER (PRIVATE) LIMITED, (the "Company"), hereby appoint and constitute Mr. Muhammad Saqlain Arshad Advocate High Court to appear and act for us as our advocates in connection with the Licensee Application (the "Application") filed in respect of seeking Microgrid System License under NEPRA laws with the National Electric Power Regulatory Authority (NEPRA).

I/We also authorize the said Advocate or any one of them to do all acts and things necessary for the processing, completion and finalization of the Application with NEPRA.

> For and on behalf of QUAID-E-AZAM SOLAR POWER (PRIVATE) LIMITED

CHIEF EXECUTIVE OFFICER

ACCEPTED MUHAMMAD SAQLAIN ARSHAD ADVOCATE HIGH COURT 65/3 FCC, GULBERG IV LAHORE.

3rd Floor, 83-A, E/1, Main Boulevard Gulberg III Lahore, Pakistan +92 99332261-65 FAX 042-35790366

Quaid-e-Azam Solar Power (Pvt) Ltd

FEASIBILITY STUDY, AND PREPARATION OF PC-1 FOR "OFF-GRID VILLAGE ELECTRIFICATION PROJECT IN PUNJAB THROUGH SOLAR POWER"

aut of

MARCH 2021

``;

5

TABLE OF CONTENTS

INTRODUCTION	2
1.1 PROJECT BACKGROUND	2
1.2 LOCATION AND POPULATION 1.2.1 Geographical Location and Climate	2
2 LITERATURE REVIEW	5
2.1 ENERGY RESOURCES	5
2.1.1 Solar Irradiation	5
2.1.2 Wind Speed	5
2.1.3 Biomass Resource:	5
2.2 EVALUATION OF RENEWABLE ENERGY RESOURCES	6
2.2.1 Solar Radiation and Wind Regime, Distribution and Its Potential	6
3 SURVEY DATA AND SATELLITE IMAGERY	6
3.1 GENERAL SURVEY DATA OF THE 7 SHORTLISTED VILLAGES:	6
3.2 RESOURCE AVAILABILITY IN THE 7 SHORTLISTED VILLAGES:	7
3.3 SATELLITE IMAGERY OF 7 SHORTLISTED VILLAGES:	8
4 OVERVIEW OF SMALL SOLAR HYBRID SYSTEM	11
4.1 ELECTRICAL LOAD ANALYSIS:	14
4.2 OFF-GRID SOLAR PV SYSTEM SIZING	15
4.2.1 Annual Solar System Energy Output	15
4.2.2 Battery Sizing	16
4.2.3 Storage Batteries	16
4.2.4 Available Solar Radiation:	16
4.2.5 System Design & Analysis:	17
4.2.6 Solar Modules:	17
4.3 Decrease of efficiency of PV panels over time	18
5 FINANCIAL ANALYSIS	18
5.1 INITIAL CAPITAL COST & TOTAL ANNUAL OPERATING COST 5.1.1 Annual Operation and Maintenance Cost	18 Error! Bookmark not defined.

6 CONCLUSION AND RECOMMENDATIONS:

6.1 CONCLUSION

6.2 RECOMMENDATIONS AND FUTURE WORK

List of Annexures:

- A. PVSyst Simulation Reports
- B. CAPEX & OPEX Details

LIST OF FIGURES

Figure 1. Map of Puniab Province	
Figure 2 Shortlisted Regions in Punjab for feasibility study	
Figure 3 Renewable Energy Resources	
Figure 4. Solar Radiation Resource of Puniab	6
Figure 6. Solar Radiations Profile	
Figure 7 PV- off-grid electricity generation system	

LIST OF TABLES

Table 1 Shortlisted Villages in Punjab for Feasibility Study	4
Table 2: Survey Data of Shortlisted Villages	7
Table 3: Resource Availability of Shortlisted Villages	7
Table 4. Electric load calculations for Typical Village Household	15
Table 5 OFF Grid Solar PV system Sizing of Each Village	15
Table 6 Annual Solar Energy Output of Each Village	16
Table 7 Battery Bank Sizes for Each Village	
Table 8. Solar Modules technical parameters.	
Table 9. Total PV System Capital Cost in Each Villages	

;

.

Quaid-e-Azam Solar Power (Pvt) Ltd.

LIST OF ABBREVIATIONS						
MW	Mega Watt					
PV	Photo Voltaic					
W/m²	Watt per meter squared					
kWh/m²/day	Kilo Watt hour per meter squared per day					
kWh/m²/year	Kilo Watt hour per meter squared per year					
NREL	National Renewable Energy Laboratory					
kW	Kilo Watt					
AC	Alternating Current					
DC	Direct Current					
HOMER	Hybrid Optimization of Multiple Energy Resources					
COE	Cost Of Electricity					
NPC	Net Present Cost					
GWh	Giga Watt hour					
CFL	Compact Fluorescent Lamp					
NASA	National Aeronautics and Space Administration					
V	Voltage					
A	Ampere					
Voc	Open Circuit Voltage					
lsc	Short Circuit Current					
Vpm	Maximum Power Voltage					
lpm	Maximum Power Current					
Li-ion	Lithium Ion					
Ah	Ampere hour					
LCA	Life-Cycle Assessment					
LCOE	Levelized Cost Of Electricity					

INTRODUCTION

1.1 PROJECT BACKGROUND

Energy is the backbone for the socio-economic stability of a country. The current demand of energy is increasing gradually due to growing population, the aspiration for improved living standards and industrialization. Pakistan is meeting its energy needs mainly through conventional sources of energy. It is worldwide accepted that renewable energy technologies (such as wind, solar thermal, solar photovoltaic (PV), geothermal, tidal, biomass, waste to energy, etc.) play a tactical role in the accomplishment of the goals of sustainable and economic development as well as environmental protection. Out of these renewable sources of energy; wind and solar are being widely used, due to their commercial acceptance, ease of installation, maintenance, and operation; and competitive capital and maintenance costs

Quite large percentages of population of remote villages in South Punjab have no access to electricity. The lifestyle & social status of this population is poor due to lack of basic facilities of this modern age. The economic condition of this population and villages is also bleak. These villages are distant from the grid area due to which, the DISCOs are not finding it economically feasible to extend their grid networks into these areas.

The Government of Punjab, realizing its responsibility for provision of electricity to households in remote villages, has decided to undertake the challenge for provision of electricity to the off-grid population. For this reason, Quaid-e-Azam Solar Power Pvt. Ltd is working on the pilot project. *"Installation of Micro-Grid Solar Solutions of remote villages of capacity range 0.5 to 1.5 MWp"* to provide electricity through renewable resources

This feasibility asses the viability of renewable energy source for the selected villages.

1.2 LOCATION AND POPULATION

1.2.1 Geographical Location and Climate

Punjab is Pakistan's second largest province by area after Baluchistan with an area of 205,344 square kilometers (79,284 square miles). It occupies 25.8% of the total landmass of Pakistan. Punjab's landscape consists mostly of fertile alluvial plains of the Indus River and its four major tributaries in Pakistan, the Jhelum, Chenab, Ravi, and Sutlej rivers which traverse Punjab north to south.

Most areas in Punjab experience extreme weather with foggy winters, often accompanied by rain. By mid-February the temperature begins to rise; springtime weather continues until mid-April, when the summer heat sets in.

The province's temperature variation:

- Punjab's region temperature ranges from -2° to 45 °C
- The maximum temperature can reach up to 50 °C (122 °F) in summer
- The minimum temperature can touch down to -10 °C (14) in winter.

Climatically, Punjab has three major seasons:

- Hot weather (April to June) when temperature rises as high as 110 °F (43 °C).
- Rainy season (July to September). Average rainfall annual ranges between 96 cm submountain region and 46 cm in the plains.
- Cooler/ Foggy / mild weather (October to March). Temperature goes down as low as 40 °F (4 °C).

Figure 1. Map of Punjab Province

Punjab has one of the lowest rural electrification rates in Pakistan. Most of the un-electrified villages exist in southern part of the Punjab. In order to eradicate the power deficit and issues related to village electrification, survey of the 47 villages pointed out by the DCOs of relevant districts was conducted. Out of these 47 villages, 07 villages were shortlisted on the basis of their population, socio-economic conditions, availability of land and distance from the grid. Electrification via grid network to these areas is inconceivable because of impassable routes through the rough Terrain, forests and dispersion of the settlements. The majority of the population in these areas suffers from poverty and cannot afford expenses of conventional electrical generation.

Sr. No.	Name of Village	Village Code	Tehsil	District	GPS Coordinates	
					Latitude	Longitude
1	Basti Haider Abad Mouza Machka Pakka	A1	Rajanpur	Rajanpur	28.862000	70.335070
2	Basti Mud Saindad Mouza Saindad	A2	Rajanpur	Rajanpur	28.848000	70.320400
3	Basti Chaappu U/C Db Cholistan	B1	Yazman	Bahawalpur	29.147330	72.269206
4	Basti Kheersar, Cholistan Yazman, Bahawalpur	B2	Yazman	Bahawalpur	29.074536	72.286180
5	Bharti Shumali / Bharti Janubi / Dilo Dingo,	C1-1,	Koh-e- Suleman	Dera Ghazi Khan	30.568450	70.373497

Quaid-e-Azam Solar Power (Pvt) Ltd.

			1.4			
[C1-2,				
		C1-3				
6	Pughla Shumali/Janubi.	C2-1,	Koh-e-	Dera Ghazi		
	Bhanwar, Nala Sharqi	C2-2,.	Suleman	Knan	30.823389	70.272719
	and Hanaso	C2-3				
7	Lophani Daf / Gata Raikh	C3	Koh-e- Suleman	Dera Ghazi Khan	30.433130	70.318667

Table 1 Shortlisted Villages in Punjab for Feasibility Study

The regions with lack of access to electricity grid and the short-listed communities within these regions are demonstrated in Fig. 2. Rajanpur is Punjab's southernmost region with very small population due to its remote location in Bahawalpur is situated in the southern highlands of Punjab with a tropical climate which is characterized by mild and sunny days. Dera Ghazi Khan is located in south-east of Punjab at high elevation which results in harsh climate conditions compared to the other selected communities. Table 1 summarizes the geographic and demographic information of these villages.

Figure 2 Shortlisted Regions in Punjab for feasibility study

4

Ì

FEASIBILITY REPORT Quaid-e-Azam Solar Power (Pvt) Ltd.

2 LITERATURE REVIEW

2.1 ENERGY RESOURCES

2.1.1 Solar Irradiation

Solar irradiance is the power per unit area received from the Sun in the form of electromagnetic radiation as measured in the wavelength range of the measuring instrument. The solar irradiance is measured in watt per square meter (W/m²) in SI units. Solar irradiance is often integrated over a given time period in order to report the radiant energy emitted into the surrounding environment (joule per square meter, J/m²) during that time period. This integrated solar irradiance is called solar irradiation, solar exposure, solar insolation, or insolation.

Solar energy can be used in various ways. Most common method is to generate electricity using PV solar panels, followed by solar collector to exchange heat usually to heat water. These methods are applied in various ways in commercial, industrial and public places.

2.1.2 Wind Speed

In meteorology, wind speed, or wind flow speed, is a fundamental atmospheric quantity caused by air moving from high to low pressure, usually due to changes in temperature. Wind speed is now commonly measured with an anemometer.

Wind speed affects weather forecasting, aviation and maritime operations, construction projects, growth and metabolism rate of many plant species, and has countless other implications. It is to be noted that wind direction is usually almost parallel to isobars (and not perpendicular, as one might expect), due to Earth's rotation.

Wind energy is mainly used to generate electricity with the help of wind turbine. Other applications include transportation through wind

2.1.3 Biomass Resource:

Biomass is a plentiful and oldest source of energy in the world, composed of the organic matter of including agricultural residues, wood, animal and human wastes. It is a mixture of the gases such as carbon dioxide (CO₂) and methane (CH₄), which is produced by microorganisms in the absence of oxygen.

Utilization of biomass for the power generation purpose is becoming very popular by the time and is the easily available source of energy in the rural areas of Pakistan. Moreover, it is a clean source of energy as compared to fossil fuels in the world. That's why biomass can be used as potential source of energy for the electricity generation in the country by using animal manure through digestion process or residues through combustion process.

Figure 3 Renewable Energy Resources

Quaid-e-Azam Solar Power (Pvt) Ltd.

2.2 EVALUATION OF RENEWABLE ENERGY RESOURCES

Solar or Wind power generation does not supply electricity to the load continuously, due to its intermittent character, preventing it from meeting a steady constant demand at different times. Therefore, both sources need to be considered as variable forms of energy output. Their separate utilization should always account for the variability and unpredictability of the resource. In order to minimize the influence of intermittency of these resources, batter backup is required.

2.2.1 Solar Radiation and Wind Regime, Distribution and its Potential

a) Solar Radiation Resource:

Punjab has great unexploited solar radiation potential. According to a study, the availability of solar radiation across the country varies between 5.2 and 6 kWh/m²/day with the annual daily average value of 5.7 kWh/m²/day. However, the most recent studies done by FUNAE confirm that in Punjab, the global horizontal irradiation varies between 1785 and 1920 kWh/m²/year. Figure 4 below shows the solar radiation distribution in Punjab.

Figure 4. Solar Radiation Resource of Punjab

3 SURVEY DATA AND SATELLITE IMAGERY

07 villages out of 47 villages in Punjab have been short listed for pilot project to perform the techno economic feasibility study and develop a technical solution.

3.1 GENERAL SURVEY DATA OF THE 7 SHORTLISTED VILLAGES:

Sr. No.	Name of Village	Village Code	No. of Households	Population	Distance from Grid	Estimated length of distribution line
1	Basti Haider Abad Mouza Machka Pa kk a	A1	100	700	34	1064

Quaid-e-Azam Solar Power (Pvt) Ltd.

2	Basti Mud Saindad Mouza Saindad	A2	65	650	36	548
3	Basti Chaappu U/C Db Cholistan	B1	216	700	30	1800
4	Basti Kheersar, Cholistan Yazman, Bahawalpur	B2	70	500	52	1400
5	Bharti Shumali / Bharti Janubi / Dilo Dingo,	C1-1,				
		C1-2,	600	4500	47	4896
		C1-3				
6	Pughla Shumali/Janubi, Bhanwar, Nala Sharqi and Hanaso	C2-1,				
		C2-2,	450	4000	46	2706
		C2-3				
7	Lophani Daf / Gata Raikh	C3	70	600	69	2370

Table 2: Survey Data of Shortlisted Villages

3.2 RESOURCE AVAILABILITY IN THE 7 SHORTLISTED VILLAGES:

Sr. No.	Name of Village	Village Code	Solar Irradiation kWh/m2	Wind Speed (m/s)
1	Basti Haider Abad Mouza Machka Pakka	A1	5.417	2.778
2	Basti Mud Saindad Mouza Saindad	A2	5.419	2.778
3	Basti Chaappu U/C Db Cholistan	B1	5.264	2.932
4	Basti Kheersar, Cholistan Yazman, Bahawalpur	B2	5.273	2.778
5		C1-1,	5.189	2.376
	Bharti Shumali / Bharti Janubi / Dilo Dingo,	C1-2,		
		C1-3		
6		C2-1,	5.185	2.417
	Pughla Shumali/Janubi, Bhanwar, Nala Sharqi and Hanaso	C2-2,		
		C2-3		
7	Lophani Daf / Gata Raikh	C3	6.5	2.983

Table 3: Resource Availability of Shortlisted Villages

Quaid-e-Azam Solar Power (Pvt) Ltd.

abore - Pahie

3.3 SATELLITE IMAGERY OF 7 SHORTLISTED VILLAGES:

ECPAK

ł

Quaid-e-Azam Sofar Power (Pvt) Ltd.

1

i

Quaid-e-Azam Solar Power (Pvt) Ltd.

FEASIBILITY REPORT Quaid-e-Azam Solar Power (Pvt) Ltd.

4 Overview of Small Solar Hybrid System

Basic Principles of Small-Scale Photovoltaic System

Solar photovoltaic systems rely on the irradiation of the sun and convert its solar energy into electrical energy. For a small scale, PV system that shall be deployed in areas with weak or no grid, typically a hybrid or grid interactive system is suggested. For this study, the term "Solar System" will include the Battery and Grid connection, therefore be equivalent with the term "Solar Hybrid System" or Hybrid System.

Energy of photons in sunlight is converted to DC electricity by the photovoltaic Modules. The DC electricity of a string of PV Modules enters the DC input of an inverter. The inverter converts the DC power provided by the PV Modules into AC power to feed it into the grid and/or to provide the power to connected con- summer loads. The DC power can also be stored in a battery bank which can provide backup power in case of electricity blackouts in areas with unstable grid infrastructure or when solar energy is not available.

Photovoltaic Modules

Photovoltaic technology is based on the photoelectric effect. A photon from light is absorbed in the PN junction of a solar cell. The energy of this photon causes an electron to move out of the depletion region whereby creating an electron-hole pair. This increase in potential results in the generation of current through potential difference (voltage). The electrons on one side of the PN junction then flows through an external circuit and recombines with the holes on the other side. The whole process then gets repeated.

Ward the grand

Pakiston (1.1.1)

The purity level of the semiconductor material is important as well as the fact that there are no gaps or defects at the molecular and atomic level of the semiconductor material. As a general rule, it can be stated: the lesser the microscopic defects, the higher the efficiency of power conversion.

The efficiency of a solar cell (h) is the percentage of power from solar effergy, incident on the solar cell, converted to electrical energy. This term is calculated using the ratio of the maximum power point of the cell, Pm, divided by the light power that reaches the cell, the global irradiance (E, in W / m²) and the surface area of the solar cell (Ac in m²).

As this efficiency varies in different irradiance conditions, the PV industry defined certain conditions for the efficiency rating of PV Modules. These are called Standard Test Conditions (STC).

Another important standardized variable is the Normal Operating Cell Temperature (NOCT) for PV Mod- ules. This is a characteristic cell value defined as the temperature of the cells, which they reach at an irradiance of 800 W / m^2 , an ambient temperature of 20°C and a wind speed of 1 m/s – typically given at open circuit.

Photovoltaic technologies differ primarily by the type of manufacturing process, which leads to different manufacturing costs, price ranges and performances for the different technologies three main solar cell technologies are commercially available:

- Monocrystalline
- Polycrystalline
- Thin Film

Monocrystalline Technology

The manufacturing process of monocrystalline cells requires more effort in comparison to other technologies. However, these cells offer higher efficiencies in comparison to the polycrystalline or thin film cells typically, within 17 - 20 %.

Advantages:

- Mature and commercially proven technology.
- Long lifetime of PV Modules.
- Low degradation of maximum 0.1 0.5 % per year (manufacturer guarantee is 0.7 % of degradation per year; however, reality proves to be less).
- Lower installation costs.
- More environmentally friendly than other technologies, for example, some thin film technologies use cadmium. Monocrystalline cells are not harmful to the environment.

Disadvantages:

- Higher initial investment costs.
- Compared against Thin Film technology: Higher risk of damages (micro-cracks) during transport or during operation at sites with high wind speeds.

Polycrystalline Technology

This technology exists since 1981 and its manufacturing process is simpler in comparison to monocrystal-line technology.

Advantages:

Lower production costs.

FEASIBILITY REPORT Quaid-e-Azam Solar Power (Pvt) Ltd.

Disadvantages:

- Lower efficiency, due to lower purity of the cell material: 16 18 %
- Because of the lower efficiency, slightly more ground surface area is required to reach the same capacity (in comparison to monocrystalline technology).
- Compared against Thin Film technology: Higher risk of damages (micro cracks) during transport or during operation at sites with high wind speeds.

Thin Film Technology

This technology is called Thin Film because only a couple of nanometers of the semiconductor material is placed on a substrate material. Hence, a very low amount of semiconductor material is needed. The main semiconductor materials in use are:

- Cadmium Telluride (CdTe)
- Copper Iridium Gallium Selenium (CIS / CIGS)
- Amorphous Silicon (a-Si)
- Organic photovoltaic cells

Thin Film technologies have a low market share, except of the CdTe material, with the main manufacturer First Solar. But also, CIS / CIGS technologies are having an increasing market, because of their higher efficiency. Depending on the technology, standard thin film module efficiencies have reached 7 - 15%.

Advantages:

Less affected by high temperatures and shadowing.

Disadvantages:

- Faster degradation rate of up to 0.7 % per year for a-Si.
- Lower efficiency leads to greater surface area requirements and higher installation costs, for the same capacity.

Conclusions

Based on the costs and the availability in the market, it is recommended to opt for standard crystalline PV Modules. These PV Modules provide a very good balance between efficiency and cost while providing better space utilization for areas with limited space for installation.

Mounting Structures

The photovoltaic modules can be installed on fixed structures or on moving structures tracking the sun. Trackers can be implemented either as a single axis system or as a dual axis tracking system.

For this project, keeping in view the economics and complexity, fixed mounting structures will be the most suitable. For the location of Punjab the optimal orientation for the PV modules would be to an azimuth of SSE of 160° or inside the range of ESE – SSW (112.5°-202.5° N=0°). Within this orientation angle, the highest irradiation on the PV Module plane can be achieved for an unshaded PV Module for the relevant hours of 8am-2pm.

Conclusion

An optimal tilt angle (inclination) of 28° for Punjab has been suggested for the fixed-mounted system in order to deliver a maximum amount of electricity during peak hours of the hot summer months. The assessment of the optimal orientation and inclination for Punjab is based on database for long-term irradiance data: Meteonorm 7.1.

Inverter Technology

Because photovoltaic panels generate electricity in the form of direct current (DC), the electricity must be converted into alternating current (AC) before it can be fed into the grid or used directly with standard AC equipment. This is achieved through use of an inverter.

State of the art inverters offer a broad range of operational stages, which generally fulfill all requirements of the international grid codes in terms of fault-ride-through and reactive power provision. The capacity of inverters widely varies from only a few hundred Wp up to 1.5 MWp of DC PV-Power, depending on the inverter technology.

Electricity Storage System / Batteries

Batteries designed for solar PV system applications have to meet heavy cycling and continuous use. Multiple battery types exist in the market catering to these unique requirements of the application. When considering a battery, the cost of the battery, its usable lifetime and capacity play an important role. The most common battery types available in the market are described as follows.

Lead-acid batteries are the oldest and most common type of storage batteries. The type has long been considered as battery of choice for off-grid power systems due to the relatively low cost, reliability and service life.

A specific type is the deep cycle battery which represents a rechargeable lead-acid battery with very thick active plates and separators made from high quality and high-density alloys. This robust construction enables the battery to be regularly and deeply discharged to 30% of its total capacity. The deep discharge- charge process can be repeated for several hundred times, although if the battery is only discharged to 80-70% of its capacity it can often be repeated several thousand times. Thus, the life of a deep cycle battery is directly proportional to the level of regular discharge. These batteries are further divided into additional types such as flooded lead-acid, valve regulated lead-acid - absorbed glass mat and valve regulated lead-acid – gel electrolyte. Valve regulated batteries are maintenance free, require no water top- ping and often have higher number of cycling times.

4.1 USER LOAD ESTIMATION:

Solar off-grid system is designed to fulfill the electricity need of a Village and the small community consisting of number of households. Community is centered in different small villages in the Punjab province of Pakistan. In current case demand for rural residential electricity is not high as compared to the urban areas, electricity consumption in the residential community is due to the lighting, fans and small water pumps. The main electricity consumption in the current case is due to the basic needs of the household such as Lights, Fans etc. Electric load analysis is performed carefully by considering the load requirements of the households for the summer peak season for the residential needs.

#	Load Type	Load Rating (W)	Unit	Total Load (W)	Daily Hours	Energy Consumption (kWh/day)
1	Lights (LED)	40	5	200	8	1.6
2	Fan (Energy Efficient)	80	2	160	8	1.28
3	TV (CRT)	150	1	150	4	0.6
4	Power Receptacles	180	1	180	2 pak	0.36

The Load calculation for a typical household in Punjab villages is calculated in the table below:

FEASIBILITY REPORT	Quaid-e-Azam	Solar Power (Pvt) Ltd.
		······································
	Total Energy Demand for Household	3.84

Table 4. Electric load calculations for Typical Village Household

4.2 OFF-GRID SOLAR PV SYSTEM SIZING

The following calculation is done to determine the size of the Solar PV systems required in the 7 shortlisted villages of Punjab, The Panel Generation Factor is selected to be at **3.43** and the size of the PV panel is a 330W module. The total size of the Off-Grid system for each village is calculated in the table below:

Panel generation factor (PGF) is used while calculating the size of solar photovoltaic cells. It is a varying factor depending upon the climate of the site location. The constant value of PGF is 3.43

#	Village	Total Energy Consumption (kWh/Day)	Average Power Requirement/household (W)	No. of Houses	Peak Wattage required (KW)
1	A1	384		100	100
2	A2	250		65	65
3	B1	830	-	216	216
4	B2	269		70	70
	C1-1	1152		300	300
5	C1-2	1152		300	300
6	C2	1728	504	450	450
7	C3	269	79	70	70

Table 5 OFF Grid Solar PV system Sizing of Each Village

4.2.1 Annual Solar System Energy Output

The electricity generated by a solar PV system is governed by its rated power output, but it's also dependent on other factors such as panel efficiency average sunlight hours received, as well as the degree of shading that the system experiences and the tilt angle and azimuth of the roof on which it's installed.

Annual energy production has been obtained from PVSyst simulations attached as ANNEX-A.

#	Village	Proposed Capacity (KW)	PV Panel Rating(W)	No. of PV Modules	*Annual Solar Energy Output (MWh)
1	A1	130		394	226.5
2	A2	84.5		256	149.5
3	B1	280	330	849	484.4
4	B2	91		276	⊧≤ 154.4
5	C1-1	260	_	783	TABAN

FEASIBILITY REPORT

Quaid-e-Azam Solar Power (Pvt) Ltd.

	C1-2	260	783	454.9
	C1-3	260	783	454.9
	C2-1	195	594	345.2
6	C2-2	195	594	345.2
	C2-2	195	594	345.2
7	C3	71	276	155.8

Table 6 Annual Solar Energy Output of Each Village

4.2.2 Battery Sizing

The Battery Type recommended for using in solar PV system is deep Cycle battery. Deep cycle battery is specially designed for to be discharges to low energy level and rapid recharge or cycle charged and discharged day after day for years.

Total Battery Capacity (Ah) = $\frac{\text{(Total Watt hours per day used)} \times \text{DOA}}{0.85 \times 0.5 \times nominal battery voltage}$ Total Battery Capacity (Ah) = $\frac{(1536) \times 1}{0.85 \times 0.5 \times 48}$ Total Battery Capacity (Ah) = 75Ah (80Ah approximately)

Battery Bank size is calculated as follows:

#	Village	No. of Houses	Total Energy Consumption (kWh/Day)	Batter Backup required per household (Ah)	Battery Bank Size (Ah)
1	A1	100	384		8,000
2	A2	65	250		5,200
3	B1	216	830		17,280
4	B2	70	269		5,600
c	C1-1	300	1152	80	24,000
5	C1-2	300	1152		24,000
6	C2	450	1728		36,000
7	C3	70	269		5,600

Table 7 Battery Bank Sizes for Each Village

4.2.3 Storage Batteries

The main purpose of the batteries is to store the PV output during the day time to be used in the absence of solar radiations, batteries of 80Ah (4 hours Back up) were used in this PV system.

4.2.4 Available Solar Radiation:

Solar radiation data obtained by using PVSyst is in the range of 5 – 6 kWh/m2/day. A profile indicating solar radiation and clearance index is shown in Fig. 06

Figure 5. Solar Radiations Profile

4.2.5 System Design & Analysis:

٢

In this PV off-grid electricity generation system, four main components include, the photovoltaic (PV) panels, Inverter, Cables and storage batteries. In order to present feasibility report of the PV system, system was designed consisting of 1000W PV modules and 50 Ah batteries.

Figure 6 PV- off-grid electricity generation system

4.2.6 Solar Modules:

In this case, solar modules of 330 W capacities have been to meet the load requirement during the day times of maximum load purposes. The tilt angle is 28 Degrees. PV modules are polycrystalline silicon type with maximum rated power of 330 W, nominal voltage of 38.1 V and operating current of 8.7A. Complete details of solar modules used for the current system is listed in Table 5.

Sr. No	Parameters	Units	Values
1	De-rating factor	%	80
2	Lifetime Modules/Batteries	Years	25/05

FEASIBILITY REPORT

Quaid-e-Azam Solar Power (Pvt) Ltd.

3	Tilt Angle	Degree	28
4	Rated Power	W	330
5	Open Circuit voltage, Voc	v	45.3
6	Short circuit current lsc	А	8.76
7	Maximum power voltage, Vpm	v	38.1
8	Maximum power current, Ipm	A	8.7

Table 8. Solar Modules technical parameters.

4.3 DECREASE OF EFFICIENCY OF PV PANELS OVER TIME

Solar panel efficiency is affected negatively by temperature increase. Photovoltaic modules are tested at a temperature of 25 degrees C (STC) – about 77 degrees F., and depending on their installed location, heat can reduce output efficiency by 10-25%. As the temperature of the solar panel increases, its output current increases exponentially, while the voltage output is reduced linearly.

25% reduction of efficiency in 10 years will be observed in the Off Grid Solar PV plants.

5 FINANCIAL ANALYSIS

While taking into account the meteorological data and load characteristics of the Punjab village communities along with the diesel fuel's price and the cost of components, the optimal (most economical) sizing of the system is determined. In the optimization procedure, the NPC is considered as the key economic index. The obtained configurations are then compared considering the other state-of-the-art economic indices together with the environmental metrics and the generation fractions.

5.1 INITIAL CAPITAL COST & TOTAL ANNUAL OPERATING COST

The initial capital cost is the total cost of all of the components at the beginning of the operation. In a system composed of batteries, solar panels, inverters and System hardware.

#	Description	PV System Size	Capital Cost	Annual O&M Cost	Total Cost
	Unit	kW	PKR	PKR	PKR
1	A1	130	16,542,000	1,600,000	18,142,000
2	A2	84.5	11,928,500	1,600,000	13,528,500
3	B1	280	33,087,000	2,000,000	35,087,000
4	B2	91	12,602,000	1,600,000	14,202,000
	C1-1	260	31,032,424	700,000	31,732,424
5	C1-2	260	31.032,424	700,000	31,732,424
l	C1-3	260	31,032,424	700,000	31,732,424

FEASIBILITY REPORT

Quaid-e-Azam Solar Power (Pvt) Ltd.

	Total	· · · · · · · · · · · · · · · · · · ·	251,222,773	16,500,000	267,722,773
7	C3	71	12,602,000	1,600,000	14,202,000
	C2-3	195	23,788,000	2,000,000	25,788,000
6	C2-2	195	23,788,000	2,000,000	25,788,000
	C2-1	195	23,788,000	2,000,000	25,788,000

Table 9. Total PV System Capital Cost in Each Villages

The operating costs are the expenses corresponding to the operation of all of the components of the system which also includes the salaries of operating personnel.

In addition to the typical focus of thinking about up -front costs of a solar plant, determining a plan and budget for operations and maintenance (O & M) is essential in assessing the business case for a PV facility.

The Operation and Maintenance Cost of each village for one (02) years has been bifurcated in to the following:

The O&M cost includes the following items:

- Salaries Cost of O&M Staff
- Repair & Maintenance
- Cleaning of PV Modules

It is calculated that tariff during O&M period for self-sustainable O&M is PKR 2.85/kWh which is way below the current electricity rate in Pakistan. Also, considering the socio-economic conditions of these villages, the financial impact does not cause burden to the government.

6 CONCLUSION AND RECOMMENDATIONS:

6.1 CONCLUSION

This study presents a techno-economic evaluation for Solar PV configurations for the rural remote areas of Punjab. Different system configurations of Solar PV unit were analyzed by calculating a dynamic model. These configurations were assessed through sensitivity analysis using parameters like solar radiations and system sizing and an optimal solution was proposed based on the cost analysis. The results obtained from cost analysis revealed that the combination of Minimum 84.5 kW to a Maximum of 280 kW Solar System Sizes have been generated for this case study. The Minimum & Maximum Initial capital investment ranges from PKR 12M to 33M. The total cost of this project is PKR 276M.

These Solar PV Renewable systems are more effective and reliable source of energy; the government of Pakistan can play a significant role to overcome energy crises by facilitating rural areas with such systems. The Solar PV renewable source-based configuration proposed in this study can be employed in the remote rural area to make them independent of grids.

6.2 RECOMMENDATIONS AND FUTURE WORK

It is recommended that:

 Studies of this nature be transferred and implemented also in other parts of the province, to determine the feasibility for implementation of Solar PV projects using renewables elsewhere in Punjab; and

Quaid-e-Azam Sofar Power (Pvt) Ltd.

)

FEASIBILITY REPORT

- This project should be implemented in a pilot phase, so that later on it can be replicated to other regions of the province that yet have not been covered by the national grid.
- Future socio-economic analysis must be made to evaluate the possibility so that the rural communities should pay the regular electricity tariff and the remaining production cost (LCOE) inferred by renewable energy generation should be subsidized by the Government.

ANNEXURE-VI

and and a second se In the second second

¢

:)

₹.,-

Technical Schedules of Site Nos. A, B, C, D, E & F

Technical Schedule of	Description
Each Site	
I	Project Commencement And
	Completion Schedule
11	Details Of Generation Facility/Solar
	Power Plant
III	Interconnection Study
IV	Information Relating To Location
	(Location Maps, Site Map, Land
	Etc.)
V	Lease Agreement

-

PACKAGE – I SITE NO. A & B

[TECHNICAL SCHEDULES I, II, III, IV & V]

SCHEDULE-I: PROJECT COMMENCEMENT AND COMPLETION SCHEDULE

Ultimate Engineering

Optimizing the Development and Deployment of Technology for Human Life and Planet Care

Ref: UEC/QASP/VE/P1/01 Dated: 11th November 2021

M/S SKY BLUE BUILDERS (LEAD FIRM)

SKY BLUE RENEWABLE ENERGIES(PVT) LTD - GCL (JV) Labore.

SUBJECT:

To,

T:	LETTER OF COMMENCEMENT FOR THE PROJECT TITLED.
	DESIGN, SUPPLY, INSTALLATION, TESTING AND
	COMMISSIONING INCLUDING 2 YEARS O&M FOR "RENEWABLE
	& OTHER INITIATIVES IN ENERGY SECTOR -PILOT PROJECT
	OF OFF-GRID/POOR GRID VILLAGE ELECTRIFICATION IN
	PUNJAB THROUGH SOLAR POWER. PACKAGE -01
	(BAHAWALPUR, DERA GHAZI KHAN)

Dear Sir,

In pursuance of the Contract Agreement against the total contract price of PKR 122,770.250.00 (Pakistani Rupees One Hundred Twenty-Two Million Seven Hundred Seventy Thousand Two Hundred Fifty Only) signed on 11th November, 2021 between Quad-e-Azam Solar Power (Pvt) Ltd (QASPL), Energy Department, Government of the Punjab (The Employer) and M/S Sky Blue Builders - Sky Blue Renewable Energies (Pvt) Ltd - GCL (JV) (The Contractor) for the project titled, "DESIGN, SUPPLY, INSTALLATION, TESTING AND COMMISSIONING INCLUDING 2 YEARS O&M FOR "RENEWABLE & OTHER INITIATIVES IN ENERGY SECTOR -PILOT PROJECT OF OFF-GRID/POOR GRID VILLAGE ELECTRIFICATION IN PUNJAB THROUGH SOLAR POWER, PACKAGE -1 (BAHAWALPUR, DERA GHAZI KHAN)"

We, (M/s Ultimate Engineering Consultants "Engineer of the Project") on behalf of the Employer issues the Letter of Commencement to perform the work with immediate effect in accordance with the Contract Agreement Terms and Conditions.

Regards,

Engr. Junaid Khan CEO/ Project Manager M/s Ultimate Engineering Consultants

ULT:MATE ENGINEERING CONSULTANTS

CC: 1. CEO (QASPL) 2. All Managers (QASPL)

> House # 70. Sunflower Society Block J1, Johar Town , Lahore 0316-7772972 Email: <u>asil@uttimate-engg.com</u> Website: <u>www.uttimate-engg.com</u>

Project Milestones Activities:

ŧ

į

	Payment Milestones				
	Milestones	Percentage			
Mc No	bilization Advance up-to 15% against Bank Guarantee te: The recovery of Mobilization will be in four equal installments from the belo	w milestones.			
1	Design Approval	10%			
2	Site Preparation (clearance/Leveling of site, Civil Work for PV Mounting Structure, Earthing)	10%			
3	Upon Purchase Order and Bill of Landing of Solar Modules	20%			
4	Delivery of Solar Modules at site.	20%			
5	Delivery and Installation of PV Mounting Structure	10%			
6	Delivery of Inverter, AC Cable, DC Cable and Earthing	10%			
7	Complete installation and commissioning	15%			
8	Upon Rectification of Punch List	5%			
	Total	100%			

Project Timeline with Activities:

"Off-grid/Poor Grid Village Electrification in Punjab through Solar Power (Package-1)"				
Comme	ncement Date	11th Nov 2021	Project Ending Date	10th May 2022
SR.		NIME		
			ACTIVITY START	ACTIVITY END
1	VERIFICATION OF D	DRAWINGS	3rd Week of December	4th Week of December
22	DRAWING APPROV	AL AND AMENDMENTS	1st Week of January	1st Week of January
3	PROCUREMENT (LO	CAL AND IMPORTED)	4th Week of October	2nd Week of December
5	TEAM MOBILIZATIO	ON PLUS MARTERIAL DELIVERY	4th Week of November	4th Week of November
6	SITE MARKING FOR	MECHANICAL WORK	1st Week of November	4th Week of November
7	CIVIL WORK (Civil Pad)		4th Week of October	2nd Week of January
8	CIVIL WORK (Control Room)		4th Week of October	2nd Week of January
9	CIVIL WORK(Fenci	ng)	4th Week of October	2nd Week of January
10	MECHANICAL WOR	K (STRUCTURE INSTALLATION)	3rd Week of November	3rd Week of March
11	MECHANICAL WOR	K(PANELS ERECTION)	3rd Week of February	2nd Week of March
12	ELECTRICAL WORK		4th Week of December	4th Week of December
13	ERECTION OF LETTICE POLES		1st Week of February	4th Week of February
14	POWER DISTRIBUT	ION NETWORK INSTALLATION	4th Week of March	3rd Week of April
15	INSTALLATION OF	CCTV CAMERAS	3rd Week of March	4th Week of March
16	INVERTER PLACEM	ENT AND TERMINATION	4th Week of March	2nd Week of April
17	COMMISSIONING AND TESTING		2nd Week of April	3rd Week of April
18	TESTING AND HANDOVER TO CLIENT		1st Week of May	2nd Week of May

SCHEDULE-II: DETAILS OF GENERATION FACILITY/SOLAR POWER PLANT

)

i la Referencia de Constante de C

19 Adapter and Andreas

.

Details of

Generation Facility/Solar Power Plant

(A). <u>General Information</u>

(i).	Name of the Company/Licensee	e Quaid e Azam Solar Power (Pvt) LtdQASPL		
(ii).	Registered/ Business office of the Company/Licensee	83 A, E/1, 83-D/1, Main Boulevard, Gulberg, Lahore, Pakistan. Main Blvd Gulberg, Block D 1 Gulberg III, Lahore, Punjab		
(iii).	Type of the generation facility/Solar Power Plant/Roof Top Solar	Photovoltaic (PV) Cell		
(iv).	Location(s) of the generation facility Solar Power Plant/ Roof Top Solar	Package-I: Site No. 1: Basti Chaappu U/C Db Cholistan (Bahawalpur)		
		Site No. 2: Gata Raikh (DGK)		

(B). Solar Power Generation Technology & Capacity

(i).	Type of Technology	Photovoltaic (PV) Cell	
(ii).	System Type On-Grid		
(iii).	Installed Capacity of the generation facility Solar Power Plant/ Roof Top Solar	Site No. 1: Basti Chappu 280kWp Site No. 2: Basti Gata Raikh 71 kWp	
(iv).	No. of Panel/Modules	Site No. 1: 629 x 445 Watt (Basti Chappu) Site No. 2: 160 x 445 Watt (Basti Gata Raikh)	
(v).	PV Array	Nos. of Strings	32
		Modules in a string	20

	Quantity		1
(vi).	Invertor(s)	Make	InfiniSolar
		Capacity of each unit	30 kW

(C). <u>Technical Details of Equipment</u>

	(a).	<u>Solar Panels – PV Modules</u>	
	(i).	Type of Module	Canadian Solar (CS3W-445)
-	(ii).	Type of Cell	Mono crystalline
	(iii).	Dimension of each Module	2108x1048x40mm(89.0x41.3x1.57 inch)
	(iv).	Total Module Area	3.5750 m ²
	(v).	Frame of Panel	Anodized aluminium alloy
	(vi).	Weight of one Module	24.9 kg
	(vii).	No of Solar Cells in each module	144 (2*(12×6))
	(viii).	Efficiency of module	20.14%
	(ix).	Maximum Power (P _{max})	445 W _P
	(x).	Voltage @ P _{max}	40.1 V
J	(xi).	Current @ P _{max}	10.98 A
	(xii).	Open circuit voltage (V_{∞})	48.5V
ŀ	(xiii).	Short circuit current (Isc)	11.59A

: 4 .

(b).	<u>Inverters</u>			
(i).	Type of Module	30 kW		
(ii).	Type of Cell	InfiniSolar TX 30 KW	7	-
(iii).	Input Operating Voltage Range	625vdc-900vdc		
(iv).	Efficiency of inverter	>91%		
(v).	Rated voltage	230VAC		
(vi).	Rated Current	1/72 A	- <u></u>	
(vii).	Max. Power Point Tracking Range	500 V to 900 V		
(viii).	Output electrical system	3 Phase AC		
(ix).	Rated Output Voltage	230 VAC/ 400VAC	<u> </u>	
(x).	Power Factor (adjustable)	0.8 Lagging-0.8 Leadi	ng	
(xi).	Power control	MPP tracker	· · · · · · · · · · · · · · · · · · ·	
(xii).	Rated Frequency	50 Hz		
		Relative Humidity	0-100%	
		Audible Noise	50 DB @ 1m	
(xiii).	Environmental Enclosures	Operating Elevation	5000m (derate over 3000m)	
		Operating temperature	-25 to +60°C	
(xiv).	Grid Operating protection	A	DC circuit breaker	
L	· · · · · · · · · · · · · · · · · · ·	L	· · ·]

-

C DC overload protection (Type 2) D Overheat protection E Grid Protection F Ground fault Protection G G (i). System Data Continuous online logging with data loggin software to portal. (i). Unit Transformer (i). Not Applicable			В	AC circuit breaker
D Overheat protection E Grid Protection F Ground fault Protection G G (c). Data Collecting System (i). System Data Continuous online logging with data logging software to portal. (d). Unit Transformer (i). Not Applicable			С	DC overload protection (Type 2)
E Grid Protection F Ground fault Protection G G (c). Data Collecting System (i). System Data Continuous online logging with data loggi software to portal. (d). Unit Transformer (i). Not Applicable			D	Overheat protection
F Ground fault Protection G G (c). Data Collecting System (i). System Data Continuous online logging with data logging software to portal. (d). Unit Transformer (i). Not Applicable			E	Grid Protection
G (c). Data Collecting System (i). System Data Continuous online logging with data logging software to portal. (d). Unit Transformer (i). Not Applicable			F	Ground fault Protection
(c). Data Collecting System (i). System Data Continuous online logging with data loggi software to portal. (d). Unit Transformer (i). Not Applicable			G	
(i). System Data Continuous online logging with data logging with data logging (d). Unit Transformer (i). Not Applicable	(c).	Data Collecting Syste	<u>m</u>	
(d). <u>Unit Transformer</u> (i). Not Applicable	(i).	System Data	Continuous online software to portal.	e logging with data logging
(i). Not Applicable	(d).	Unit Transformer		
	(i).	Not Applicable	<u></u>	

(D). <u>Other Details</u>

(i).	Expected COD of the generation facility Solar Power Plant/ Roof Top Solar	MAY 10, 2022 (Expected)
(ii).	Expected useful Life of the generation facility Solar Power Plant/ Roof Top Solar from the COD	25 years

CS3W-435MS / I-V CURVES

Information

Regarding Consumer i.e. OASPL to be Supplied by the Licensee i.e. Off-Grid Village

(i).	No. of Consumers		40-45 Households
(ii).	Location of consumers (distance and/or identity of premises)		Site No. 1: Basti Chaappu (Bahawalpur) Site No. 2: Gata Raikh (DGK) Punjab
(iii).	Contra Factor	cted Capacity and Load for consumer	Site No. 1: Basti Chappu 280kWp / 18.75% Site No. 2: Basti Gata Raikh with 71 kWp / 18.75%
	Specify	y Whether	
(iv).	(a).	The consumer is an Associate undertaking of the Licensee -If yes, specify percentage ownership of equity:	QASPL
	(b).	There are common directorships:	-
	(c).	Either can exercise influence or control over the other.	-
	Speci Relati	fy nature of contractual onship	
(v).	(a).	Between each consumer and the Licensee	Skyblue will construct and operate solar plant and provide electricity to Off-Grid Villages for its operations.

	(b).	Consumer and DISCO.	Off-Grid Villages
(vi)	Any other network information deemed relevant for disclosure to or consideration of the Authority.		NA

Information

Regarding Distribution Network for Supply of Electric Power Consumer in the name of OASPL

(i).	No. of	Feeders	1
(ii).	Lengt	n of Each Feeder (Meter)	200ft
(iii).	Lengt Consu	n of Each Feeder to each mer	Will be Defined As per Consumers Need
(iv).	In respect of all the Feeders, describe the property (streets, farms, Agri land, etc.) through, under or over which they pass right up to the premises of customer, whether they cross-over.		N/A
	Wheth Consu each F	ner owned by QASPL, mer or DISCO-(deal with reeder Separately)	QASPL
(v).	(a).	If owned by DISCO, particulars of contractual arrangement	N/A.
	(b).	Operation and maintenance responsibility for each feeder	Skyblue

(vi).	Whether connection with network of DISCO exists (whether active or not)- If yes, provide details of connection arrangements (both technical and contractual)	N/A.
(vii).	Any other network information deemed relevant for disclosure to or consideration of the Authority.	N/A.

s goter y standig

#**#**####

THE REAL PROPERTY AND INCOMES

1.1

SCHEDULE-III: INTERCONNECTION STUDY and the second states of the

ĩ

·

SCHEDULE-IV: INFORMATION RELATING TO LOCATION (LOCATION MAPS, SITE MAP, LAND ETC.)

<u>Site Number</u>	Location	Site Coor	<u>dinates</u>
	Basti Chaappu U/C Db Cholistan	Latitude	29.419908
1.		Longitude	71.258263

<u>Site Number</u>	Location	Site Coord	<u>inates</u>
2	Basti Gata Raikh	Latitude	29.419908
2.		Longitude	71.258263

PACKAGE – II <u>SITE NO. C, D & E</u> [TECHNICAL SCHEDULES I, II, III, IV & V]

SCHEDULE-I:

PROJECT COMMENCEMENT AND COMPLETION SCHEDULE

Ultimate Engineering

Optimizing the Development and Deployment of Technology for Human Life and

September 01*, 2021

Te.

The Project Manager MVS SOLAR TECH (PAT) LIMITED Labore

SUBJECT: LETTER OF COMMENCEMENT FOR THE PROJECT TITLED, "RENEWABLE & OTHER INITLATIVES IN ENERGY SECTOR -PROJECT OF OFF-GRID/POOR GRID VILLAGE FILOT ELECTRIFICATION IN FUNJAB THROUGH SOLAR POWER PACKAGE 3"

Dear Sir.

In pursuance of the Commact Agreement against the total commact price of PKR 89.989.339.00 (Pakissoni Ropees Eight hundred ninery-nine million nine hundred eighty-nine thousand three hundred eighty-sine Only) signed on 16th August 2021, herveen QUAID-E-AZAM SOLAR. POWER PVT LTD (QASPL) and M/S SOLAR TECH (PVT) LEMITED (The Constants) for the project field "RENEWABLE & OTHER INITIATIVES IN ENERGY SECTOR -PILOT PROFECT OF OFF-GRED/POOR GRID VILLAGE ELECTRIFICATION IN FUNDAB THROUGH SOLAR POWER PACKAGE 3"

We. (Mrs Ultimate "Engineer of the Project") on behalf of the Employer issues the Letter of Commencement to perform the work with immediate effect in accordance with the Comtact Agreement Terms and Conditions.

CNGINESTIG CONSULTANTA

Engr. Junnid Khan CEO/Project Manager MrS Unimage Engineering Consultant:

CC:

na hata na singa anani ina sa i

- I. CEO (QASPL) 2. Project Managar (QASP1)
- J. All Managers (OASPL)

House # 150, Block 42, Jonar Town, Lanare 1321-4176585 Ernet askfastrate enge om Webste www.silmate.engt.mer

Project Milestones Activities:

Payment Milestones			
	Milestones	Percentage	
1	Design Approval	10%	
2	Delivery of BOS Equipment	15%	
3	Delivery of Solar Modules at site.	40%	
4	Delivery of Inverters at site	10%	
5	Delivery of PV Mounting Structure	10%	
	Completion of Fencing Control Building / Guest House and		
6	Installation.	10%	
7	Upon Rectification of Punch List.	5%	
	Total	100%	

"Off-grid/Poor Grid Village Electrification in Punjab through Solar Power (Package-03)			
Commencement Date 1st Sep 2021		Project Ending Date	31st May 2022
SR.	ACENTR		
		ACTIVITY START	ACTIVITY END
1	VERIFICATION OF DRAWINGS	31-Jul.21	06-Aug.21
2	DRAWING APPROVAL AND AMENDMENTS	11-Sep-21	24-Sep-21
3	PROCUREMENT (LOCAL AND IMPORTED)	30-Oct-21	19-Nov. 21
5	TEAM MOBILIZATION PLUS MARTERIAL DELIVERY	11-Sep-21	17-Sep-21
6	SITE MARKING FOR MECHANICAL WORK	1-Oct-21	14-Oct-21
7	CIVIL WORK (Civil Pad)	18-Sep-21	26-Nov.21
8	CIVIL WORK (Control Room)	18-Sep-21	29-Oct-21
9	CIVIL WORK(Fencing)	18-Sep-21	15-Oct-21
10	MECHANICAL WORK (STRUCTURE	25-Sep-21	15-Oct-21
11	MECHANICAL WORK(PANELS ERECTION)	18-Sep-21	26Nov. 21
12	ELECTRICAL WORK	9-Mar-22	15-Mar-22
13	ERECTION OF LETTICE POLES	12-jan-21	16-May-22
14	POWER DISTRIBUTION NETWORK	2-Mar-22	15-Apr-21
15	INSTALLATION OF CCTV CAMERAS	10-Apr-21	17-Apr-22
16	INVERTER PLACEMENT AND TERMINATION	20-Mar-21	25-Apr-22
17	COMMISSIONING AND TESTING	16-May-22	25-May-22
18	TESTING AND HANDOVER TO CLIENT	17-May-22	30-May-22

Project Timeline with Activities:

ţ

4

.

ł

....

SCHEDULE-II: DETAILS OF GENERATION FACILITY/SOLAR POWER PLANT

)

.

Details of

Generation Facility/Solar Power Plant

(A). <u>General Information</u>

(i).	Name of the Company/Licensee	Quaid e Azam Solar Power (Pvt) LtdQASPL
(ii).	Registered/ Business office of the Company/Licensee	83 A, E/1, 83-D/1, Main Boulevard, Gulberg, Lahore, Pakistan. Main Blvd Gulberg, Block D 1 Gulberg III, Lahore, Punjab
(iii).	Type of the generation facility/Solar Power Plant/Roof Top Solar	Photovoltaic (PV) Cell
(iv).	Location(s) of the generation facility Solar Power Plant/ Roof Top Solar	Package-II: Site No. 3: Basti Mud Saindad (Rajanpur) Site No. 4: Basti Kheersar (Bahawalpur) Site No. 5: Basti Pughla (Dera ghazi Khan)

(B). Solar Power Generation Technology & Capacity

(i).	Type of Technology	Photovoltaic (PV) Cell
(ii).	System Type	Off-Grid
(iii).	Installed Capacity of the generation facility Solar Power Plant/ Roof Top Solar	Package-III: Site No. 3: 84.5 KW(Basti Mud Saindad) Site No. 4: 91 KW(Basti Kheersar) Site No. 5: 195 KW(Basti Pughla)

(iv).	No. of Panel/Modules	Site No. 3: 455*186 Watt(Basti Mud Saindad) Site No. 4: 455*200 Watt(Basti Kheersar) Site No. 5: 455*429 Watt(Basti Pughla)	
	РУ Аггау	Nos. of Strings(Mud Saindad)	10
		Modules in a string	18
(v)		Nos. of Strings(Basti Kheersar)	11
(•).		Modules in a string	18
		Nos. of Strings(Basti Pughla)	23
	PV Array	Modules in a string	18
		Quantity	5
	Inverter(Basti Mud Saindad)	Make	Sofar
		Capacity of each unit	20kW*5
		Quantity	5
(vi)	Inverter(Basti Kheersar)	Make	Sofar
		Capacity of each unit	20kW*5
	Inverter(Basti Pughla)	Quantity	12
		Make	Sofar
		Capacity of each unit	20kW*12

•

•

-

 \sim

.
(C). **Technical Details of Equipment**

(a).	<u>Solar Panels – PV Modules</u>	
(i).	Type of Module	JA SOLAR (JAM72S20 445-470/MR/1000V)
(ii).	Type of Cell	Mono crystalline
(iii).	Dimension of each Module	2112x1052x35mm
(iv).	Total Module Area	2.7550 m ²
(v).	Frame of Panel	Anodized aluminium alloy
(vi).	Weight of one Module	24.5 kg
(vii).	No of Solar Cells in each module	144 (6*24) PCS
(viii).	Efficiency of module	20.5%
(ix).	Maximum Power (P _{max})	455 Wp
(x).	Voltage @ P _{max}	41.82 V
(xi).	Current @ P _{max}	10.88 A
(xii).	Open circuit voltage (V_{oc})	49.85V
(xiii).	Short circuit current (Isc)	11.41A
(xiv).	Maximum system open Circuit Voltage	1000V
(b).	Inverters	
(i).	Type of Module	20 kW
(ii).	Type of Cell	Sofar HYD 5K~20KTL-3PH

	(iii).	Input Operating Voltage Range	450v-850v		
	(iv).	Efficiency of inverter	98.2%		
	(v).	Rated voltage	450v		
	(vi).	Rated Current	30 A		
	(vii).	Max. Power Point Tracking Range	180 V to 960 V		
	(viii).	Output electrical system	3 Phase AC		
	(ix).	Rated Output Voltage	22000va		
	(x).	Power Factor (adjustable)	0.8 Lagging-0.8 Leadin	g	
	(xi).	Power control	MPP tracker		
÷	(xii).	Rated Frequency	50 Hz		
			Relative Humidity	0-100%	
	(xiii).	Environmental Enclosures	Audible Noise	50 DB @ 1m	
			Operating Elevation	5000m (derate over 3000m)	
			Operating temperature	-25 to +60°C	
			А	DC circuit breaker	
	()		В	AC circuit breaker	
	(XIV).	. Grid Operating protection	С	DC overload protection (Type 2)	
			D	Overheat protection	

÷

.

		E	Grid Protection
		F	Ground fault Protection
		G	
(c).	Data Collecting System	· · · · · · · · · · · · · · · · · · ·	
(i).	System Data	Continuous online le to portal.	ogging with data logging software
(d).	<u>Unit Transformer</u>		
(i).	N/A	u	, <u>, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>

(D). <u>Other Details</u>

į

(i).	Expected COD of the generation facility Solar Power Plant/ Roof Top Solar	MAY 31, 2022
(ii).	Expected useful Life of the generation facility Solar Power Plant/ Roof Top Solar from the COD	25 years

V-I Curve

Generation Facility/Solar Power Plant/Roof Top Solar

of the Licensee

Current-Voltage Curve JAM72S20-455/MR/1000V

Power-Voltage Curve JAM72S20-455/MR/1000V

1

Information

Regarding Consumer i.e. QASPL to be Supplied by the Licensee i.e. Off-Grid Village

			Site No. 3: 50-60 Households (Basti Mud Siandad)
(i).	No. of C	Consumers	Site No. 4: 35-40 Households (Basti Kheesar)
			Site No. 5: 40-45 Households(Basti Phugla)
			Site No. 3: Basti Mud Saindad (Rajanpur)
(ii).	Locatio and/or i	on of consumers (distance identity of premises)	Site No. 4: Basti Kheersar (Bahawalpur)
			Site No. 5: Basti Pughla (Dera Ghazi Khan)
			Site No. 3: 84.5 KW(Basti Mud Saindad)
(iii).	Contra Factor	cted Capacity and Load for consumer	Site No. 4: 91 KW(Basti Kheersar)
			Site No. 5: 195 KW(Basti Pughla)/ 18.75%
	Specif	y Whether	
		The consumer is an	
		Associate undertaking of	
(iv).	(a).	the Licensee -If yes, specify	QASPL
		percentage ownership of	
		equity;	
	(b).	There are common	-
		directorships:	

	(c).	Either can exercise influence or control over the other.	-
	Specif Relati	y nature of contractual onship	
(v).	(a).	Between each consumer and the Licensee	Solartech will construct and operate solar plant and provide electricity to on-Grid Villages for its operations.
	(b).	Consumer and DISCO.	Off-Grid Villages
(vi)	Any o deeme consic	ther network information ed relevant for disclosure to or leration of the Authority.	NA

Information

Regarding Distribution Network for Supply of Electric Power Consumer in the <u>name of QASPL</u>

:•

(i).	No. of Feeders	1
(ii).	Length of Each Feeder (Meter)	450ft (TF to Distribution Poles)
(iii).	Length of Each Feeder to each Consumer	Will be Defined As per Consumers Need
(iv).	In respect of all the Feeders, describe the property (streets, farms, Agri land, etc.) through, under or over which they pass right up to the premises of customer, whether they cross-over.	N/A

	Whether owned by QASPL, Consumer or DISCO-(deal with each Feeder Separately)		QASPL	
(v).	(a).	If owned by DISCO, particulars of contractual arrangement	N/A.	
	(b).	Operation and maintenance responsibility for each feeder	Solartech Pvt. Ltd.	·
(vi).	Wheth of DIS not)- conne techni	her connection with network SCO exists (whether active or If yes, provide details of action arrangements (both ical and contractual)	N/A	
(vii).	Any deem consi	other network information ed relevant for disclosure to or deration of the Authority.	N/A.	

.

SCHEDULE-III: INTERCONNECTION STUDY

.

SCHEDULE-IV: INFORMATION RELATING TO LOCATION (LOCATION MAPS, SITE MAP, LAND ETC.)

<u>Site Number</u>	Location	Site Coordinates		
		Latitude	29.125079	
3.	Basti Kneersar	Longitude	72.176070	

<u>Site Number</u>	Site Number Location		<u>dinates</u>
	Basti Mud Saindad	Latitude	28.848125
4.		Longitude	70.320144

Basti Mud Saindad Mouza Saindad 84.5 Kmp	t (Rajanpur)	Legend 2 81848125 70.320144.
	j26 348 125 76,320144	
Soodle Earth		Å
		N Elét

. . •

<u>Site Number</u>	e Number Location		<u>inates</u>
Ę	Desti Duchla Shumali/Irauhi	Latitude	30.821718
5.	Bash Pugina Shumah/Janubi	Longitude	70.266050

Sec. and

ANNEXURE-VII

Intended Table of Tariff

TARIFF APPLICATION TABLE

Year	1	2	3	4	5	6	7	8	9	10
	6450	645	645	645	645	645	645	645	645	645
Number of consumers (#)	_	0	0	0	0	0	0	0	0	0
Total generation capacity	721.5	721.	721.	721.	721.	721.	721.	721.	721.	721.
of power system (kW)		5	5	5	5	5	5	5	5	5
Total connected load (kW)	360	360	360	360	360	360	360	360	360	360
Expected load growth (%)	0	0	0	0	0	0	0	0	0	0
Expected revenue from										{
electricity sale										
Expected other revenue										
Estimated capital cost										
(actual or loan payment)										
Expected fixed						1				
maintenance costs										
Expected variable										ļ
maintenance costs										
Estimated fuel Cost										
Estimated O&M Cost										
Estimated Replacement										
Cost										
Other cost (Please specify)										
Annual Profit/Loss										

7

DESCRIPTION OF INTENDED TARIFF SCHEME AND SERVICE AVAILABILITY

As mentioned in the Application, the Applicant intends to initially provide the electric supply services to the Consumers of the locality free of any charge. Subsequently, the tariff shall be charged to the Consumers as per mutually agreed between the Applicant and the Consumers in accordance with the principles of fairness and equity as provided under Regulation 6 of the NEPRA Licensing (Microgrid) Regulations, 2022.

Tariff Category	Number of consumers in this category	Tariff	Days time ol se	of the week and the day that this rvice is to be provided	Total hours per week
		Per [unit]	MT	W T F S S	
 					·
					· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·				
	· · · · · · · · · · · · · · · · · · ·				-
	, ,				
· · · · · · · · · · · · · · · · · · ·					